
An Enhanced Rule based Architecture for Exploring Topic
Specific Web pages in WWW

J. Akilandeswari and N. P. Gopalan1

Sona College of Technology, Salem, Tamilnadu
1National Institute of Technology, Tiruchirappalli, Tamilnadu

ABSTRACT
Due to the rapid growth of World Wide Web the search engines gain greater importance nowadays.
Every normal user relies on them to get the information they need. Topic-specific crawlers have become
an important thrust area in the field of information retrieval in WWW. In this paper, a web spider
architecture based on multi-agent system for cooperative information gathering is presented. The
system collects Web pages that are on topic. The system employs two types of agents: retrieval and
coordinator agents. Coordinator agents are responsible for disseminating crawling frontiers to
individual retrieval agents. The URL frontier is built by a rule based engine which decides the next
URL to be downloaded. The rule base is built dynamically. The coordinator agent is also built with
fault tolerance mechanism to gracefully degrade in case of failure. The retrieval agents download the
Web pages and return them along with the relevance score. The URLs are assigned dynamically so
that the duplicate downloading of Web pages is avoided. The empirical results clearly depict the
advantage of rule based design in terms of harvest rate and time.

1. INTRODUCTION
The Web is exploding in a very fast rate[1]. This
explosion has provoked the research community to
develop retrieval tools like search engines in getting
the relevant information from World Wide Web
(WWW). Web crawler is an important in search
engines. It is a program which visits the pages in
WWW in a methodically, automated manner to
generate a copy of all the visited pages for later
processing by the search engine [2]. Keeping in mind
the currently available web pages and growth rate of
Web, crawling ‘all’ pages requires enormous network
and hardware resources. Also nowadays, the users are
very much specific in getting the pages that are
relevant to their topic of search. In general, there are
three directions in which the web spider research can
be carried out:

• Speed and efficiency: This direction contributes
to the study of different ways to increase the
harvest speed of a spider. Examples include
Mercator [3], Internet Archive’s crawler [4, 5],
and Google’s crawler [6].

• Spidering policy: The studies under this category
reveal the behaviors of spiders and their impacts
on other individuals and the Web as a whole. A
well-designed, “polite” spider should avoid
overloading Web servers. There are two standard
ways. The first one, called the robot exclusion
protocol, allows Web site administrators to
indicate, by specifying a file named robots.txt
in the Web site’s root directory, mentioning
which parts of their site should not be visited by
a robot [7]. In the second method, usually known
as the robots META tag,Web page authors can

50 • IC3–2008 UFL & JIITU

indicate to visiting robots whether a document
may be indexed, or used to extract more links.

• Information retrieval: Most Web spider research
belongs to this category. These studies explore
different spidering algorithms and heuristics that
can be used by spiders to retrieve relevant
information from the Web. Many of these studies
apply to Web spider techniques that have been
shown to be effective in traditional information
retrieval applications, e.g., the vector space
model [8].

Restricted bandwidth, storage, and computational
resources, and to the dynamic nature of the Web,
search engines cannot index every Web page, and even
the indexed portion of the Web cannot be monitored
continuously for changes. In fact an estimate done on
March 2002 says that the visible Web is at around 7
billion static pages [9]. This estimate is more than
triple the 2 billion pages that the largest search engine,
Google, reports at its Web site [10]. The number of
Web pages available now may be 10 to 20 times more
than the number of Web pages in 2002. Looking for
the related information in such a large portion of Web
is quite cumbersome and challenging.

Topic specific crawlers are developed to gather
pages that are relevant to the triggering topic.
Generally, implementing a crawler with single process
to gather all pages is certainly difficult. Therefore,
many search engines often employ multiple processes
in parallel to perform the task. The implementation
of this design paradigm is referred as parallel spider
which greatly improves the collection efficiency.
There are certain issues to be taken care while
designing a parallel crawler[11]:

• Overlap: There are possibilities that different
processes download the same page multiple
times. One process may not be aware that
another process has already downloaded the
page. This redundancy should be minimized to
save network bandwidth and increase the
crawler’s effectiveness.

• Quality: Each process makes its own decision
in downloading the pages. There should be some
metric to make sure that the quality of the

downloaded pages is as good for a parallel
crawler as for a centralized one.

• Communication bandwidth: To improve the
crawling effectiveness, crawling processes need
to periodically communicate to coordinate with
each other. This increases the communication
overhead.

The term agent describes a software abstraction,
an idea, or a concept, similar to Object Oriented
Programming (OOP) terms such as methods,
functions, and objects. The concept of an agent
provides a convenient and powerful way to describe
a complex software entity that is capable of acting
with a certain degree of autonomy in order to
accomplish tasks on behalf of the user. But unlike
objects, which are defined in terms of methods and
attributes, an agent is defined in terms of its behavior.
Agents itself have several characteristics that makes
researchers interested to explore the agent technology.
The characteristics are as follows [12]:

• Autonomous

• Goal-directed

• Task able

• Cooperative with other agents to accomplish its
tasks.

• Communicative with other agents

• Adaptive

A multi-agent system (MAS) is a system composed
of multiple agents acting collectively to reach the goals
that are difficult to achieve by an individual agent or
monolithic system. Multi agents are:

• Heterogeneous agents having expertise in
different areas.

• Self-motivated

• Act to fulfill internal goals

• Share tasks with others

• Communicate and collaborate

• No global or centralized control mechanism

In this paper, a crawling architecture is presented
to collect Web pages that are on topic of user’s interest.

An Enhanced Rule based Architecture for Exploring Topic Specific Web pages in WWW 51

The design consists of multiple, parallel crawling
agents and a coordinator agent to synchronize them.
In this prototype, the crawling agents are included
with certain intelligence in guiding them to download
the next correct URL. This feature enables the crawler
in avoiding visiting unproductive Web pages.

The remainder of this paper is organized as
follows: section 2 discusses on the work related to
Web crawlers. In section 3, the architectural
framework of the crawler is described. In section 4,
experimentation and evaluation details are discussed.
Finally in section 5, future directions and conclusions
are presented.

2. RELATED WORK
Web crawlers have been studied since the advent of
the Web. In [22] a crawler was described that orders
the URLs according to the back link count. Since the
objective of topic specific crawler is to download only
a small subset of the Web, they need to decide what
page to download next. A crawler has to may improve
the “quality” of the downloaded pages by retrieving
“important” or “relevant” pages. The works described
in [21, 23, 24, 25] proposed different algorithms to
identify important pages early.

Focused Crawler was introduced by Chakrabarti
in 1999 [23]. In [20], the authors evaluated a topic-
Driven web crawler and compared their crawler with
different crawling strategies. The paper [27] explains
the use of Reinforcement Learning in the design of a
spider. They computed the probability that a hyperlink
in a page is likely to be linked to a relevant page,
according to the texts in the hyperlink neighborhood
and as a result their crawler follows the link with the
highest probability value. The work described in [28]
identified the URL to be crawled next by evaluating a
learning mechanism in order to increase the efficiency
in topic specific web resource discovery.

There are many works in the literature that uses
agent’s framework to deploy the functionalities of a
crawler. Agent-based computing has long been
suggested as a promising technique for application
domains that are distributed, complex, and
heterogeneous. Agent based technologies are being

applied to a wide range of complex problems from
interface agents [13, 14] to recommender systems [15]
and autonomous and comparative shopping agents
[16, 17]. There are agents to retrieval relevant Web
pages in response to user generated topics [18, 19,
20]. In [11], the design of a parallel crawler has been
studied extensively. The paper concentrated on
eliminating the downloading of same web pages by
multiple crawlers. They have not employed multi-
agent systems which can be great help in parallel
computing environment.

3. ARCHITECTURE
Fig. 1 portrays the architecture of the crawler
employing multiple agents. There are three problems
to consider while designing a parallel crawler:

• Deciding whether a page is on topic or not

• Choosing the next page to download

• Avoiding multiple agents downloading the same
Web page

The retrieval agents are responsible for the first
issue. The next two issues are considered by the
coordinator agent. Our system focuses on employing
intelligent multiple agents that mine the information
contained in both hyperlinks and content. The
advantages in this system are two fold: one is to reduce

Fig. 1: Architecture of the Web crawler

Classifier

Creeper

Parser

Classifier

Creeper

Parser

Coordinator
Agent URLs URLls

Agent 1 Agent M….

52 • IC3–2008 UFL & JIITU

the network traffic load and another is to parallelize
the computation. The intelligence is built on both the
agents. During the start the crawler should have
knowledge such as seed URLs, topic specific
keywords and URL prediction. For seed URLs the
crawler needs some good URLs, which point to many
relevant web pages. Also it needs some relevant
keywords of specific topic. The crawler has to predict
the downloaded pages. These knowledge bases form
the experience for the crawler to learn.

3.1 Coordinator Agent
Coordinator agent is responsible for synchronizing
retrieval agents. The user interface inbuilt in the
agent collects the starting URLs to initiate the crawl.
To improve the quality of the result sets, the crawl
is started from pages that are assumed to be relevant.
These relevant seeds are obtained from a trustable
search engine i.e. from Google. The agent engenders
number of retrieval agents and places them in each
seed URL. The retrieval agents in turn return the
classified hyperlinks with appropriate relevance
scores. The agent performs the URL seen test and
inserts the hyperlinks in the frontier along with the
values in descending order. Since the URLs are
assigned by the coordinator agent, the retrieval agents
will never be consigned with already visited Web
pages. This dynamic assignment avoids visiting the
same page multiple times by different crawling
agents.

 Since a single agent coordinates the activities of
the retrieval agents, there is a disadvantage of being a
bottleneck. But this weakness is overcome by having
a standby master agent called mirror agent which is
periodically updated with the computational
paradigms of the coordinator agent. If there are any
problems detected in the coordinator agent, then the
computations are gracefully handed over to the mirror
agent and finally it takes control over the whole
operations.

The crawling agents are monitored by this control
agent for proper synchronization. Even if one crawling
agent is crashed due to problems such network error,
or logical error, the master agent detects the downfall,

transfers the computations to another newly spawned
agent and kills the old one.

3.2 Retrieval agent
These agents start the crawl by downloading the Web
page. The page is parsed and is given as input to the
classifier. The hyperlinks in the page are given to the
coordinator agent. The Naïve-Bayes classifier is
trained with the help of topic taxonomy like Yahoo!.
The creeper gets the relevance score of the
downloaded page. According to radius-1 hypothesis,
the hyperlink from an off-topic page is not all visited.
There may be some off topic pages with hyperlinks
pointing to topic of search. In [25], a rule based system
was developed to exploit the inter-class relationships.
The relevance scores are computed based on
associations among the classes. In this paper, we have
built rules and computed normalized relevance scores
for each paged downloaded as follows:

R[p] = NHypi→i / NHypi→i NHypi→j ...(1)

where NHypi→i is number of hyperlinks in a page
that belong to the same class and NHypi→j is number
of hyperlinks that belong to other classes. Instead of
considering the probabilities, the counts are taken into
care. This computation gives 20% more efficiency in
finding quality Web pages. The hyperlinks with
relevance scores are sent to the coordinator agent in
batches.

4. DISCUSSION
Our work is implemented using JADE, the latest
platform for multi agent system. JADE is one of the
most used and promising agent development
frameworks. JADE also support the development of
multi agent system through the predefined
programmable and extensible agent model and a set
of management and testing tools. The environment
allows each agent to dynamically discover other agents
and to communicate with them according to the peer-
to-peer paradigm [26]. Communication is the main
part in multi-agent architecture. The agent
communication language FIPA ACL is used. The main
features of FIPA ACL are the possibility of using
different content language and the management of

An Enhanced Rule based Architecture for Exploring Topic Specific Web pages in WWW 53

conversations through predefined interaction
protocols.

For implementation, DMOZ topic taxonomy is
chosen. 1000 classes are considered for testing. Our
crawler has been tested with two baseline crawlers:
one is a modified focused crawler without multiple
agents and other is multi-agent based focused crawler
without dynamic assignment of URLs. The crawlers
are made to crawl upto 10000 pages, that is N=10000.
The initial number of retrieval agents spawned by the
coordinator agent is 25.

The crawler’s performance is measured with the
help of harvest ratio which is the average relevance
of all pages retrieved on a particular topic.

Harvest ratio =

Summation of relevance score
 of each hyperlink on topic

N

Fig.2 shows the comparison of three crawlers in
terms of harvest rate. The performance of our design
seems to be promising.

We made an important observation of memory
utilization of both the agents: coordinator agent and
retrieval agents. In our experimental setup, the system
gets crashed down due the memory unavailability if
the number of spawned crawling agents goes beyond
25. This problem must be alleviated by using
appropriate data structure.

5. FUTURE DIRECTIONS AND
CONCLUSIONS

The work can be extended in the following directions:

• With sophisticated rule discovery techniques

• Having coordination among the retrieval
agents

• Choosing appropriate data structures to lessen
the problems created due the memory
unavailability.

This paper has discussions on the issues of
designing a focused and parallel crawler. The fast
improvements in the computational tools, the
rapidly growing web needs a fresh approach. The
contributions of this paper include: proposed an
architecture which makes use of two types of
agents: coordinator and retrieval agents. The main
goal of finding quality results is achieved by
employing multi-agent system coordinating with
each other. The paper also suggested a technique
to avoid duplicate downloading of Web pages by
different agents. The experimental results advocate
that the pages gathered from World Wide Web are
of high quality.

Fig. 2: Harvest Ratio

Another observation made on the crawler design
is the time taken by the crawlers to download upto
7000 pages. The study is depicted in Fig. 3.

Two parameters are very crucial in deciding the
usefulness of the spider. One is harvest rate and the
other is the time taken to visit predefined number of
pages. In both the measures our design performs
well.

Harvest Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of pages fetched * 100

H
ar

ve
st

 R
at

io

BC1
BC2
Enhanced RC

Fig. 3: Time taken to download pages

0

1000

2000

3000

4000

5000

6000

7000

Number of
pages

1 2 3 4 5 6 7 8 9

Time in secs * 10

BC1
BC2
Enhanced RC

54 • IC3–2008 UFL & JIITU

REFERENCES
1. P. Lyman, H.R. Varian: How Much Information.

[Online]. Available at http://
www.sims.berkeley.edu/how-much-info/ , 2000.

2. F.C. Cheong, Internet Agents: Spiders, Wanderers,
Brokers, and Bots, New Riders Publishing,
Indianapolis, Indiana, USA, 1996.

3. A. Heydon, M. Najork, “Mercator: A Scalable,
Extensible Web Crawler”, World-Wide Web,
pp219-229, 1999.

4. M. Burner, ” Crawling Towards Eternity: Building
an Archive of the World-Wide Web”, Web
Techniques, 2 (5), 1997.

5. B. Kahle, “Preserving the Internet”, Scientific
America, 1997.

6. S. Brin, L. Page, “The Anatomy of a Large-scale
Hypertextual Web Search Engine”, Proc. Of the 7th
International World-Wide Web Conference, 1998.

7. M. Koster, “A Standard for Robot Exclusion”,
Available at: http://www.robotstxt.org/wc/
norobots.html, 1994.

8. G. Salton, “Another Look at Automatic Text-
retrieval Systems”, Communications of the ACM,
29 (7) 648-656, 1986.

9. Cyveillance, “Sizing the internet”, White paper, July
2000. http://www.cyveillance.com.

10. Google. http://www.google.com.
11. Junghoo Cho, Hetor Gasrcia-Molina, “ Parallel

Crawlers”, WWW 2002.
12. F. Bellifemine, G. Caire, A. Poggi, D. Greenwood,

Developing Multi-Agent Systems. Wiley Series in
Agent Technology, 2007.

13. T. Helmy, S. Amamiya, and M. Amamiya, “User’s
ontology-based autonomous interface agents”, In
The 2001 International Conference on Intelligent
Agent Technologies, Maebashi City, 2001.

14. H. Lieberman, “Autonomous interface agents”, In
Proc. ACM Conference on Computers and Human
Interface, Atlanta, GA, 1997.

15. M. Balabanovi_c and Y. Shoham, “Content-based,
collaborative recommendation”, Communications of
the ACM, 40(3), 1997.

16. R. Doorenbos, O. Etzioni, and D. Weld, “A scalable
comparison-shopping agent for the World-Wide
Web”, In Proceedings of the First International
Conference on Autonomous Agents, pages 39-48,
1997.

17. F. Menczer, W. Street, N. Vishwakarma, A. Monge,
and M. Jakobsson, “ IntelliShopper: A proactive,

personal, private shopping assistant”, In Proc. 1st

ACM Int. Joint Conf. on Autonomous Agents and
MultiAgent Systems (AAMAS 2002), 2002.

18. D. Eichmann, “The RBSE spider - Balancing
effective search against Web load”, Computer
Networks, 4(2):281-288, 1994.

19. F. Menczer and R. Belew, “Adaptive retrieval
agents: Internalizing local context and scaling up
to the Web”, Machine Learning, 39(2-3):203-242,
2000.

20. F. Menczer, G. Pant, M. Ruiz, and P. Srinivasan,
“Evaluating topic-driven Web crawlers”, In Proc.
24th Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval, 2001.

21. R. C. Miller and K. Bharat. SPHINX: a framework
for creating personal, site-specific web crawlers. In
Proceedings of the Seventh World-Wide Web
Conference, 1998.

22. J. Cho, H. Garcia-Molina, and L. Page, “Efficient
crawling through URL ordering”, Computers
networks and ISDN systems, 30:161–172, 1998.

23. S. Chakrabarti, M. van den Berg, and B. Dom,
“Focused crawling: A new approach to topic-
specific web resource discovery”, In The 8th
International World Wide Web Conference, 1999.

24. M. Diligenti, F. M. Coetzee, S. Lawrence, C. L.
Giles, and M. Gori, “Focused crawling using
context graphs”, In Proceedings of the Twenty-sixth
International Conference on Very Large Databases,
2000.

25. Ismail Sengör Altingövde and Özgür Ulusoy,
“Exploiting Inter-Class rules for Focussed
Crawling”, IEEE Intelligent Systems, Volume 19 ,
Issue 6, pp 66-73, 2004.

26. M. Nikraz, G. Caire, and P. A. Bahri, ”A
Methodology for the Analysis and Design of Multi-
Agent Systems using JADE”, International Journal
of Computer Systems Science & Engineering,
special issue on “Software Engineering for Multi-
Agent Systems”, 2006.

27. J. Rennie and A. McCallum, “Efficient Web
Spidering with Reinforcement Learning”,
Proceedings of the 16th international Conference on
Machine Learning (ICML-99), 1999.

28. N. Angkawattanawit and A. Rungsawang,
“Learnable Crawling: An Efficient Approach to
Topic-Specific web Resource Discovery”, 2nd
international Symposium on communications and
Information Technology (ISCIT 2002), October
2002.

