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ABSTRACT
Recently, routing with disjoint paths has received much attention because disjoint paths have the
advantages of efficiency and fault tolerance. On the other hand, RTCC network was studied, due to its
favorable properties such as high degree of stability and resilience. In this paper we studied the one-
to-one and one-to-many disjoint routings for RTCC network. The connectivity of a network is an
important measure of fault tolerance, while the diameter represents the worst-case transmission delay
between two arbitrary nodes. The wide diameter, fault diameter and Rabin number, which take
connectivity, faults and parallel paths into consideration, are three generalizations of the diameter.
We obtained these properties of RTCC network and by using them we showed that in the faulty situations,
this network act very well in comparison with the situations free of any fault.
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1. INTRODUCTION
The Recursive Transpose-Connected Cycles (RTCC)
Network is a class of recursively scalable networks,
denoted by RTCC(C, L) ,  that is constructed
hierarchically by grouping basic cycle modules. Any
C-node cycle can serve as the basic modules.

With continuous increases in network size,
routing in networks with faulty nodes has become
unavoidable. Routing through node-disjoint paths in
interconnection networks can not only provide
alternative routes to tolerate faulty nodes but also
avoid communication bottlenecks. Moreover, routing
through node-disjoint paths can speed up the
transmission time by distributing data among disjoint
paths. Thus, the study of disjoint paths connecting
any two nodes can be useful for increasing the
reliability of interconnection networks, as well as
transmission efficiency. A larger number of disjoint

paths is more desirable because of less vulnerability
to disconnection. The study of node-disjoint paths
varies according to the number of source and
destination nodes. There are three well-known
paradigms: one-to-one routing that constructs the
maximum number of node-disjoint paths in the
network between two given nodes, one-to-many
routing that constructs node-disjoint paths in the
network from a given node to a given set of nodes,
and many-to-many routing that constructs node-
disjoint paths between a given set of nodes. Using
these paradigms, node-disjoint paths have been
extensively studied on some networks [9, 10, 11].

In this paper, we studied the fault tolerance
properties and node-disjoint algorithms in RTCC
network. In section 2, we formally define the RTCC
topology and a number of useful notations and
definitions to be used in subsequent sections. In
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section 3, we obtained the connectivity and fault-
diameter of the network and proposed an algorithm
for one-to-one node-disjoint paths in RTCC network.
The wide-diameter of the network was obtained in
this section, too. Section 4, studies the one-to-many
node-disjoint routing algorithm and the Rabin-number
of RTCC network. Finally, section 5 concludes this
study.

2. DEFINITIONS AND PRELIMINARIES
It is natural to model interconnection networks with
graphs that have nodes representing processing units
and communication units (switch) connected with
edges representing data streams between the nodes.
The RTCC network [8] is a class of recursively
scalable networks denoted as RTCC(C, L) that is
constructed by hierarchically grouping basic modules
each a C-node cycle graph. RTCC (C, L) consists of
C RTCC (C, L–1)’s each of them could be considered
as a super-node. These RTCC (C, L–1)’s are connected
as a complete graph.

Definition 1. A C-node cycle consists of a set of
nodes {0, 1, 2, 3, …, C-1} and set of edges {e0, e1, e2,
..., eC-1} such that ei = (i , i+1 mod C).

Definition 2. The definition of the RTCC(C, L)
is based on a C-node cycle. We name all the nodes in
this cycle, ‘Extern nodes’ or ‘Open nodes’. An
RTCC(C, 2), consists of a number of C discrete
RTCC(C, 1) networks, or C-node cycles, numbered 0
to C-1. Each external node i of each C-node cycle j is
connected to node j of C-node cycle i. It is obvious
that a node whose number is equal to the number of
the RTCC(C, 2) in which it resides, is not directly
connected to any other cycle, and is of node degree
one less than other nodes in the network. There is one
such node in each RTCC(C, 1) used to construct an
RTCC(C, 2), and thus a total of C such nodes. We
name these nodes as the external nodes of the
RTCC(C, 2), the number of each one being equal to
the number of the RTCC(C, 1) to which it belongs. In
a similar manner, the RTCC(C, 3) can be defined as
C discrete RTCC(C, 2) networks that are connected
in such a way that each external node i in RTCC(C, 2)
number j is connected to external node j in

RTCC(C, 2) number i. Once again, a node whose
number is equal to the address of the RTCC(C, 2) in
which it resides, is not directly connected to any other
cycle, and is of node degree one less than other nodes
in the network. We name these nodes, of which there
is a total of C, the external nodes of the RTCC(C, 3).
Higher level RTCC networks can be defined in a
similar manner. In Fig 1, the connection between
nodes of an RTCC (4, 2), RTCC (5, 3) and an RTCC
(6, 1) are displayed.

The node set of an RTCC(C, L) can be expressed
as {(aLaL-1 …a1) | ai ∈ C, 1 ≤ i ≤ L} where C = {0, 1,
..., C – 1}. Therefore, the number of nodes of an
RTCC(C, L) is equal to |RTCC(C, L)|v = C × |RTCC(C,
L-1)|v = CL. On the other hand, the number of edges
of an RTCC(C, L) is equal to |RTCC (C, L)|c = C ×
|RTCC(C, L-1)|e + C(C-1)/2 = (3CL – C)/2. The degree
of extern nodes of an RTCC(C, L) is 2 and the degree
of all other nodes is 3. Therefore, the degree of the
network is fixed and equal to 3.

(aLaL-1 …a1) are: (aLaL-1 …(a1-1)mod C) and (aLaL-1

…(a1+1)mod C) in the same lowest-level sub-graph,
which we refer to as sister nodes, and (aLaL-1

…aj+2a(aj+1)j), 1 ≤ j ≤ L-1, where a1 = a2 = …= aj = a ≠
aj+1, corresponding to the connection between the
external nodes of level-j sub-graphs. Notation (a)j

denotes j consecutive a’s. We refer to this adjacent
node as a cousin node. It is obvious that a node whose
address is of the form (ax)L, i.e. the address of all sub-
graphs to which the node belongs to are the same, is
of no cousin. These are the same nodes we refer to as
extern node.

Fig. 1: The RTCC (6, 1), RTCC (4, 2), and RTCC (5,
3) networks

   Extern nodes 
  in RTCC(4,2) 

RTCC(4,1) 
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there does not exist a set of k – 1 vertices whose
removal disconnects the graph. The connectivity of
G is shown with κ(G).

Definition 4. If G is a connected graph and u and
v are two of its nodes, A (u, v)-container in G [4],
denoted by C(u, v) is a set of node-disjoint paths
between u and v. The number of paths in C(u, v) is
called the width of C(u, v), denoted by w (C(u, v)).

Definition 5. The maximal length of paths in C(u,
v) is called the length of C(u, v), denoted by l (C(u,
v)). A C (u, v) is the best if its length is minimum. We
use Cx (u, v) to denote a C (u, v) with width x, and Cx

*

(u, v) to denote a best Cx (u, v), where x ≥ 1. The x-
wide distance between u and v is defined as l (Cx

* (u,
v)), where w (Cx

* (u, v)) = x and x ≥ 1 [4].

Definition 6. The x-wide diameter of G, denoted
by wdx (G), is defined as the maximum x-wide distance
between two arbitrary nodes of G[4].

Definition 7. The (k – 1)-fault diameter FDk–1

(G) of a k-connected graph G is the maximum
diameter of G – F for any F ⊂ V (G) with |F| < k.

Definition 8. The z-Rabin number of G, denoted
by rnz(G), is defined as the the minimal l so that for
any z+1 distinct nodes u,v1,v2, ··· ,vz, there exist z
disjoint paths of lengths at most l from u to v1,v2, ···
,vz respectively, where z ≥ 1 [12].

Definition 9. The strong z-Rabin number of G,
denoted by RNz(G), has the same definition as the z-
Rabin number, except that v1,v2, ··· ,vz are not
necessarily distinct [5].

Compared with diameter, wide diameter
measures the maximal length of all best containers.
Fault diameter estimates the maximal increment of
diameter when there are node faults. When the
multicasting problem is concerned, Rabin number
estimates the minimal transmission delay with
maximal parallelism. According to Menger’s theorem
[2], there are κ(G) disjoint paths between every two
distint nodes of G. Moreover, there are κ(G) disjoint
paths from one node to other κ(G) distinct nodes in
G. Hence wdx(G), fdy(G) and rnz(G) are defined for x
≤ κ (G), y < κ(G) and z ≤ κ(G).

3. ONE-TO-ONE NODE-DISJOINT
ROUTING ALGORITHM

In this section we obtain the fault diameter and wide
diameter of RTCC network and propose a routing
algorithm for one-to-one node-disjoint paths of it.

Lemma 1. [1] The node connectivity of RTCC
(C, L) is 2.

Lemma 2. The edge connectivity of RTCC (C,
L) is 2.

Proof. Since the minimum vertex degree of
RTCC (C, L) is 2, it will be its edge connectivity, too.

Lemma 3. [1] The diameter of RTCC (C, L) is

12 1 1
2

L C− ⎛ ⎞⎢ ⎥ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

First we want to check the diameter of the
network when d – 1 nodes are faulty. We first give a
lower bound on the fault diameter of RTCC (C, L).

Theorem 1. [1]

( )( ) 2
2 , 2 2 1 1

2
L L CFD RTCC C L − ⎛ ⎞⎢ ⎥≤ + + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

See Fig. 2 for an example of fault diameter in
RTCC (5, 2).

Fig. 2: Construction of the shortest path between two
maximum distance nodes in faulty RTCC (5, 2)

network

xy
s
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By the definition of WDx (G), we have WDx (G)
= max {l(Cx

* (u, v)) | for all pairs of nodes u, v in G}

Lemma 4. There exist two node-disjoint paths
from an arbitrary node to two of extern nodes of RTCC

(C, L) with length at most 12 1 1
2

L C− ⎛ ⎞⎢ ⎥ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
,

which equals its diameter.

Proof. We use induction to prove the lemma. For
the case of L = 1, RTCC (C, L) is a cycle with d nodes
and there are two node-disjoint paths between each

pair of nodes in a cycle with length at most / 2C⎡ ⎤⎢ ⎥ .

We assume that the claim is true for RTCC (C, L – 1),
it is enough to show that it works for RTCC (C, L).
Assume you have a RTCC (C, L) network with the

source node ( )1 1...L LS s s s−=  and the destination

extern nodes ( )( )1 1
LT t=  and ( )( )2 2

LT t= . From

the above assumption, we know that we have two
node-disjoint paths in  sith RTCC(C, L – 1) -subgraph

from ( )1 1...L LS s s s−=  to ( )1 :1 2L
i L iX s t i−= ≤ ≤ .

Up to now, we have at least two node-disjoint paths

of length at most 22 1 1
2

L C− ⎛ ⎞⎢ ⎥ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 from

( )1 1...L LS s s s−=  to nodes ( )1 :1 2L
i L iX s t i−= ≤ ≤ .

Now, we can route each of the paths from

( )1 :1 2L
i L iX s t i−= ≤ ≤  to ( )1 :1 2L

i i LY t s i−= ≤ ≤

by using an edge, and then we have each of the paths
in a distinct RTCC (C, L – 1)-subgraph, and we can
route it to the desired extern node by traversing at
most D(RTCC (C, L–1)) edges. Therefore, the length
of this path is at most

2 12 2 1 1 1 2 1 1
2 2

L LC C− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥+ − + = + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠
and the proof is complete. (See Fig. 3)

Fig. 3: Construction of two node-disjoint paths from
S to two extern node destinations of RTCC(6,3)

Lemma 5. ( )( ), 2w C u v =  where

( )( ), ,u v V RTCC C L∀ ∈

Proof. According to the Menger’s theorem [2],

there are ( )Gκ  node disjoint paths from one node

to another, where ( )Gκ  is the node-connectivity of

G. Since, from lemma 1, we know that the node-
connectivity of v is two, the claim results.

Theorem 2. ( )( )* 2
2 , 3.2 1 1

2
L Cl C u v − ⎛ ⎞⎢ ⎥≤ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

for every two distinct nodes  u  and v of

( ),RTCC C L

Proof. To prove this theorem, it suffices to show
two disjoint paths between u and v whose lengths are
shorter than 3.2 t–1 – 1. Suppose that

( )1 1...L Lu u u u−=  and ( )1 1...L Lv v v v−= . We know

that there are two disjoint paths between an arbitrary
pair of nodes in the cycle of C  nodes. If

1 1 1 1... ...L L L Lu u u v v v− −=  for i > 1, the problem of
finding the node-disjoint paths in  RTCC (C, L)

S

T1

T2
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converts to the problem of finding the node-disjoint
paths in RTCC (C, L – 1), which is the same as one
that will be discussed here. Otherwise, either u and v
belongs to the same cycle and there exist two disjoint

paths between them with length at most / 2C⎡ ⎤⎢ ⎥  or

L Lu v≠ .

Therefore, it is enough to compute the maximum
length of two node-disjoint paths from u to v, in
different RTCC (C, L–1)-subgraphs. From lemma 4,
we know that we can construct node disjoint paths of

length at most 12 1 1
2

L C− ⎛ ⎞⎢ ⎥ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 to all extern

nodes in every RTCC (C, L–1) subgraphs (i.e. L-
frontiers of RTCC (C, L). Consider the path from

( )1 1...L Lu u u u−= to two frontiers of the form

( )1 :1 ,L
L L L L Lw w v w C w v−= ≤ ≤ ≠  of length at

most 
22 1 1

2
L C− ⎛ ⎞⎢ ⎥ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

, we can continue these

paths by traversing one edge in each, going to

( )1 :1 ,L
L L L L Lw v w w C w v−= ≤ ≤ ≠ . Nodes of the

form ( )1 :1 ,L
L L L L Lw v w w C w v−= ≤ ≤ ≠  are (L –

1) frontier nodes of vLth  RTCC (C, L – 1) subgraph.
Therefore there are two node-disjoint paths from

( )1 1...L Lv v v v−=  to these (L – 1)-frontiers of length

at most 22 1 1
2

L C− ⎛ ⎞⎢ ⎥ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. Hence the length of all

two node-disjoint paths from u to v in RTCC (C, L)
would be

2 23 2 1 1 2 3.2 1 1
2 2

L LC C− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥+ − + = + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

and the theorem follows. Fig. 4 shows five node-

Fig. 4: constructing two node-disjoint paths of
according to the proof of theorem in RTCC (6, 3)

Now, we can propose the one-to-one routing
algorithm in RTCC (C, L) where the paths are node-
disjoint.

Algorithm RTCC(C,L)-Disjoint Routing

Input: Shortest path routing algorithm in RTCC

(C, i) :1 1iR i L≤ ≤ − ,  in source vertex

( )1 1...L Lu u u u−=  destination vertex ( )1 1...L Lv v v v−= .

Output: two disjoint paths : 1, 2iP i =
connecting u to v.

Begin

1. i := L;

2. while ( i iu v= ) do

2.1 i := i – 1

3. Route 1P  from ( )1 1...L Lu u u u−=  to

( )( )1
1...

i
L L i ix u u u v −

−=  using the routing 1iR −

4. Route 1P  from ( )( )1
1...

i
L L i ix u u u v −

−=  to

( )( )1
1...

i
L L i ix u u v u −

−′ =  by traversing an edge

disjoint paths built according to the proof of theorem
in RTCC (6, 3).

U

V
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5. Route 1P  from ( )( )1
1...

i
L L i ix u u v u −

−′ =  to

( )1 1...L Lv v v v−=  using the routing 1iR − .

6. Route 2P  from ( )1 1...L Lu u u u−=  to

( )( )1
1... : ,i

L L i i i i ix u u u x x v u−
−= ≠  using the

routing 1iR − .

7. Route 2P  from ( )( )1
1... : ,i

L L i i i i ix u u u x x v u−
−= ≠  to

( )( )1
1...

i
L L i ix u u x u −

−′ =  by traversing an edge

8. Route 2P  from ( )( )1
1...

i
L L i ix u u x u −

−′ =  to

( )( )1
1...

i
L L i iy u u x v −

−=  using the routing 1iR − .

9. Route 2P  from ( )( )1
1...

i
L L i iy u u x v −

−=  to

( )( )1
1...

i
L L i iy u u v x −

−′ =  by traversing an edge.

10. Route 2P  from  ( )( )1
1...

i
L L i iy u u v x −

−′ =

to ( )1 1...L Lv v v v−=  using the routing 1iR −

End

4. ONE-TO-MANY NODE-DISJOINT
ROUTING ALGORITHM

In this section, we study an algorithm that presents
two node-disjoint paths from an arbitrary node in
RTCC (C, L) to two distinct target nodes. This
algorithm is a recursive one and is based on the routing
algorithm for unicast and multicast in

( ), :1 1RTCC C i i L≤ ≤ − .

Algorithm Disjoint Multicast Routing (s, T1, T2,
C, L)

Input: Shortest path routing algorithm in RTCC

(C, i) : ::1 1iR i L≤ ≤ − ,  in source vertex

( )1 1...L Ls s s s−= , destination vertices ( )1 1 1 1
1 1, ,...,L LT t t t−=

and ( )2 2 2 2
1 1, ,...,L LT t t t−= .

Output: two disjoint paths connecting s to T1 and
T2

Begin

1. i := L, j:=L;

2. while ( 1
i is t= ) do

2.1 i := i – 1

3. while ( 2
j js t= ) do

3.1 j := j – 1

4. if ( j < i ) then
4.1 Disjoint Multicast Routing

( )( )11
1...

j

L L j js s s t
−

− , ( )( )12
1...

j

L L j js s s t
−

− , C, i)

4.2 Route 2P  from ( )( )12
1...

j

L L j js s s t
−

−  to

( )( )12
1...

j

L L j js s t s
−

−  by traversing an edge

4.3 Route 2P  from ( )( )12
1...

j

L L j js s t s
−

−  to

( )2 2 2 2
1 1, ,...,L LT t t t−=  using the routing 1jR −

4.4 Route 1P  from ( )( )11
1...

j

L L j js s s t
−

−  to

( )( )11
1...

i

L L i is s s t
−

−  using the routing 1iR −

4.5 Route 1P  from ( )( )11
1...

i

L L i is s s t
−

−  to

( )( )11
1...

i
L L i is s t s −

−  by traversing an edge

4.6 Route 1P  from  ( )( )11
1...

i
L L i is s t s −

−  to

( )1 1 1 1
1 1, ,...,L LT t t t−=  using the routing 1iR −

5. else
5.1 Disjoint Multicast Routing (s,

( )( )11
1...

i

L L i is s s t
−

− , ( )( )12
1...

i

L L i is s s t
−

− , C, i)

5.2 Route 1P  from  ( )( )11
1...

i

L L i is s s t
−

−  to

( )( )11
1...

i
L L i is s t s −

−  by traversing an edge
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5.3 Route 1P  from  ( )( )11
1...

i
L L i is s t s −

−  to

( )1 1 1 1
1 1, ,...,L LT t t t−=  using the routing 1iR −

5.4 Route 2P  from ( )( )12
1...

i

L L i is s s t
−

−  to

( )( )12
1...

i

L L j js s s t
−

−  using the routing 1jR −

5.5 Route 2P  from ( )( )12
1...

i

L L j js s s t
−

−  to

( )( )12
1...

i

L L j js s t s
−

−  by traversing an edge

5.6 Route 2P  from ( )( )12
1...

i

L L j js s t s
−

−  to

( )2 2 2 2
1 1, ,...,L LT t t t−=  using the routing 1jR −

End

Theorem 4. ( )( )2 ,rn RTCC C L

( )( ) 2
2 , 3.2 1 1

2
L CRN RTCC C L − ⎛ ⎞⎢ ⎥= = + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

Proof. According to the above algorithm, we can
route each path by traversing at most the source RTCC
(C, L–1)-subgraph, one intermediate RTCC (C, L–
1)-subgraph and the last RTCC (C, L–1)-subgraph.
Since routing in RTCC (C, L–1)-subgraphs are like
that of theorem 3, these paths have the maximum

length of 23.2 1 1
2

L C− ⎛ ⎞⎢ ⎥ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
.  The above

reasoning is true in the situation that some destination
nodes are not distinct, so the proof gets complete.

Fig. 5 shows an example of constructing multicast
routing in a WK (6, 3) by the use of mentioned
algorithm.

Since, we obtained the generalized diameters of
RTCC networks with the size of

23.2 1 1
2

L C− ⎛ ⎞⎢ ⎥ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
,  now we can have a

comparison with the original diameter of the network

12 1 1
2

L C− ⎛ ⎞⎢ ⎥ + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. While the RTCC network has

a modular topology with variables C and L, the length
of various disjoint paths and fault diameter of the
network depends on none of them, but on a constant
factor. Therefore, the generalized diameters of RTCC
network, shows its good resilience in faulty situations.

5. CONCLUSION
In this paper, we proposed algorithms for one-to-one
and one-to-many node-disjoint routing algorithms for
RTCC network. We computed the fault diameter, the
wide diameter and rabin number of the network and
concluded in a constant increase of them according
to the original diameter. Therefore, the RTCC network
provides good characteristics in implementing various
node-disjoint paths and the diameter of the network
according to the disjoint paths is not much more than
the original diameter, which proves the strong fault
tolerance properties of such networks.
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