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ABSTRACT
Genetic algorithms or GAs are adaptive search algorithms. These algorithms are based upon the
principles of evolution and natural selection. GAs are adept at searching large, non-linear search
spaces and efficiently determining near optimal solutions in reasonable time frames by simulating
biological evolution. We propose a model based on neural network for predicting pest attacks. This
model takes a different approach where GA is used to prune faulty input training samples and also to
retain and induce new good samples using reproduction operators: mutation and crossovers. The
results show an improvement in the prediction error margin and convergence time in leaning phase of
the model.
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1. INTRODUCTION
Pests are known as one of the main reasons to

affect agriculture produce negatively. It is well known
that pest diseases are cyclical phenomena as their
development and attacks are in relation to host crop
cycle and the environment. Several work [1][2] in
past has been aimed to understand this pest dynamic
and to establish correlations between various
parameters pertaining to agricultural operations
regarding crops, farming activities, weather and pest
activity. Various approaches have been proposed to
establish these correlations in order to address the
major pertinent research problems of developing a
feasible model for pest attack prediction.

This paper discusses a prediction model based
on Neural Network and Genetic Algorithm. The model
has a different two-prong approach for the subject
problem. The error in the prediction is used to correct
the model while the genetic algorithm based module
prunes out the faulty training samples and inducts

fresh training samples from database based on the
fitness function. The fitness function determines the
quality of the training sample.

2. NEURAL NETWORK
Neural Networks [3][5][6][7][8][10][11][13][16][17]
or NNs are algorithms for optimization and learning,
based on concepts of working of brain. A neural
network is a highly parallelized dynamic system that
consists of directed graphs. The topology is such that
it generates the output by means of a reaction of its
state on the given input data.

Generally a neural network consists of following
component:

- A directed graph of set of nodes.

- A weight associated with each link/arcs
interconnecting the nodes.

- A transfer function associated with each node.
The transfer function can be expressed as:
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Fig. 1: A three layer Neural Network

Mathematically the output a node in neural
network can be represented as a weighted sum of the
activation functions. For example the output of f3 node
in second layer can be expressed as:

f3 output =  w13 f1(x1) +w23f2(x2).

w13  = weight of link connecting nodes f1, f3.

w23 =  weight of link connecting nodes f2, f3.

Similarly the output of other nodes can be
calculated and perpetrated in the network till the
output layer.

The layers of a neural network in general are of
three kinds:

- Input Layer: This layer is the set of nodes, which
receive data input. This layer can be used to
convert data into required range, depending upon
the activation functions of the network nodes.

- Output Layer: The nodes, which gives the final
output, constitutes output layer. Again this layer
can be used to change the output data to the
required range depending upon the function
applied at input layer.

- Hidden Layer: Apart from input and output all
other nodes in different layers constitute hidden
layer. These nodes do the processing of data.

Similar to human brain, a neural network has the
ability to recognize and learn a pattern in a given data
set. The learning of the network is encoded in the
synaptic weights of the interconnected nodes. When
a new input pattern different from the previously
learned pattern is presented to the network, the
network through changing of strengths of synaptic
weights learns the new pattern.

An important part of the neural network is its
training. The network structure undergoes learning
process during which nodal weights are adjustment.
During learning face, the network is presented with
training samples of data repeatedly. The output of the
network is compared with the actual output of training
data set and the error is used to modify the network
weights.

3. GENETIC ALGORITHM
Genetic algorithms [5][7][9][11][12][13] or GAs are
adaptive search algorithms. GAs are based upon the
principles of evolution and natural selection. They are
adept at searching large, non-linear search spaces.
Genetic algorithms search large and complex search
spaces to efficiently determine near optimal solutions
in reasonable time frames by simulating biological
evolution.

In general, genetic algorithms consist of following
components:

– Encoding of problem into chromosomes
– A fitness function that evaluates chromosome
– Operators to generate new population: mutation,

cross-over

A genetic algorithm operates according to the
following steps:

- Population initialization: sets of initial
chromosomes are generated

- Evaluation: Each member of the population is
evaluated

- Reproduction: Generation of new sets of
chromosomes

When a genetic algorithm has appropriate
encoded solutions of a problem and operators that can

ƒ(Σw*l, Θ)

where “w” is associated with each link “l” connecting
the node with other nodes and Θ is the activation
function of the node. The nodes received inputs from
previous layers and applied the weighted sum of these
inputs to this activation function.

Input 1: x1 

Input 2: x2 
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Fig. 2:  An error surface with respect to weight
matrices.

4. MODEL AND METHODOLOGY
A neural network design is statistical in nature
therefore an appropriate tradeoff between complexity
of the model and performance of the model is needed.
In the context of backpropagation learning this
tradeoff can be realized as [16]:

R (w) = λ ec(w) + es(w) ...(1)

λ is a normalization parameter representing the
relative importance of the complexity term (ec) with
respect to the performance-measure term (εs).

εc is the complexity factor, which depends upon
the network model. For our network complexity we
used heuristic approach and after repeated trial-error
method decide the layer and node composition (details
of model in 4.1.1).

εs(w) is performance measure, in back-
propagation model learning context. It is typically
defined as a mean-square error of the output and forms
the basis of network training. This factor depends on
both network model and input data. One of the main
reasons of error, in the prediction model is impurity
of training data. A faulty training data can impair the
learning of model and cause increase in prediction
error.

The model we propose here uses a different
approach by encoding the entire training database with
GA. Earlier work [11][12] in the area of GA optimized
neural learning is concentrated on improving of
network learning, i.e. correction of weights, with GA.
Our approach uses GA to prune and refine the training
data set of the model. Genetic Algorithm is used to
identify the faulty input samples i.e. the samples that
causes high prediction error and based on the fitness
function new samples are induced in the training
sample set and faulty sets are pruned. The proposed
model is based on a feed forward neural network. It
consists of layers of nodes and has the topology such
that there are no closed paths. We have used
backpropogation algorithm [7][10] to train the
network weights.

Levenberg-Marquardt (LM) [3] optimization is
used for calculating cost function over the model
parameters i.e. neural net weights and fitness function
of genetic algorithm module. The cost function we
use is based on optimized LM proposed by
Wilamowski et.al [4].

f
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2 2(x) =  [  ( E) ]Σ Σ Δ ...(2)

n  = number of training samples.
ΔE is the error margin in the prediction of value

of the model output:

ΔE = o oexp
j

train
j− ...(3)

oexp
j = output predicted by model. Corresponding

to jth  training sample.

o train
j = output according to jth training sample in

the database.

generate better new chromosomes from parent
chromosomes, the algorithm generates population of
better and better chromosomes resulting in the
convergence to global optimum. As genetic algorithm
can improve the current best candidate monotonically
they do not have the problem of local minima trap.

Local minima traps are a common problem
associated with Neural Network. It happens when the
learning phase of the network keeps oscillating
between two error peaks and therefore fails to
converge to optimal solution in learning phase.

So there can be a case where like in fig 2. the
learning phase may oscillate between the marked local
minima and will not be able to achieve optimum
solution.
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4.1 Neural Network Layer
The feedforward neural network of the proposed
model consists of five layers:

(1) Input Layer: This layer consists of four nodes.

(2) Hidden Layer: There are three hidden layers.
First   hidden layer has 6 nodes while second
one has 12 and third has 6 nodes.

(3) Output Layer: The output layer has one node

The activation function of the 2 hidden nodes is:

ƒh (x)  =  (1+exp (-x)) –1 ...(4)
The activation of the input node is:

ƒi (x) = x  / I i
max ...(5)

I i
max = highest value of ith type input parameter in

training sample.
The activation of the output node is:

ƒo(x)  = x / O i
max ...(6)

O i
max = highest normalized value of output

corresponding to of ith training sample, i.e.

O = max (O ).max
i i ...(7)

O = O / max (O ).i
train
i

train
i ...(8)

i ∈ (1, 2, ... n)
n  = number of training samples.

otrain
j =output corresponding to ith training data tuple.

The input layer has no arcs to them and the output
layer has no arcs away from them. Any path traversed
from input to output node traverse the same number
of arcs. Nth layer node connects to all nodes of (N+1)
th layer nodes.

4.2 Parameters used in Neural Network
The backpropagation algorithm (details in 4.3.2) we
used provides an approximation to the trajectory of
the network weight vector space calculated by gradient
descent method [8][10]. The learning of the model is
controlled by various parameters, which defines model
characters like learning rate and weight correction
response. These parameters are:

- ή = Learning rate

- δ = Local gradient

- Δw = Weight correction

- ψ = Momentum constant

Learning rate determines the size of the weight
adjustment made at each training iteration and hence
influences the rate of convergence.

Moment constant effects weight change process.
It get the learning through one or local minima and
get it into global minima.

These parameters are related as:

ΔWji(n)  = - ή * δj(n) *  yi(n). ...(9)

ΔWji = weight correction to the weight that connects
the neuron i to the neuron j

yj(n) = input signal of neuron j  i.e. output of neuron
i.

δj = Local gradient

These parameters affect the learning of network
as shown here:

ΔWji(n)  = ψ * ΔWji(n-1)  + ή * δj(n) *  yi(n).         ...(10)

at nth iteration

4.3 Augmented Genetic Algorithm

4.3.1 Genetic Algorithm Module Component

The genetic algorithm module of our model has
following component:

- Encoding: Database is encoded in the form of
chromosomes. An initial population of ‘N’
chromosomes is generated with each
chromosome consisting of  ‘S’ number of genes
where ‘S’ is total number of data tuples in
database. Each gene represents one tuple and
has Boolean value of ‘true’ or ‘false’. Only if
the value of the gene is true, the tuple it
represents is made available for training set.

- Reproduction Operators: There are two
operators used mutation and crossovers. In
mutation value of genes are set whereas in
crossovers the cross between two chromosomes
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produces new chromosome representing new
training set.

- Pruning: In addition to reproduction operators
above we introduce new operator that removes
the gene from chromosomes and introduce new
gene representing different tuple. The pruning
is done based on the fitness of a chromosome.
The fitness parameter of a chromosome is a
function of χ and Δ:  Γ (χ, Δ).

χ = standard acceptable error of the model

Δ = error corresponding to a tuple represented by a
gene

4.3.2 Gene fitness function

The fitness function of the genetic module determines
the number of genes available for training in a
chromosome and the associated error of the network
with the chromosome. We have incorporated two
parameters “trainingGain” and “inputGain” in the
function. trainingGain controls the number of training
cases that are discarded corresponding to an error in
network. trainingGain determines the threshold error
value for a gene to be set false. This parameter
accounts for the fact that not every erroneous gene is
impure tuple. The parameter is set for different
experiments and error peaks in those experiments is
used to fine-tune the parameter values subsequently.
Input Gain controls the number of genes initially
having  a boolean value “true”.

4.4 Algorithms

4.4.1 Prediction algorithm

Prediction

{

 t = number of tuple in database;

initialize P(x) ;  //initial pool of population of
chromosomes,  0< x <= t,  P(x) is a chromosome

while (not termination condition: number of training
cycle or convergence to acceptable error)

    {

I(n) // pool of chromosomes selected for training based
on fitness; initially I(n) = P(x)

while (not termination condition : acceptable standard
error)

{
input tuple to neural network from I(n);
calculate output;

calculate error;
backpropogate algorithm(); //to modify weights of
links;
fitness();  //fitness function to evaluate fitness of
chromosome ‘c’ ,   c ε I(n);
remove();  //remove bad genes;
}
//generation of new population

crossover();
mutation();

for all x chromosome in the population P(x)
{

calFitness(); //calculate fitness;
}

}
}

- The fitness() function is based on LM
optimization as discussed in eq (2)

- calFitness() calculate the fitness of a
chromosome in a training sample based on
number of bad genes i.e. gene denoted by 0 or
“false” in chromosome string, error in the
network and standard acceptable error.

- remove() function makes the representation of
gene to “false” i.e. unavailable as training
sample.

- insert() function makes the representation of
gene to “true” i.e. available as training sample,
used for mutation.

- crossover() and mutation() are standard genetic
operators. crossover() makes chromosomes
interchange gene value at different points along
length thus certain genes are removed i.e.
represented as “false” and certain genes as “true”
while some genes get duplicated.
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For ex. two chromosome strings

S1 = 001101 and

S2 = 101010 cross each other at positions 1, 4
and 6, so one of the possible new string S3 = 101000.

Similarly mutation is randomly inverting the
representation of genes.

4.4.2 Backpropagation Algorithm

backpropogation algorithm

{

initialize all weights;

while( terminating condition)

{

for each training sample

{

for each hidden and output layer node j

                     {

Ij  = Σwij   *   ƒi (x)(or ƒo(x) ) +  Φ ;

 //Calculation of node input of each unit in j layer
receiving data from nodes in previous layer i.as
discussed in Section 2.

and where Φ = bias of the node.

}   //end of for

Error of the model = O(1-O)* ΔE   (eq 2) ;

//where O = output of the model

for each    hidden layer unit compute ;

//moving backwards that is from second hidden
layer to first hidden layer.

updation of    network weights;

updation of bias of nodes;

}     //end of for

} // End of outer while

}    //End of back-propagation

5. IMPLEMENTATION
The data to test the model is in MS xls format. The
data is surveillance data set for the chickpea crop

provided by ICRISAT, Hyderabad. A data tuple
consists of following data:

- Weather Data: Min.(Tmin), Max.(Tmax) tempera-
tures, Relative Humidity(H), Rainfall (R).

- Pest incidence: Larvae per plant (L)

To decrease the granularity of the data weekly
mean of Tmin, Tmax, rainfall, humidity and larvae/plant
is recorded. The pest surveillance data set for the
chickpea crop was collected over a period of 11 years
(1991-2001). Each tuple in the data set is of the form
<Tmin, Tmax, Humidity (H), Rainfall (RF), Larvae/plant
(L)>, where each value represents the weekly mean.

5.1 Data Processing
Since the range of activation function of nodes (eq.
3), lays from 0 to 1 the input data set is ranged to the
required values before testing. The values are
normalized to make the range appropriate. The input
layer and output layer activation function does the
normalization part. The network was trained with 300
tuples of data set iteratively with 6 different sets of
50 tuples. Thereafter the model was checked with
another 50 set of tuples.

6. EXPERIMENTS AND RESULTS
The following criteria were the basis of the
experiments conducted:

- Convergence of the learning phase

- Comparative performance between Augmented
GA model and without GA model.

- Error in predicted value

Table 1: Convergence Iterations

Training Set 
Number 

Augmented GA 
model iterations 

Non GA model 
iterations 

1 249 311 
2 457 949 
3 652 630 
4 312 325 
5 982 Learning phase did 

not converge 
6 549 526 
7 823 971 
8 297 Learning phase did 

not converge 
9 451 832 

10 791 1041 
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Fig. 3:  Actual Value v/s Predicted Values by Non GA

The figure shows that the Non GA model
successfully predict values with good approximation.

Series1 = Actual Values

Series2 = Predicted Values Non GA model

Peaks: Sudden change of pattern; Error

Tailing Effect: Error increases at the far end i.e
as the period distance between the training samples
and the prediction samples is increased the error
margin increases.

Error Peaks: The sudden peaks in the predicted
value show sudden change of pattern. The Non GA
model falters around sudden change of pattern and
prediction error is high

Series 1: Real Data

Series 2: Predicted Value by Augmented GA
model

Series 3: Predicted Value by Non GA model

The result shows that the proposed model is able
to predict more accurately than the Non GA model

(fig. 4). Also it is to note the peaks in the graphs where
the prediction is better than the Non GA model,
although not very correct with respect to real value
(fig. 4) but the error margin is relatively low than the
non-GA model.

It is to note that the performance of Augmented
GA model around error peaks shown here is after fine-
tuning of the parameter trainingGain. The parameter
eventually decides the fitness of a chromosome and
thus overall population. The fine-tuning of this
parameter with repeated experiments ensures that
probability of correct tuple being removed is high.

(3) Error in predicted value
Table 2: Error Performance

(1) The table 1 shows the iterations required for
convergence in learning phase of the
Augmented GA and Non GA model.

The results show the Augmented GA model takes
lesser number of iterations over a set of training
sample to converge and learn. The result also shows
that augmented GA model can avoid local minima
trap more effectively.

(2) Comparative performance
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Min. Error 
Percentage 
(approx.) 

Max. Error 
Percentage 
(approx.) 

Average Error 
Percentage 
(approx.) 

Augmented 
GA Model 2 33 22 

Non GA 
Model 12 41 30 

Table 2 shows that the augmented GA model has
higher accuracy of prediction in comparison to Non
GA model with comparative lower error percentage
in overall prediction.
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7. CONCLUSION AND FUTURE WORK
The experiment result shows that the Augmented GA
model is better than its non-GA counterpart in terms
of prediction and learning traits. Also in the GA model
the number of error peaks was less, in all the number
of peaks for the 100 different testing, there was
difference of 9 peaks in a best case i.e. 19 peaks in
GA model in comparison to 28 peaks in the case of
non-GA model. The tailing effect was similar in both
the model and therefore on an average a prediction
for an advance period of 7-10 days was in fair range
of error margin.

Our current approach in establishing the structure
for the network is based on heuristic approach. A better
way to implement this modeling would be error
dependent dynamic modeling, whereby the number
of layers and nodes can be determined dynamically
in the training phase. So depending upon the error,
the number of nodes and layers in the network can be
reconfigured repeatedly to achieve higher accuracy.
Although this approach can increase the complexity
of the overall model but a reasonable tradeoff between
the complexity and real term prediction is where the
future work can be concentrated.
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