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ABSTRACT

Peer-to-peer structures are becoming moreand more popular and an exhilarating new class of ground-
breaking, internet-based data management systems. Query load balancing is an important problem
for the efficient operation of unstructured P2P networks. The key issue isto identify overloaded peers
and reassign their loads to others. This paper proposes a novel mobile agent based two-way load
balancing technique for dynamic unstructured P2P networks. In this scheme, target peersare selected
based on the result of reinforcement learning. Smulation resultsindicate that our technique manages
the load on peers effectively and increases the search performance significantly.

1. INTRODUCTION

In the past few years, peer-to-peer networks have
become a popular method for extensive content
sharing. Unlike conventional client-server
applications, P2P systems distribute the load of data
storage, computation, communications and
management among thousands of peers. Peers can join
and depart the network at any time, at their will. Since
the distribution of data can be random, the data stored
in a P2P network is spread across a large number of
nodes. One of the most popular applications of P2P
networks is file sharing.

The existing P2P systems are broadly classified
into two types: unstructured P2P networks and
structured networks. For unstructured networks, the
data objects do not have global unique ids and queries
are submitted as keywords. The peers in structured
networks maintain unique identification tag for each
object. Nowadays, most of the peer-to-peer
applications function on unstructured P2P networks.
This architecture demands a very efficient search

technique for the retrieval of data [1]. A search for an
object in a P2P network is successful ifit discovers at
least one replica of the object. Peers connect in an ad-
hoc fashion, the location of the documents is not
controlled by the system and no guarantees for the
success or the complexity of a search are offered [2].

Search methods for unstructured networks can
be grouped as either blind or informed. In a blind
search, nodes do not store any information regarding
object locations. In informed approaches, nodes
locally store metadata that helps in the search for the
queried objects. Existing blind methods ravage a lot
of bandwidth to achieve utmost performance. Every
search requires contacting several nodes within some
distance called Time-To-Live (TTL), creating
enormous overhead to all nodes involved. Informed
methods use their indices to achieve similar quality
results, and to shrink overhead. The limitation of most
informed methods is the maintenance cost of the
indices following peers join/leave the network or
update the objects in the shared folder.
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Load balancing is a main problem to be solved
for the efficient operation of P2P networks. Most of
the search methods cause serious load balance
problems. One of the major issues is to identify
overloaded nodes and reassign the incoming loads to
others. This paper proposes a Distributed Search
Technique (DST) to provide collaborative load
balancing among peers. The algorithm is formulated
with the aim of achieving good response time, high
hit ratio, low network traffic and adaptive behavior.
The main contributions of the proposed search
algorithm are: Q-learning based search, two-way load
balancing, priority for specialized nodes, power peer
concept, and the application of query history details.

Like random walk — a blind search method [3],
the proposed method does not select walkers
randomly. Power peers and ordinary peers together
join the search process. In order to achieve the
objectives, the proposed search scheme maintains a
few tables. The tables are updated according to search
results. Queries are distributed to both ordinary peers
and power peers simultaneously so that the crowding
effect on a few peers can be reduced.

In a P2P network, a few nodes are high degree
nodes and majority of the nodes have less number of
neighbors. Due to this, high degree nodes are queried
frequently, thus the performance is reduced due to
heavy query load. Simultaneous searching among
ordinary peers and power peers alone cannot balance
the load effectively. Hence in the proposed scheme,
query is routed to a power peer based on load data
collected by mobile agents from various power peers.

The remainder of this paper is organized as
follows. Section 2 reviews the related work. An
overview of the proposed search technique is given
in section 3. The Q-table update operations are
discussed in section 4. Section 5 discusses the
simulation methodology. Section 6 concludes the

paper.

2. RELATED WORK

Flooding based search is extensively used in
unstructured P2P networks like Gnutella. Flooding
schemes generate a large amount of network traffic.
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To overcome this problem, a random walk [3], [4]
technique is often used. Whereas this approach
manages to reduce messages significantly, it shows
low performance because of its random character and
inability to adjust to different query loads. The
proposed technique makes use of Q-table data for
selecting walkers.

Adaptive Probabilistic Search (APS) [5] forwards
a single file look up query probabilistically based on
the query history and the guesses of query sources.
APS can be viewed as an ad-hoc application of
reinforcement learning [6]. APS assigns equal status
for all the nodes in the network while searching,
without considering the nodes’ degree, number of
available objects and storage. Our method does not
follow probabilistic forwarding; as an alternative, it
uses Q-learning for selecting peers. In Gnutella UDP
Extension for Scalable Searches (GUESS) [7], each
ultrapeer is linked to other ultrapeers and to set of
leaf-nodes. During a search operation, different
ultrapeers are iteratively contacted followed by
searching in their leaf-nodes. However, the order in
which ultrapeers are chosen is not specified [2]. In
Gnutella 2.0 [8], while a super-peer receives a query
from a leaf node, it forwards it to appropriate leaves
and to its neighboring super-peers.

In Intelligent-BFS [9], nodes maintain tables to
store query-neighborlD tuples for recently responded
requests from their neighbors. The accuracy of the
algorithm depends on the assumption that nodes
specialize in certain documents [2]. Reinforcement
learning based search [6] explores new paths by
forwarding queries to randomly chosen neighbors. It
selects the best path from the returned results.

Several solutions have been proposed to address
the load balancing issues in structured P2P networks
using the concept of virtual server [12, 13]. None of
the strategies is suitable for unstructured P2P
networks. The unstructured networks lack the
distributed hash tables and unique identifiers. Due to
these, load balancing is even harder in unstructured
networks. Our scheme utilizes a distributed load
balancing scheme for improving search performance
in unstructured networks.
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3. OVERVIEW OF DST

Reinforcement learning (RL) is a powerful framework
in which an agent learns most favorable actions
through a trial and error exploration of the
environment and by receiving rewards for its actions.
The agent’s goal is to maximize the total reward it
receives [10]. Q-learning is a new form of
reinforcement learning algorithm that does not need
a model of its environment.

In the context of P2P search, Q-learning is used
to select suitable peers for searching. More than one
walker is required to carry out a search operation.
For this reason, rather than selecting the highest Q-
value, depending on number of walkers, more peers
are selected in line with their Q-values.

3.1 Data Structuresand Major Features

The various data structures and important features of
distributed search algorithm are discussed.

Query Q-table: Every time user enters a query,
the peer’s shared folder is searched and if the object
is not found, the system checks whether an entry for
the query keyword exists in the Query Q-table (Table
I). Incase the query keyword is present in the table, K
walkers are chosen from the query Q-table in the
descending order of Q-values. For a successful search
through a neighbor, corresponding Q-value is
modified according to number of hops and results;
otherwise, penalty is awarded. For all neighbors who
have responded with successful results, associated
entries are added to the table. The Q-table contains
the list of most recent past queries and Q-values. The
table grows as the entries for successful queries with
new keywords are added.

Table 1: Querry Q-Table for Six Neighbors of a Node

Q-values of neighbors
Query
NI N2 N3 N4 N5 N6
Keyword
Peer 45 110 77 65 78 34
Sky 62 81 117 45 56 87
Moon 56 62 87 67 43 115

Table 2: Neighbor Q-Table for six Neighbors of a Node

Nl | N2 [ N3 | N4 | N5 | N6
175 | 85 | 78 | 134 | 50 | 89

Neighbor Q-table (NQ): A peer maintains a
Neighbor Q-table (Table II) which contains Q-values
ofneighbors, NQ(n,, n2.....n ). Occasionally the query
keyword may be a new one; hence, appropriate data
may not be available in the Query Q-table. In this
case, walkers are selected from both Neighbor Q-table
and power peer Q-table in the descending order of Q-
values. The Neighbor Q-table provides an overall
picture with reference to the performance of neighbors
in the past.

Power peersand Mobile Agents: Power peers are
similar to ultrapeers but they declare themselves as
power peers whenever some criteria are met. Existing
systems select ultrapeers by their computing
capabilities such as bandwidth, CPU power, and
memory spaces [9]. In this paper, parameters such as
number of neighbors (degree of a node), number of
shared objects, and available storage are used to select
a power peer. The presence of large number of objects
can provide improved success rate. High degree peers
have large number of neighbors. On the other hand,
several peers query power peers for results. Even
though a peer is powerful for housing large number
of objects, it should have minimum storage available
for hosting new objects in the future. The minimum
level may be the user choice, say 30% of the total
storage. A peer achieves power peer status when the
number of objects, number of neighbors and available
storage reach some threshold.

The moment a node becomes a power peer, it
broadcasts the news to all the nodes within N hops
away by dispatching mobile agents. Clones of mobile
agents are created to visit several sites. The broadcast
message is also propagated through neighbors and
power peers listed in the power peer table. A node
maintains a list for power peers in its power peer Q-
table, PQ(p,, p2...p,). The format of the table is same
as neighbor Q-table. An entry for power peer is added
to the table each time a node receives broadcast
message or the requested object is found in another
power peer, which is not listed in the power peer table.
Each node, irrespective of its class it belongs as a
power node or an ordinary node, maintains a variable
to store the number of hits occurred in the node.
During search if a hit occurs in a power peer and the
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entry of that peer is not listed in the power peer Q-
table, it is added to the table with initial Q-value 100.

After a hit, the node that holds the object (object
node) transmits the reply message along the reverse
path. Some of the parameters in the reply message
include query source-id, message-id, address of object
node, and its status (power peer or ordinary peer). In
case, the node status is ‘power peer’, and the entry
for that node is not there in the power peer table, new
entry for the power peer is added by the nodes along
the reply path. Query source-id is required for TTL
enhancement operation.

Walker selection: If the query to be processed is
a new one (i.e. entry for that query is not listed in the
Query Q-table), walkers are selected from neighbor
Q-table and power peer Q-table. Assume K-walkers
are used for searching. Using Q-values in appropriate
tables, after setting TTL values, neighbors and power
peers are selected as walkers. Merge the values in
NQ(n,, n2...n,) and PQ(p,, p2...p,) into one table in
descending order. Select first K nodes from the list
for routing query messages. Thus both ordinary peers
and power peers are chosen for routing queries.

Message identification: A query source generates
K messages for walkers. The query source forwards
the query to K nodes based on the walker selection
policy. The nodes on the path forward it to only one.
Since messages are forwarded or processed by both
ordinary peers and power peers, it is necessary to
identify the preceding source of query. As mentioned
earlier a power peer merely forwards a query message
to another power peer. The messages from the walkers
selected from neighbor Q-table are forwarded to their
neighbors. The neighbor may be a power peer or an
ordinary peer.

To identify the previous query resource, each
message carries an identifier. While query source
dispatches the message to its neighbor, the status of
message is ‘0’ even if the neighbor is a power peer
This gives equal priority to all the nodes in the
neighbor list. The situation changes if the peer in the
next hop is a power peer. The power peer subsequently
replaces the identifier value by ‘1’ and from there
onwards, the message is simply forwarded to power
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peers. The query message dispatched from a power
peer listed in the power peer Q-table carries an
identifier value equal to ‘1’ and the message is further
forwarded through power peers. Therefore, value of
the identifier does not change until query is dropped.
Each message generated from a query source carries
a unique-id to identify itself from other query
messages. A peer stores recently processed or
forwarded message-ids. The node to which the
message is routed and the address of previous node,
which forwarded the message to the node, is kept in a
table called message history table. This is useful when
the result is sent back on the reverse path. The table
follows a First-in First-out strategy for removing
entries.

Duplicate Messages: A duplicate message is
forwarded to another neighbor or power peer based
on Q-value of the node and class of message. The
target peer is selected by excluding the nodes, which
forwarded the message earlier. If the Q-value is greater
than or equal to 100, a node with the next highest Q-
value is chosen as the target node; subsequently
message is forwarded to the selected node. If no nodes
are at hand, duplicate messages are discarded. For
example, in Table II, assume node N has forwarded a
query message first time to N1, which has the highest-
value in the neighbor Q-table. Next time N receives
the same message, it is forwarded to N4 because its
Q-value is greater than 100. Other incoming duplicate
messages are discarded, as no other neighbor with
required Q-value exist. Ordinary peers and power
peers follow the same policy for forwarding duplicate
messages.

Soecialized peers: Occasionally search process
returns multiple results from different peers for a
query. At the same time, a single peer may also
produce more than one matching result. This means
that the peer holds several similar objects of same
subject area. The chance of getting more results for
such queries is high. These nodes are called
‘specialized nodes’ and they are given importance
while updating Q-values.

Load balancing: Power peers may be
overcrowded by incoming query messages. The
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proposed algorithm performs load balancing on power
peers in two ways. The distribution of query
processing load among neighbors and power peers
tends to reduce load among power peers. This method
of load balancing alone is not adequate to save high
degree power peers from crowding because queries
are also directly passed through power peers
frequently. So, an effective load balancing scheme
using mobile agents is presented.

The scheme utilizes load information available
on power peers. When a power peer is overcrowded,
the system can direct the query traffic to least loaded
power peers. A mobile agent periodically collect load
data from power peers selected from power peer list.
The scheme works as follows: The average of Q-
values (AvgQ) of peers listed in the Q-table of a power
peer is computed. Peers with Q-values greater than
or equal to AvgQ are selected for collecting load
information. Every peer is provided with a mobile
agent platform.

Clones of mobile agents are dispatched from a
power peer to collect load data from selected power
peers. The agent collects cpu-load and free memory
on each node and computes load metric as, load=
wl*cpu_load + w2 * free_mem, where cpu_load is
the work load on the power peer measured in the
length of the job queue, free_mem is the percentage
of free memory space, and wl, w2 are the weights of
the parameters, wl + w2 =1. The load data is reported
back to the parent node and it replaces the previous
data.

Search termination: All the neighbors and power
peers who received the query message follows k-walk
procedure for searching. As mentioned earlier a power
peer forwards a query message to another power peer
only. This will continue till TTL expires. The result is
sent back to the requester node on the reverse path.
The nodes in the path update their Q-tables
accordingly.

4. Q-TABLE UPDATE

This section explains how the Q-learning process is
employed in ordinary peers, and power peers to
compute rewards and update Q-values in different

Q-tables [11]. The initial Q-value for a node is set as
100.When a required object is found, all peers on the
reverse path update the Q-values. The reward
computation and Q-value update process are
discussed.

Query Q-table update: For each hit, reward is
computed and Q-values in Query Q-tables of each
node coming between requester node and node, in
which the object is found, are updated on the reverse
path. Each result carries a reinforcement signal
containing the number of hops (hp) visited by the peer
and the number of results (nr) returned for the query.
The reinforcement signal is translated into a reward
(r,,) function.

p,=[a *1/hp +(1-a) * nr ] * 100 (1)

r,, =sign (p) -(2)

Since less number of hop count results good
response time, the value for a, is set at a,=0.2.
Specialized nodes may generate a number of matching
results; for this reason, weight (1- a,) is associated to
number of results (nr) returned. The Query Q-table is
updated for a particular query word using the Q-
function

Qe Q Fal,-Q) C)
o is the learning rate. The Q-values of neighbors
(walkers) that positively responded are updated. All
other walkers receive a negative reinforcement (r,,
=0). The reward of those nodes are zero, the Q-value
is updated as Q, ,, <= Q,,(1- ). The neighbors who
have not participated in the search process keep the
Q-values as such, i.e. Q, ,, < Q,

Neighbor Q-tableupdate: The Neighbor Q-table
is updated for each query search operation. A hit is
considered as reward. The Q-value of the node
(walker) is modified as Q, ,, - (Q,  + 10). In case
the object is not found, the present Q-value is
decremented by five, Q, ., < (Q, ,— 5). Thus if a hit
occurs, Q-values of all the successful walkers are
incremented by 10, otherwise decremented. Q-values
of remaining neighbors who have not participated in
searching remain unchanged. Update process in a
neighbor Q-table also results addition of new entry
into Query Q-table. Therefore, the keyword and
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appropriate Q-values of neighbors are added to the
query Q-table as per the update process.

Power Peer Q-table update: If past successful
search data for the query keyword is not available in
the query Q-table, walkers are also selected from
power peer list of a node. Q-values are updated if a
hit occurs through power peer (walker). The hop count
(hp) is used as a parameter for Q-value update. The
steps in calculating the reward, r,, is explained below:

T=TTL.
T =T+ round (T/2) - (4)

where, T___is the maximum TTL allowed for a power
peer, i.e. if the object is not found within the TTL
limit, after checking process, search is extended to
TTL/2 hops.

r =[T. /hp]* 100 (5)

pq max

For a hit, Q-value is updated as Q,,, « Q, ,+
a (rpq - Q,)- Q-values for the remaining walkers who
have not produced a hit, update their Q-value as Q, .,
< Q;,(1- a). No power peers not participated in the
search alters their Q-values for the query.

5. SSIMULATION METHODOLOGY

We describe the simulation environment and
performance evaluation of distributed search
technique.

5.1 Simulation Setup

The performance of the proposed technique is
evaluated using a simulator developed in Java and
IBM’s Aglet Workbench. Aglets project is a Java based
implementation that was originally developed by IBM
Japan. An aglet can be dispatched to any remote host
that supports the Java Virtual Machine. This requires
from the remote host to pre-install Tahiti, a tiny aglet
server program implemented in Java and provided by
the Aglet Framework.

We simulated the search algorithms using random
graphs that have 8000 nodes. There are 100 objects
replicated to various nodes. The objects are replicated
based on autonomous replication [11]. The query
sources are chosen randomly. We assume that 80% of
the nodes are up during simulation. The Q-values of
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neighbors and power peers in the corresponding tables
are initialized with the value 100. Table III lists the
various simulation parameters and their default values.

5.2 Performance Evaluation

We performed extensive simulations to assess the
efficacy of proposed Distributed Search Technique
(DST). The performance of the algorithm is compared
with that of random walk and Adaptive Probabilistic
Search (APS). The numbers of walkers vary from 1
to 15.

The search process follows two way searching:
in case the keyword is not found in the query Q-table,
walkers are deployed from neighbor Q-table and
power peer Q-table. The selected walkers might have
higher Q-values. This increases the chance of finding
the object near the query source. There is no
association between object updates and Q-values; Q-
values are updated based on search results. The query
is propagated to neighboring nodes and power peers
simultaneously, which increases the possibility of
finding rare objects from ordinary peers.

Table 3; Simulation Parameters

Parameters Default Values

Topology Random

Network type Unstructured

No. of nodes 8000

TTL 06

No. of objects 100

Object Replication Autonomous replication
using Q-learning

Initial Q-value 100

Load balancing Mobile agent based

Peers Ordinary peers, power peers

Power peer Node degree >7;

selection available storage > 30% of total
storage allocated to the shared
folder; No. of objects in a node > 30

The simulation results are plotted as graphs and
shown in figures. 1, 2,3,4,5, 6, 7 and 8. The success
rates of three algorithms are presented in Fig. 1. DST
has high success rate even for small K values and it
outperforms both random walk and APS. In random
walks, about 70% of the walkers fail and waste TTL
messages each [5]. It is observed from Fig. 2 that
average number of messages created by DST for a
search operation is less than APS and somewhat
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greater than random walk. This is because of the two-
way search scheme followed, and use of past query
data. Therefore, the majority of search actions create
hits before they arrive at the TTL limit. Besides, the
mobile agent based load balancing scheme assists the
search process to keep away from heavily loaded
power peers to diminish network traffic.

The number of objects discovered per query for
different number of walkers is presented in Fig. 3.
The distributed search algorithm generates more
precise results than random walk and APS. DST

achieves this much of performance by effectively
utilizing Q-values of better performing nodes
including that of specialized peers.

Fig. 4 compares the average number of hops
visited for a search operation by the three search
schemes. Performance of DST is superior to both APS
and random walk. This is attained by exploiting the
Q-tables data, load balancing and two-way searching.
Power peers host several objects as compared to
ordinary peers.

#hops Gl success

Fig. 4. Search delay Comparison

Fig. 5 shows the link between query hits and hop
distance for three search schemes. The distributed
search algorithm finds out large number of objects
for short hop distances. This reduces the number of
messages for search operation. In case of random
walk, this cannot be achieved because no knowledge
about objects in other nodes is available while walkers
are deployed. In case of DST, neighbors and power
peers together participate in a search operation. The
participation of both categories of nodes is essential
for a successful search in case the query keyword is a
new one.
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Fig. 5. Hitsper query vs. hop distance from
requesters

APS discards duplicate message while processing
a query. However, DST forwards the message to
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possible nodes as per the node selection policy for
duplicate messages. Query is effectively routed
through neighbors and power peers. This causes
reduction in number of duplicate messages during
searching. This is evident from Fig. 6.
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Fig. 6: Percentage of duplicate messages gener ated
per hop

The simulation is also conducted with the
presence and absence of mobile agent based load
balancing for evaluating the effect of load balancing
scheme on 50 most loaded power peers. As shown in
Fig 7, mobile agent based load balancing scheme
effectively distribute the load among power peers.
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Fig. 7: Load balancing using mobile agents

The dynamic nature of P2P network is studied
by removing a certain number of peers randomly.
Simulation is conducted for different number of
walkers (K) with varying peer availability. Fig. 8
shows success rate with K values varying from 1 to
15 and node availability from 10% to 80%. The
scheme makes fine results even if 70% of the nodes
are down.
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6. CONCLUSIONS

In this work, we introduced a two-way load balancing
scheme for unstructured P2P networks. Simulation
results are also presented. The search scheme uses
power peers, specialized peers, and mobile agents.
Basic idea is to distribute the search processing load
on ordinary peers and power peers for achieving better
load balancing. The load on power peers has been
reduced further after applying the mobile agent based
load balancing technique. Simulation results show that
DST achieves, improved load balancing and query
success rate.
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