
Design of a Distributed Active Network Toolkit

P. Jayashree, K.S. Easwarakumar1, M. Chandrasekar, P. Ramya and M. Vijay

Department of Information Technology, Anna University, MIT
1Department of Computer Science and Engineering, Anna University, CEG

ABSTRACT
Active networks add flexibility in deploying networking applications by enabling the routers to be
active. The routers can perform any customized processing as specified by the user/application
on the packets traversing through them rather than just predefined routing functionality. ANTS
is a simulator used for testing active network applications. The existing architecture of ANTS
enforces restriction on the number of active nodes that can be instantiated without substantial
performance degradation. For real time testing in Active Networks, a reasonable size topology
need to be defined and hence is the necessity for ANTS to be extended. In this work an attempt
is made at enhancing ANTS simulator to support distributed deployment by creating different
ANTS run time environments in different systems and by enabling communication and coordination
between them using graph theoretical properties. No performance degradation is noticed
compared to simulation in a single system and the solution deployed at application level is
generic and can be ported to any network simulator.

Keywords: Active network, ANTS, distributed system, graph partitioning, synchronization.

1. INTRODUCTION
Active Networks differ from traditional networks
in that user defined programs can be executed
within the network so that the processing of packets is
specific to the user/application. ANTS (Active Node
Transfer System) is a simulator toolkit used for
simulating active network topology. ANTS supports
a maximum of ten active nodes to be defined in network
topology with acceptable level of performance
characteristics. In this paper a design solution is
proposed and discussed to develop a distributed or
networked version of ANTS test bed. The
deployment issues in distributed environment such
as interoperability and time synchronization are
addressed. Solutions to overcome these issues are
discussed without any performance degradation. Two
models to support distributed simulator
implementation have been proposed and discussed.

2. ACTIVE NETWORK TOOLKIT
In Active Networks the switches are sensitive to
the data transmitted through them and perform
computations in them. The packets that are
transferred through Active Networks consist of code
to be executed at each node and the actual data to be
sent. They are processed and can be changed on their
ways to the destination. The main objective of
Active Networks is to enable programming in network
infrastructure to promote deployment of new
protocols dynamically.

ANTS(Active Node Transfer System) is a
toolkit for simulating Active Network topology.
ANTS promotes new protocols to be deployed
dynamically. It expresses new protocols in terms of
computations to be performed at nodes[6]. The
packets are substituted by Capsules. They consist
of both data to be transmitted and code segment to be

Design of a Distributed Active Network Toolkit 171

executed at each active node. Each node here consist
of programming environment to perform
computations on the capsules, a soft cache to store
the code segment for the processing of subsequent
capsules of the same type. So the capsules can
consist of either the code segment or a pointer to
the code already cached in the node. Each node should
be able to manipulate capsules, execute control
operations on the capsules and access the routing
table and other information. Initially the code
group to be executed for a particular type of
capsules is distributed across the nodes. When the
code is not available in the node it is obtained from
the previous node[12,13]. When a capsule of
particular type arrives, the corresponding routine
is found and cached in order to enable fast
processing of subsequent capsules of the same
type. For this Demand Loading Protocol and Code
Distribution Schemes are used.

2.1 Limitation in ANTS
With the existing architecture of ANTS a maximum of
10 nodes can be simulated without considerable
performance degradation. This is due to increase in
need for memory and other resources for each node and
so the overhead increases and the performance decreases.

2.2 Need for Distributed Simulation
For any real time testing in active network using
a reasonable size network topology, the simulator
should have the support for defining the topology.
ANTS on the other hand supports a maximum of 10
nodes in an instance of ANTS. Developing a
distributed simulation environment in ANTS provides
the solution for the same. To incorporate the
distributed simulation, ANTS[9,10] need to be
extended with provisions for optimal routing and
other interoperability issues. The distributed
environment is created by partitioning the nodes of
the network topology into sub networks and enabling
communication and coordination between them .

3. ISSUES TO BE FOCUSED
The distributed simulation environment is created
by partitioning the network topology into many

groups of nodes called domains and by simulating
each domain in different systems using ANTS. Any
distributed simulation has pitfalls like

• Decrease in simulation capacity

• Increase in communication cost across domains

• Increase in the network load

• Increase in delay

• Additional cost in synchronization of nodes
across domains.

The above issues are addressed and solutions
are proposed for an efficient distributed simulation
in ANTS.

4. DISTRIBUTED SIMULATOR DESIGN
The distributed simulator addresses the issues related
to partitioning the network topology into domains,
providing synchronization across domains and other
general interoperability functions.

4.1 Topology Partitioning
The network topology is defined as a connected
graph. The nodes are partitioned into sub domains
and configured in different systems using efficient
graph partitioning methods. The partitioning of
nodes is carried out in view of the following
demands.

• Minimum cross-machine communication to
ensure minimum cost for communication
across the domains and hence to increase the
simulation capacity

• Load balancing in each machine to reduce
the load on the network

• Compatible link capacity provision when
edges are split across domain.

4.2 Time Synchronization
When the capsules are transmitted from one domain
to other, as they traverse through underlying [1]
TCP connection associated with the real network,
a real time delay is associated with the capsules.
In order to combat the real time delay, time
synchronization is done by attaching a time stamp

172 • IC3–2008 UFL & JIITU

field to the capsules in case of cross-domain
communication.

4.3 Interoperability
Interoperability[5] for achieving effective
communication and coordination between domains
is addressed in terms of physical connectivity,
logical connectivity and routing across domains.

4.3.1 Physical connectivity

The sub topology for each domain is configured
in computer systems individually. Nodes in that
system with their IP addresses, the connectivity
between them, the application deployed in each
node, the source and target addresses and global
routing table for the entire topology. This approach
of storing the node configuration in individual
domains is beneficial because of low memory
requirements and low overhead in managing
information. So the configuration files, overall
routing table and the local routing information are
maintained locally for each domain in each system.

4.3.2 Logical connectivity

For nodes distributed across different domains is
established using TCP/IP protocol mechanism. TCP
servers are run in all the remote endpoints.
Whenever there is a need to transmit capsules or
state messages TCP client connection is initiated to
an appropriate remote endpoint. Every connection
is identified with an IP address and a port number for
cross domain communication.

4.3.3 Inter-intra domain routing

Global routing table is maintained in each domain.
Local routing table is stored in each node to enable
routing of capsules in each domain. In each ANTS
domain two extra dummy nodes are added similar to
ghost nodes dedicated for routing in case of cross
domain communication. This node termed as
connection router acts as a source and sink for the
domain. All capsules that are destined to an active
node in different domain are routed to the connection
router. The time stamp is attached to the capsules
and then a client TCP connection is initiated to

the connection router in destination domain. Then
the capsules are routed through TCP stream to the
destination domain. Its main purpose is dedicated
routing in case of cross domain configuration.
The connection router deployment is decided based
on

• Connectivity to every node in the domain
leads to other domain

• Compatibility in link capacity

• Accessibility to other connection routers in other
domains

The capsules that are destined for a node in
different domain are routed to the connection router
and that routes them to the destination node. The
partitioned topology with their connection routers
are shown in figure 1.

5. DISTRIBUTED SIMULATION MODEL
In this section two models for implementing the
simulator ANTS in distributed environment is
presented namely peer-peer model and client-server
model.

5.1 Peer-Peer model
In Peer-Peer model, each sub domain is configured
in different systems and all domains are considered
as peers to each other. Each domain consists of the
nodes defined in the sub topology and two
additional nodes acting as connection routers. Every
active node in a domain that needs to communicate
with a particular node in another domain need to

Fig. 1: Topology partitioning with connection routers

Design of a Distributed Active Network Toolkit 173

send the capsules via connection routers. The
connection router checks each and every capsule
it receives for the destination whether the
corresponding destination. If it belongs to the
same domain it performs conventional ANTS
routing. If not it simply transmits the capsules to the
connection router of the destination domain which
in turn delivers it to the appropriate destination.
Here the number of nodes supported increases linearly.
The IP addresses for the connection router of all the
other networks must be maintained in every domain.

5.2 Client-Server model
In this model each domain is configured in
different machines and one ANTS domain is treated
as a Server domain. Other domains act as Clients.
Each individual ANTS domain consists of active
nodes and a connection router. The server domain
connects different clients who need to communicate
between each other. Every client which sends
capsules that is destined to a different domain is routed
to the connection router in the server domain. It further
routes the capsule to the desired destination domain.
A node in server is fixed to receive capsules from
different clients. And different nodes are defined
as routers for sending the capsules to different
clients i.e., one fixed connection router for each
client. This information is maintained in the server
itself.

Every node that needs to communicate with a
particular node in other ANTS domain sends the
capsule to the connection router. The connection router
checks each and every capsule it receives whether
the corresponding destination belongs to the same
domain or to different domain. If it belongs to the
same domain it performs conventional ANTS routing.
If not it sends the capsules to the connection router of
the server domain. The connection router in the
server domain receives the capsule and passes to
the router in the server domain responsible for the
destination domain. And that routes to the connection
router of the destination domain. Based on the
destination address in the capsule it delivers to the
appropriate receiver. In this model each domain
should know the address of the connection router

in the server and the IP address of the connection
routers responsible for sending to other domains. Here
the number of nodes increases proportional to the
number of clients.

6. IMPLEMENTATION STRATEGIES

6.1 Assumptions
All the systems used for implementing distributed
or networked simulator are assumed to be robust
and have uniform architecture. During topology
partitioning the edges across domains are split
into a sequence of edges via connection routers.
The sum of link capacities is maintained to the
same as the original link capacity.

6.2 Timestamp
In order to achieve time synchronization across
the domains a timestamp is added to the capsules
at the connection router in case of cross domain
communication. This timestamp field is retrieved and
the time in receiving machine is synchronized to it.

6.3 Capsule format
In addition to the fields in the original capsule format
in ANTS[2,3,6], two more fields are added as
depicted in figure 2. The timestamp field is used
for time synchronization across domains and the
domain IDs field is added to identify the destination
domain in both the proposed models.

Fig. 2: Capsule Format

6.4 Routing
The routing strategy involved in both the models
is given in the following pseudo code listing.

6.4.1 Peer-Peer model- Routing strategy

Forwarding process flow at any node
/*global routing table is followed*/
retrieve next hop address using global routing table
if (intra domain)

Existing
header

Time
stamp field

Domain
ID field Payload

174 • IC3–2008 UFL & JIITU

use default shortest path routing
else if (inter domain))

route to sink connection router of current
domain
At sink connection router at same domain

find the destination domain
add timestamp field to the capsules
forward[4] to source connection
router at the destination domain

At source connection router in destination domain
receive capsules from sink connection router of
source

domain
reset time to the timestamp value in the capsules
retrieve destination address
forward directly to the next hop address

6.4.2 Client-Server – Routing Strategy

Forwarding process flow at any node
/*global routing table is followed*/
retrieve next hop address using global routing table
if (intra domain)
use default shortest path routing
else if (inter domain))

route to sink connection router of current
domain
At sink connection router at same domain

find the destination domain
add timestamp field to the capsules
forward to source connection
router at the server domain

At source connection router in server domain
receive capsules from sink connection router of
source domain
retrieve destination address
forward directly to the sink connection router
responsible for destination address

At sink connection router responsible for
destination domain

receive capsules
find the destination domain
forward to source connection router at the

destination domain
At source connection router in destination domain

receive capsules from sink connection router

of the server domain
retrieve destination address
forward directly to the next hop address

7. SIMULATION RESULTS
The distributed simulator is implemented in LAN
with homogenous systems and tested for a topology
with the maximum number of nodes supported by
ANTS, that is separated into various domains and
configured in different machines. After establishing
the physical and logical connectivity between
domains, the design issues like time synchronization
and interoperability are implemented. The
performance is analyzed and compared to that of
simulating in a single system. It is noticed that there
is no considerable increase in simulation time and
no considerable performance degradation. The
packet transmission time as measured in a single
system, peer-peer model and client server model of
ANTS are charted in figure 3. The analysis of the
drop rate of the capsules in the proposed models as
well as the single system implementation is shown
in figure 4. The graphs are plotted taking the average
of the measurements carried out using varying
number of peers and clients. It is noticed that the
increase in drop rate by a nominal amount is
constant for various size topologies when compared
to that of ANTS simulation in a single system
and hence proved to be scalable. The memory
requirements for nodes and their links are shared
across the systems. The simulation results show
that any active network application with any

Fig. 3: Transmission time for different models

Design of a Distributed Active Network Toolkit 175

reasonable size topology can be ported using the
distributed ANTS simulator in distributed
environment and performance analysis can be
easily matched without much degradation in the
distributed implementation.

8. CONCLUSION
Design and development of the distributed version
of the active network simulator ANTS, provides the
potential for active applications to define any
reasonable size network topology. The toolkit now
supports real time testing in ANTS by any active
application. Further it employs the graph theoretical
properties to effectively partition the given network
topology into sub topologies and overcomes the
major issues in distributed computing and
communication like reduction in simulation
capacity and increase in real time delay by schemes
like time synchronization and interoperability across
domains. As the solution is deployed at application
layer, it is generic and portable to any network
simulator which has support for enhancement.

REFERENCES
1. Van C.Van, “A defense against address spoofing

using Active Networks”, Department of
electrical engineering and computer science at
Massachusetts Institute of Technology.

2. David J.Wetherall, John V.Guttag, David
L.Tennenhouse, “ANTS: A toolkit for building
and dynamically deploying network protocols”,
APRIL 1998.

3. David J.Wetherall, John V.Guttag, and David
L.Tennenhouse, “ANTS: Network Services
Without the Red Tape”, IEEE, 1999.

4. David Wetherall, “Developing network protocol
with the ANTS toolkit”, Design Review, August
1997

5. David L. Tennenhouse, and David J. Wetherall
“Towards an Active Network Architecture”
Telemedia, Networks and Systems Group, MIT.

6. David Wetherall, “Active network vision and
reality: lessons from a capsule-based system”,
Department of Computer Science and
Engineering University of Washington. 17th ACM
Symposium on Operating Systems Principles
(SOSP ’99) Published as Operating Systems
Review 34(5):64–79, Dec. 1999.

7. Ken Yocum, Ethan Eade, Julius Degesys, and
David Becker, “Towards scaling network
emulation using topology partitioning”, Department
of computer science,Duke university.

8. George F. Riley, Mostafa H. Ammar, Richard
M. Fujimoto, Alfred Park, Kalyan Perumalla,
and Donghua Xu, “A Federated Approach to
Distributed Network Simulation”,Georgia Institute
of Technology.

9. David J.Wetherall, David L.Tennenhouse,
Jonathan M.Smith,W.David Sincoskie, and Gary
J.Minden. “A Survey of Active Network Research”.

10. David J.Wetherall, “Developing network
protocols with ANTS toolkit”, Design review,
MIT, August 1997.

11. Yan Ma, Yanmin Niu, and Min Lei, “Design
and Study of Active Router Structure”,Jo urna l
of communication and c o m p u t e r s ,
ISSN1548-7709,USA, September 2005, pp. 75-79.

12. K.L. Eddie Law, Roy Leung, “A Design and
Implementation of Active Network Socket
Programming”.

13. Yannick Carlinet, Virginie Galtier, Kevin L.
Mills, Stefan Leigh, and Andrew Rukhin,
“Calibrating An Active Network Node”.

14. David J.Wetherall, “Service Introduction in an
Active Network”.

Fig. 4: Packet drop rate for different models

