
An Efficient Error Detection Technique for VLC Coded Data

Upendra Singh Rajpurohit and Suneeta Agarwal

Department of Computer Science & Engg, Motilal Nehru National Institute of Technology, Allahabad
E-mail : upendra1984@gmail.com, suneeta@mnnit.ac.in

ABSTRACT
In order to achieve high compression in data, VLC coding is being most promptly used now
days. This VLC technique provides a high degree of compression but has very poor error control;
even a change in just one bit may lead to the corruption of whole file in the worst case. In this paper
we discus a novel approach to solve this problem of error propagation and early detection of occurrence
of errors. The algorithm works with out any preconditions and sends small amount of additional
information with data. Implementation of algorithm confirms the decrement in erroneous data
received and control on error propagation.

Keywords: Algorithm, VLC, MPEG, Error detection

1. INTRODUCTION
The VLC is widely used in source compression
because of its high compression ratio. A lot of
Audio, Video and Text compression algorithms
are already being designed based on this coding
scheme including H.26x, MPEG, AVI etc. But
VLC coding has a major drawback of error
propagation; even a single bit of error may lead to
the corruption of whole file in the worst case. Thus
transmitting a VLC coded file over a noisy
channel without using an error detection algorithm
is a worthless task. Although many VLC exhibits
self synchronization property as discussed in [1],
but the synchronization is achieved by a large
number of additional data transmitted along with
the original data and by assuming many
preconditions.

Some algorithms have already been proposed in
order to solve the said problem. A Reversible VLC
(RVLC) based technique is discussed in [2]. But
RVLC requires decompression of data from both ends
and thus has a high complexity algorithm. The authors

of [3] discuss a block interleaved error resilient coding
scheme in which high value data can be prevented
from errors by placing it ahead in block but it doesn’t
deal with the errors once they occur. An another
approach to solve the problem as discussed in [5] is
by sending some characters as it is in between
along with there positions so that they can be
cross checked at the receiver end for the
synchronization.

In this paper we propose a new approach towards
solving the problem of error detection. Our method
doesn’t require any known preconditions about
data or the networks conditions, also requires very
less amount of additional data for synchronisation
purpose.

The paper is organised in three sections. In
section two, we discus the problem of errors in
VLC coded data, in section three we propose a
solution to the problem and section four
represent results which clearly indicates the
superiority of our algorithm over other existing
techniques.

An Efficient Error Detection Technique for VLC Coded Data 35

2. ERRORS IN VLC CODED DATA
Most of the entropy encoding schemes use VLC codes
such as Huffman codes, Reverse VLC, Universal
VLC etc. all are known to be very sensitive for
errors.

The sensitivity of errors lies in the fact that these
codes are of variable length and use the prefix
property for the decoding purpose. This prefix
decoding of variable length codes is not suitable
for decoding of erroneous data files, as it not
only results in incorrect decoding of code words but
also results in the loss of synchronization of prefix
and thus leads to the incorrect decoding of
subsequent words.

For example, suppose the characters along
with their corresponding code words used to code a
text as

Table 1

Character Code Word

A 10

B 010

C 0110

D 1110

E 110

For example consider the given sequence of
code words as under,

1001101101110100101110010110

The above data has the following code sequence

10 0110 110 1110 10 010 1110 010 110

Upon correctly decoding following character
sequence is obtained.

ACEDABDBE

Suppose a noise burst leads to two errors each of one
bit in data (second and fifteenth bit from left changes
from 0 to 1) at the time of transmission. The code
sequence now will be

1101101101110110101110010110

The bold characters show the changed bits.

The given sequence will now have the codes like this

110 110 110 1110 110 10 1110 010 110

Upon decoding following character sequence is
obtained.

EEEDEADBE instead of ACEDABDBE

Thus even a small amount of error is strong
enough to corrupt the whole file.

 The errors which can occur in VLC coded
data files can be classified into various categories.

iii. The errors which lead to invalid code word.

iii. The errors which lead to a valid code word
at the moment but may lead to an invalid
codeword later.

iii. The errors which propagate but resynchronize
itself after some time.

The first two types of errors are considered as
fatal errors and can be detected easily. But the problem
is with the third type of errors as they are hard to
detect. Although in real time applications the third
category errors are of very less threat but still they
must be detected as early as possible because it may
be possible that they may corrupt a big chunk of
file before getting resynchronized. Even in the
case of fatal errors, we can’t be sure whether the
error has occurred at this point or had occurred
previously. The method proposed here deals with all
the three categories of errors.

3. ERROR DETECTION IN VLC CODES
The proposed Algorithm sends the whole data in
blocks embedded with small amount of
synchronization bits.

The sizes of these blocks are not fixed, they vary
according to the detection of errors at the receiver
end. In order to report the error back to the sender,
the concept of negative acknowledgment is used.
After receiving this acknowledgement the size of
the block is reduced to half of current size
otherwise doubled. This reduces the overhead
communication cost of acknowledgment to a
considerable extent. The algorithm works as follows:

36 • IC3–2008 UFL & JIITU

The given data is first transmitted in blocks with
the policy:

Say the largest code among all character is of
length ‘N’, make the first macro block of size
greater than or equal to N and transmit, upon
successful transmission increase the size of block
to double, and continue the process until a threshold
is not reached or an error doesn’t occur. On
occurrence of an error the size of the block will be
made equal to the last known good size i.e. the half
of the current size, and transmit all data from that
point onwards again.

Every block is ended with a specific ending for
error detection purpose. It is known that mostly
errors disturb the synchronisation of codes and causes
error with a difference of at least one bit. This
error can be detected at the end of the block.

The ending embedded in block consists of 0s
sandwiched between two 1s. The number of 0s can
vary from 0 to N-1.

Let BSIZE be the block size, and the last
codeword ends at the bit number BSIZE, then the
ending of the block will be “11”, but if the last code
word ends at position (BSIZE-REM), REM are the
remaining bits in current block and the next symbol
has code word of size greater than REM which cannot
be fitted in the current block and thus it will go in the
next block and the remaining bits of current block
will be filled by extending 11 containing REM number
of 0s in between these two 1s.

In general, the embedded ending ‘X’ will be the
M number of zeros sandwiched between two 1s,
where M = {0 N-1}. Errors can be detected
by checking the pattern of X. The X when checked
in advance will tell the ending point of last code word.
The number of 0s =M in the ending symbol will tell
that the ending point of the codeword is at position
K-M+1, where K is the size of the block.

For example:
Consider Table 1, and the following string
1001101101110100101110010110
So the codes were
10 0110 110 1110 10 010 1110 010 110

Here N=4, so size of block must be greater than
or equal to 4.

Say Block Size =8, then as per the algorithm only
first 2 words will fit into block 1

100110BB

2 bits are remaining (BB), but the next word
can not be included into block 1 (110), so it will go
into block 2. BB will be filled by 10 ending the block
by 01

So the block transmitted is 1001101001

And ending X=1001 denotes that the last word
ends at position 6, and thus can be checked for the
verification of data received.

On correctly receiving the block the receiver
doubles the size of the block to be receive, otherwise
it will reset the size to the previous known good
size, and sends a negative acknowledgement
containing the block no. of corrupted block to the
sender, the sender on receiving the
acknowledgement resets the size to the previous
best size and retransmit the block.

The Algorithm has advantages over the other
proposed algorithms, as compared to [6], proposed
algorithm preserves the beauty of VLC technique and
doesn’t loss any data which makes it suitable for any
type of data Audio, Video, Text etc.

Also in addition to this we are using one
additional bit at the end of each block for parity
checking. This can directly detect the odd number of
bit changes immaterial of whether the code is getting
resynchronised or not.

In comparison to [5] the proposed algorithm
requires very less amount of data to be sent and less
amount of computation for the purpose of
resynchronisation and error detection.

4. ALGORITHM
- Find the size of largest VLC codeword (N)

- Set MINSIZE and MAXSIZE,

MINSIZE,MAXSIZE>=N

- Make Block size BSIZE=MINSIZE

An Efficient Error Detection Technique for VLC Coded Data 37

- Until the completion of data

• Make block of size BSIZE and serial number
BNO

• Transmit block over the physical channel

• Make BSIZE=BSIZE*2

- If an acknowledgement is received

• Make BSIZE = last known best size

5. IMPLEMENTATION AND RESULTS

In order to evaluate the effectiveness and
performance of the proposed Algorithm, a lot of
sample dataset have been implemented with
different sizes of blocks and Huffman codes. In
Figure 2 it is clear that the algorithm requires very
less amount of extra data as compared to sending
the check marks. In addition to minimizing error
propagation effect, it provides high accurate error

Fig. 1: Block Diagram of the system

Fig. 2: The Amount of Extra Data Required

X-axis represents block size in the multiple of initial
size, where initial size is greater than or equal to ‘N’. Y
axis represents % of extra data required. Solid line
represents the data required in proposed algorithm. Dashed
line represents the data required while sending the
codeword with there respective positions.

38 • IC3–2008 UFL & JIITU

Fig. 3: Percentage of correct data received.

X-axis represents block size in the multiple of initial
size, where initial size is greater than or equal to ‘N’. Y
axis represents % of correct data received

Also the algorithm requires less computing
power to reorganize the compressed bitstream, which
makes it suitable for real time application.
Furthermore the algorithm has small redundancy and
excellent error resilient capability.

6. CONCLUSION
In this paper we have proposed a novel error
detection technique for VLC coded data over a noisy
channel. We have proposed and implemented an
algorithm to detect the erroneous blocks in VLC

detection capability In Figure 3 the Efficiency is
shown in terms of the amount of correctly received
data with respect to the block size. Efficiency
obtained without implementing algorithm on
corrupted data is as low as 36%. But after
implementing the proposing algorithm we can obtain
efficiency over and above 95%.

coded data and it was found that the proposed
algorithm is sufficient to detect most of the
erroneous blocks. The algorithm requires a
considerably less amount of extra data for error
detection purpose. Further the algorithm is totally
lossless in no error condition which is very common
in error coding techniques. Since the size of block is
taken as variable rather than static thus it improves
the transmission rate in no error condition.

REFRENCES
1. T. Ferguson and J. H. Rabinowitz, “Self-

synchronizing huffman codes,” IEEE Trans. Inf.
Theory, vol. IT-30, pp. 687–693, Jul. 1984.

2. Qiang Wang, Debin Zhao, Siwei Ma, Wen Gao,
“An Enhanced Robust Entropy Coder for Video
Codecs Based on Context-Adaptive Reversible
VLC”, IEEE Data Compression Conference
(DCC’07), 2007

3. Y. Fang, L. Yu, “Block-Interleaved Error-
Resilient Entropy Coding”, IEEE transaction on
Circuits and Systems, pp. 53-56, May-2007

4. E. Khan, S. Lehmann, H. Gunji, and M.
Ghanbari, “Iterative error detection and
correction of h.263 coded video for wireless
networks”, IEEE transactions on circuits and
systems for video technology, vol. 14, no. 12, Dec.
2004

5. H. Cai, B. Zeng, “A new, efficient, and flexible
error detection approach for compressed visual
contents”, IEEE transaction on Circuits and
Systems, vol. 03, no. 04, pp. III-909 – III-912, May-
2004

6. H Nguyen, J Brouet, P Duhamel, “Robust and
adaptive transmission of compressed video streams
over EGPRS”, IEEE transactions on Consumer
Communications and Networking Conference,
Page(s):320-324 5-8 Jan. 2004

