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High Dimensional Data
Visualization

e D= {Xy S xn} n- points, d — dimensional
e d>3
e n—large

e All real valued

 Need to
* imagine
e validate
e analyze
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* Seeing helps understanding
e Large data — cannot see completely!

 Dimensions a bigger problem — 4-d and higher
e Validate classification and clustering results

* Need visualization approaches that
e provide insight
e are within canvas
e can be accurate and/or approximate (metaphor)
e are like scatter plots

e can efficiently handle large data and higher dimensions



Applications — Some
Requirements

* Across all Subspaces proximity of points
e Shape and size of clusters
* Spread of data across the canvas

* Data Sets
e Sports
e Real Estate
e Spatial-temporal

e Earthquake
e Potentially, any real valued data set
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e Can we find how clusters in high dimensional data
overlap across various subspaces?

* HEIDI

e Can we visually determine size and shape of a data
cluster and explore data set visually?

* BEADS & PEARLS

* Can we present high dimensional data as a scatter plot?
e CROVHD

e Useful for
 Understanding and interpreting data
e Clustering
 Classification
* Image pattern based index
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e D= {xl, Xy een) xn} n- points, d — dimensional

e Construct a nxn matrix where
e Element (i,j) is a bit vector

* Bit p of bit vector
e issettol, if X, is in k nearest neighbor set of X,
e otherwiseitissetto0O
* For the pt" subspace of the data

* Length of bit vector is 29-1
e Visualize bit-vectors using RGB combination of colors

* Size of matrix is nxn x [(29 -1) bits mapped to RGB
representation based on image type]

So, what have you got now? — a Heidi Matrix as shown
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Fila Help

Vis tools

Open More tools
Pearl Data paints
Cluster Data points
K-RNN Graph
Cluster Nawgation
<= -3
Undo Hide
Hide thus Paarl
Show all Pearls

Swiss View

Current Clustar is

number of po
259

* The axis line in the center of
Pearl Plot denotes x.y, 2 axis with
reference to cluster centroid

®* Click on Pearl Links in Text view
to hi .ghl.th desired Pearls

* To use parallel coordinates,
catter plots etc for & Pearl

select "open More tools” in left
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Figure 1: Flowchart
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File Edit

View Terminal

Tue Augl4, 6:01 FM
Go Help

Terminal = shubhangi@localhost:~/Downloads/backup-learn_qt




CROVHD - Concentric Rings of
Visualization

far hinh dimensiaonal da
2d

§ene= 1" quade

20d

3
1
|

fa
3d ||

5d

i

",

ey
%
T
r.3

A,
iV

o
"fa,\,_ _—

Y
o,

e
ey,

%
i
% s

T

1w 2 quads

50d

y 1 sec- 2 quads

80d

Thsn R RRE

B

'*f
Ty v

== 1

I I 1 - A= = acr . — S

I - e I cooo mooo
I e e —

— A A a— 1 A A

= 1o




CROVHD- Example — k-neighbour
graph
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e Parallel Coordinates [Inselberg 1985]
* VISA provides subspace overlap [Assent et al 2007]

» Best fit spheres or ellipsoids at high dimensions
[Fitzgibbon, et al 1999, Calafiore 2002]

e |llustrative parallel coordinates [McDonnell & Muelller
2008]

e All 2-d subspaces scatter plots
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e Subspace overlaps in high dimensions - HEIDI

e Different aspects of HEIDI
e Shape and Structure of clusters — BEADS & PEARLS

e High Dimensional Scatter Plots — CROVHD

(VAKD 2009, VAST 2009, LDAV 2013)



e Ordering of points in Heidi

 Tight fit of shapes — composition of shapes — extending
to 3d shapes

e Exploration with navigation in Beads and Heidi
e Explorative analysis and analytics from CROVHD
* Time and space efficiency

* Integrated visualization tool kit for R data



Take away!

e Subtle work

* Fun with visualization

* \Vast open areas to work in

e Dashboards for visual analytics
 Domain specific vertical solutions

 Deep mathematical problems — shape fitting — multiple
loss-less visuals



Thank youl!

Kamal Karlapalem

kkamal@iitgn.ac.in
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e D= {Xy S xn} n- points, d — dimensional

e Construct a nxn matrix where
e Element (i,j) is a bit vector
e Semantics of each bit in bit vector can be user specified
e The matrix is visualized as an image
e Patterns in image need to be interpreted

Generalization of gray scale visualization of distance
matrix



Heldi — specific case —
Nearest Neighbors

e D= {xl, Xy een) xn} n- points, d — dimensional

e Construct a nxn matrix where
e Element (i,j) is a bit vector

* Bit p of bit vector
e issettol, if X, is in k nearest neighbor set of X,
e otherwiseitissetto0O
* For the pt" subspace of the data

* Length of bit vector is 29-1
e Visualize bit-vectors using RGB combination of colors

* Size of matrix is nxn x [(29 -1) bits mapped to RGB
representation based on image type]

So, what have you got now? — a Heidi Matrix
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Dimensions -0, 1, 2, 3;
Number of subspaces = 24 = 16;
sets of subspaces = 21>-1

0,1,2,3
0,1,2 0,1,3
0,1 0,2 0,3
0 1

0,2,3

1,2

1,3

1,2,3

2,3
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e Ordering of points in a cluster

e Size of the matrix

* Mapping of colors to bit vectors
* Types
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BEADS — Form

e Given a cluster — that is, a set of points much closer
among themselves but well separated from other sets of
points

* Need to determine shape and size of the cluster
e Partition points into subsets of points

e Each subset forms a bead

* Beads are mapped to well-specified 2-d shapes

* Beads are placed in canvas to visually represent shape
and size of cluster — a necklace
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* P =setofdistinct p values for L, norm
* Aim: Identify ‘p" and radius r,’ that
covers the bead tightly X

e Two approaches .

1. Iterate from p by considering distances &

between centroid and furthest point of &
using L, select the p which has the Wl ‘

smallest distance. g _

Find the sum of distances among all - -
pairs of points using L, and select thep |..

N

that has smallest sum of distances

e The selected p gives the shape.

e Thesize is given by the diameter using
the L,
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* Basic 3D shapes to visualize high dimensional clusters.
* Level of abstraction between data point & cluster level.

* Interactive techniqgues make cluster analysis informative
and intuitive.

e Techniques for detailed analysis of individual pearls.

o Useful in cluster analysis and concept identification
within clusters. (Case Studies)
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e Overlapin2 D

e 3 D gives an extra dimension

e rotate the camera and view from various angles.

e Position of a bead conveys only its distance from centre
and the quadrant.
* In 3-D, position conveys
1. distance from cluster centroid

2. quadrant
3. value in chosen dimension

e Facilitates data dimension interactive technique due to
extra dimension



Fila Help

Vis tools

Open More tools
Pearl Data paints
Cluster Data points
K-RNN Graph
Cluster Nawgation
<= -3
Undo Hide
Hide thus Paarl
Show all Pearls

Swiss View

Current Clustar is

number of po
259

* The axis line in the center of
Pearl Plot denotes x.y, 2 axis with
reference to cluster centroid

®* Click on Pearl Links in Text view
to hi .ghl.th desired Pearls

* To use parallel coordinates,
catter plots etc for & Pearl

select "open More tools” in left
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Figure 1: Flowchart
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) New Pearls Plot




Video of Exploratory Visual
Querying
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e PEARLS can be effectively used for visual data analysis
e exploring cluster as a query result.

* supports expression of multidimensional queries through
interaction and aid of data mining.

e follow complex lines of inquiry using sequences of simple
interactions one can follow complex line of enquiry.

* In a lot of data analysis tasks, it is difficult to specify data
points of interest as set of mathematical and Boolean rules.

e [t is also difficult to update rules when new interests are
found. Moreover, a viewer may not know apriori what they
will find interesting.

e PEARLS visualization uses clustering to group points and
makes the analysis of dataset easier. This helps in finding
interesting data points via exploration.
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e PEARLS does not suffers from drawbacks like

* inability to plot complete dataset

* |loss of speed and interaction
number of visual objects(pearls) is << number of data points.

 May suffer from over plotting and decline in legibility
when some pearls are overshadowed by larger pearls

e an effective text based view and ability to rotate the 3-D
visualization vertically and horizontally solves this problem.
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CROVDH — Concentric Rings of
Visualization

f%rvﬁ'gﬂtgémﬁﬂzs,'c? QnQII-QQQt@ionaI data

 Determine a scatter plot visualization
* Spilt the 2-d space into 29 quadrants

* Map each x; to (r, 0) coordinates
* Ris based on distance from centroid to point

* O is based on quadrant and the relative angle within quadrant
from some base axis

 Divide regions of 2-d space as concentric circles
* Give region colors based on relative density
e Can also show actual points
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CROVDH Visualization of IRIS
data set
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CROVDH Visualization of IRIS
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CROVDH Visualization of IRIS
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Figure 2 (a) - Scatter plot of 4d synthetic dataset of 10000 instances.
The grey boxes represent overlapping points which are plotted in 5(b)
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Figure 3(a): Basic CROVHD plot of 10d synthetic dataset with 2000

points. 3(b): Modified CROVHD plot of the same dataset.
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Figure 11: (@) is initial scatter plot of 4d synthetic dataset with 10000
instances. (b) and (c) are scatter plots produced when clicked on
respective bins.
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|t focuses on representing the data distribution in d-
dimensional space on the surface area of a cone.

e 3-d conic visualization explicitly shows neighbours
across quadrants, and helps users to comprehend
nearest neighbours to perform further analytics.
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e Parallel Coordinates [Inselberg 1985]
* VISA provides subspace overlap [Assent et al 2007]

» Best fit spheres or ellipsoids at high dimensions
[Fitzgibbon, et al 1999, Calafiore 2002]

e |llustrative parallel coordinates [McDonnell & Muelller
2008]

e All 2-d subspaces scatter plots



MNiithhnea
\JULIII ICT

* Motivation and Applications
* Problems

e Heidi

e Beads

* CROVDH

e Related Work

e Summary

 Open Problems



Ql mmarv
U

italy
e Subspace overlaps in high dimensions - HEIDI

e Different aspects of HEIDI
e Shape and Structure of clusters — BEADS & PEARLS

* High Dimensional Scatter Plots - CROVDH
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e Ordering of points in Heidi

 Tight fit of shapes — composition of shapes — extending
to 3d shapes

e Exploration with navigation in Beads and Heidi
* Explorative analysis and analytics from CROVDH
* Time and space efficiency

* Integrated visualization tool kit for R data



Take away!

e Subtle work

* Fun with visualization

* \Vast open areas to work in

e Dashboards for visual analytics
 Domain specific vertical solutions

 Deep mathematical problems — shape fitting — multiple
loss-less visuals



