
Effective Network Monitoring Using Mobile Agents

Vipan Arora and Dinesh Kumar1

Government Polytechnic College for Girls, Jalandhar
1DAV institute of Engg & Technology, Jalandhar

E-mail : vipan.arora@gmail.com

ABSTRACT
Fast growth of computer Networks require efficient network management and monitoring tools for
better utilization of resources. Traditional centralized Network Management Systems (NMS) are not
adapted to wide spectrum of heterogeneous network installations and configurations. Major problem
areas are heterogeneity, complex topologies, scalability, limited bandwidth constraints etc. Present
research activity is centered around providing distributed network management oriented intelligence
to different network components. Mobile Agent (MA) paradigm seems to offer a good solution. Most
network devices employ Simple Network Management Protocol (SNMP) agents for network management
based on traditional centralized client/server architecture. In this paper, we propose a Mobile Agent
Framework (MAF) integrated with SNMP. It provides a mobile network manager with Mobile Agent
Generator (MAG) functionality. Generated MA can aggregate SNMP data, semantically compress
and intelligently filter it. We present a novel approach to write string based network health functions
and SNMP table filtering expression. A new concept of customized reliable traps based on health
functions is introduced. Implemented MAF is also strengthened to handle and transfer large SNMP
tables.

Keywords: Network management, monitoring, SNMP, mobile agent, table filtering, string based
expressions, itinerary partitioning, health functions.

1. INTRODUCTION
Traditional network management (NM) protocols
have been based on centralized client/server approach,
which is quite unsuitable in modern computer
networks. Two major protocols in use are Simple
Network Management Protocol (SNMP) [1] and
Common Management Information Protocol (CMIP)
[2]. SNMP protocol assumes network to be collection
of managed objects (hosts, routers, switches, bridges
etc.) and each managed object runs a daemon (called
SNMP Agent) that continuously updates Management
Information Base (MIB) [3] with network
management statistics. MIB is stored locally in
managed object. Network Management System (NMS)

employs a Manager application (centrally placed with
network administrator).

SNMP agents respond to the queries (GETxxx)
made by manager. But frequent monitoring (query-
response) of network state parameters (MIB variables)
leads to polling, that typically involves massive
transfers of management data causing considerable
strain on network throughput and creating a processing
bottleneck at manager. Here mobile Agents can prove
to be an effective solution [4][5][6]. The MA can go to
desired managed object and interact (poll) with SNMP
agent locally, thus saving on costly WAN bandwidth.

Traditional network management systems are
based purely on SNMP client/server architecture.

Effective Network Monitoring Using Mobile Agents 177

Various research Mobile Agent Frameworks (MAF)
integrated with SNMP have been proposed
[7][8][9][10][11] and implemented in network
management area. We call such MAF as 2nd generation
NM hybrid models. A brief review of such models is
made to formulate basic NM concepts and introduce
research voids.

In this paper we propose another NM hybrid
model. We introduce and implement several novel
approaches in this model such as 3-dimensional
network state, string based expressions, customized
reliable traps based on health functions, global
filtering, enhanced SNMP table handling and itinerary
partitioning strategy [12]. This model has been
implemented in our network monitoring application
(NetMonitor) developed using IBM’s Aglet SDK [13],
AdventNet SNMP API [14].

2. REVIEW OF DISTRIBUTED
NETWORK MANAGEMENT USING
HYBRID MODELS

Zapf’s [7] hybrid model NetDoctor is based on
Asynchronous MEssage Transfer Agent
System(AMETAS) platform. It depicts network state
using health functions. MAF includes Mobile Agent
Generator (MAG), called, User Adapter, generates
Health Agents that migrate to host, compute health
functions in a polling mode, compare it with a
threshold set, return to User Adapter in the event of
exceeding threshold or completing polling time. In
this model health functions are based on mobile code
repository approach, thereby complex functions
cannot be generated or user has to provide code for
these. This model lacks SNMP table handling.
Filtering of data is neglected altogether.

Antonio Pualiafito’s [8] hybrid model, based on
Mobile Agent Platform (MAP), also uses health
functions to monitor network state. It introduces
customized health functions by means of daemon
agents. The messenger agent visits nodes to collect
data computed by daemon agents. It provides abstract
classes to customize health functions, thereby putting
the burden on user/network manager to write the code
for health agents. This model as well as several other

hybrid models [10][11] have also the similar
constraints..

D. Gavalas’s [9] hybrid model provides better
SNMP table handling and filtering. It also provides
abstract java methods for writing filtering expressions.
It also uses mobile code repository approach that lacks
scalability. Complex filters cannot be realized.
Network manager has to write the mobile code himself
for custom filters or get contended by a handful of
ready-made filters in the mobile code repository
provided along with the application.

We propose a String based expression building
approach to write customized health functions and
filters. Now network manager can have unlimited
filters. Customization involves just writing an
arithmetic/Boolean expression in the GUI. In addition,
our platform uses itinerary partitioning [12] approach
to alleviate bloated state problem[12] to reduce
network time response. The framework also extends
the SNMP trap capability and makes it more reliable.

3. BASIC NETWORK MANAGEMENT
HYBRID MODEL CONCEPTS

3.1 SNMP Data Retrieval operations
SNMP data transfer is based on User Datagram
Protocol (UDP). UDP was used to keep transport layer
overhead to minimum for small sized Protocol Data
Units (PDU) and better network latency, but we lost
reliability in the tradeoff. SNMP v1 supports two basic
data retrieval operation, GET (Ref Fig 1(a)) and
GETNEXT (Ref Fig 1(c)). SNMP v2 has added
GETBULK operation (Ref Fig 1(d)). Multiple MIB-
II objects, also called variables or Object Identifiers
(OIDs) can be given in one GET request (multi-
varbind feature) Ref Fig 1(b). Number of OIDs in
multi-varbind request are limited by maximum PDU
size supported by SNMP agent on managed object.
GETBULK operation is equivalent to issuing multiple
GETNEXT (governed by max-repetitions parameter).

SNMP GETNEXT is used to walk down the
MIB-II tree or to access SNMP tables. GETBULK
enables manager to receive large block of data
efficiently by specifying a maximum number of

178 • IC3–2008 UFL & JIITU

successive values to be returned (max-repetitions). But
now manager has to guess a value for max-repetitions
parameter. Using small numbers for this parameter
results in too many SNMP PDU exchanges and using
large number may cause (Ref Fig 1(d)) the SNMP
GETBULK request to be rejected by SNMP agent
since response PDU becomes too large (exceeds
capability of SNMP agent, most agents has this limit
as 64kB).

() *100
()

Re

ipOutDiscards ipOutNoRoutes ipFragFails
DiscardRate t

ipOut quests ipForwDatagrams

+ +
=

+

Fig 2: Example of Health Function involving many
MIB-II objects

DiscardRate(t) defines the percentage of IP output
datagrams discarded over the total number of
datagrams sent as recorded by managed object at time
‘t’, (when the SNMP response was generated). We
see that evaluating this function requires 5 MIB
variables to be queried. 1st option is to send 5 SNMP
GET queries and get 5 responses (Ref Fig 1(a)). 2nd

option is combine these 5 MIB variables in multi-
varbind request (Ref Fig 1(b)) to generate one SNMP
GET PDU, but the response PDU gets bigger (may
get rejected by SNMP agent), since now it containins
5 OIDs and their values. 3rd option is to compute this
function locally on managed object and return single
value DiscardRate(t) to manager. The reduction in
bandwidth becomes significant when multiple
samples of this health function are required. MA
having health function capability is thus able to
perform semantic compression of managed
information. Zapf [7] calles such agents as Health
agents.

3.3 SNMP Traps
The SNMP standard defines seven traps that can be
generated by SNMPv1 agents. Six of these traps are
“generic” traps and the seventh trap is enterprise-
specific. The enterprise-specific trap is used by the
private organizations to define their device-specific
traps. The generic traps are fixed and cannot be
defined. On the other hand, it is possible to define
multiple enterprise-specific traps. The six generic trap
types defined for SNMPv1 agents are as follows.

• coldStart • warmStart
• linkDown • linkUp
• authenticationFailure • egpNeighborLoss

The traps also use UDP and thus are inherently
not reliable (may get lost). Secondly customized traps
can not be generated e.g. To generate a trap “when
60% or more links(interfaces) get down” at one
managed object, is not feasible with SNMP traps.

Fig. 1: SNMP Data Retrieval Primitives (a) Repeated
GETs (b) Multi-varbind GET request (c) Repeated

GETNEXTs (d) Problems with GETBULK

(a)

(b)

(c)

(d)

Managed

Host

Managed

Host

Managed

Host

Managed

Host

3.2 Health Functions
SNMP dictates that MIB-II objects reflect some
portion of network state at the managed object.
Sometimes, many MIB-II objects are grouped together
in some arithmetic expression by network
administrator, so that, the result of such expression
may prove to be more useful than the individual MIB-
II objects. Such an expression is called network health
function. A health function can be as a ratio computed
from two or more MIB variables or may be complex.
(Ref Fig. 2)

Effective Network Monitoring Using Mobile Agents 179

Fig. 3: Envisaged 3-D Network State

NS(t) represents network state at time (t) with 1st

dimension as set of Plain OIDs = {sys Name, if
Number….}, 2nd dimension as a set of health
functions={DiscardRate(t), utilization(t) .}, 3rd

dimension as a set of filters={ifTable-
Filter(up),ifTable-Filter(lowSpeed), tcpConnTable
(listen)}. This enables a single MA to fetch all the
required data. In hybrid models reviewed in para 2,
multiple MA are required to be launched to achieve
the same i.e. greater consumption of bandwidth and
higher network latency.

4.2 Proposed Health Function Format and
Reliable customized Traps

The proposed health function will have three attributes
i.e. {name, expression, isTrap}. The name (type-
String) is unique for a MA, expression (type-String)
may comprise of valid OIDs, integer/float/string
constants. It may evaluate to a number, string or a
boolean value. We merge the concept of health
functions with traps, isTrap, is a boolean attribute,
indicating that this health function will generate a

Fig. 4: Customized Health Function based Trap

4.3 Proposed String based Expressions
We also introduce a string based approach to create
complex expressions for health functions and filters.
Conventional hybrid models (Ref para 2) used mobile
code repository based approach (providing abstract
classes, interfaces, methods etc.) for generating health
functions. This limits creating a customized complex
filter/health function. We integrate Jformula [15]
expression parser with our MAF to enable string based
expressions.

4. PROPOSED NETWORK
MANAGEMENT CONCEPTS

4.1 3-Dimensional Network State
We define 3D-network state as a set of values of plain
MIB variables, values of custom network health
functions and custom filters e.g. SNMP table filters
and general filters (Ref Fig. 3) e.g.

NS(t)= { [sysName,ifNumber….],

[DiscardRate(t), utilization(t)….],

[ifTable-Filter(up), ifTable-Filter(lowSpeed),

tcpConnTable(listen)…] }

NetTrap agent, whenever expression evaluates to true
(i.e. expression must be Boolean, if isTrap is set). The
agent migration is TCP/IP based. Thus, we have more
reliable traps than SNMP traps, which are UDP based.

Further health function can be literally anything,
limited by network administrator’s imagination. e.g.
expression in Fig. 4 will generate a trap if some
managed host has more than 3 interfaces, and
establishes a TCP connection on port 80 on any of
the interface.

{ tcpConnLocalPort==80 && tcpConnState==5 &&
 ifNumber>3}

Fig. 5: Using JFormula for String Based Expression

All symbols in expressions are parsed, if they are
valid OIDs. The valid OIDs are categorized as Long,
String type. OID symbol in expression is replaced
accordingly by making a SNMP GET query for
evaluation of the expression.

4.4 Proposed Filter Format
The filters are used to select desired information while
discarding unwanted information, thus reducing MA
state size. We envisage filters to be of two categories

180 • IC3–2008 UFL & JIITU

Fig. 6: Example of Table Filter Expression

The filter format is taken from snmpSQL [16]
SELECT command. The example Table filter in Fig.
6 will pick {ifPhysAddress, ifDescr,ifType} columns
from table ifTable store in all the nodes that MA visits.
The result will include only those interfaces, which
have speed greater than 1500. The filtering expression
(ifSpeed>1500) is applied after the table is sorted in
ascending order based on ifPhysAddress. If more than
2 table rows satisfy filtering expression, then top two
rows are picked. The final results i.e. no. of rows will
be restricted to 50. The General filter will not have
tableName, the OIDs given in select attribute must
be scalar. Rest of the format and working remains
the same. The filtering expression must be Boolean
for both type of filters.

4.5 SNMP Table Handling Improvements
An SNMP table can be defined as an ordered
collection of objects consisting of zero or more rows.
Each row may contain one or more objects. Each
object in a table is identified using the table index. A
table can have a single index or multiple indices. A
scalar variable has a single instance and is identified
by “.0” as suffix in its OID. On the other hand, a table
object or the columnar variable can have one or more
instances and is identified by its index value. To
identify a specific columnar variable, the index of the
row has to be appended to its OID.

For example, consider tcpConnTable. It has four
indices namely tcpConnLocalAddress, tcpConn Local
Port, tcpConnRemAddress, and tcpConnRemPort
(Ref Fig.7).To get the value of the column
tcpConnState for the last row, we have to query with
the OID

tcpConnState.192.168.1.78.1156.192.168.4.144.80

where (192.168.1.78, 1156, 192.168.4.144,80) are
the value of indices. Since SNMP table size is
unknown, multiple GETNEXT, or multiple
GETBULK requests are used. We first examine the
version of the SNMP Agent on managed host, by
sending 3 SNMP PDUs (set to different versions) to
the desired managed host. We will get reply for the
correct version, rest will time out. If SNMP Agent is
version 2c and above, we use GETBULK for
reduction in bandwidth consumption.

Though AdventNet SNMP API [14] provides
high level API constructs for table handling such as
getColumn(), getRow() etc. through java beans, but
these are not efficient in terms of bandwidth
consumption and network latency. We use low-level
API [14] constructs to generate SNMP PDUs to get
the table. The table is converted to 2D array and filters
are applied to trim rows/columns.

4.6 Proposed Itinerary Partitioning Strategy
The user defines initial Itinerary I for MA as

{N1, N2, N3,…. Ni, Ni+1,……….. Nn }. Here we define a
partition factor p (p>0) to control itinerary
partitioning. MA is launched from home Node H to
1st node in itinerary i.e. N1.. On arrival at node N1

mobile agent examines itinerary I, if number of
nodes in I i.e. |I| >p, then itinerary is partitioned
into I0={N1, N2,…… Np} and I1= I – I0={Np+1, Np+2,……

Nn}. After this MA is cloned. The original MA is
called C0 and cloned MA is called C1. Now C0 is
allotted itinerary I0 and C1 is allotted itinerary I1.

The original aglet C0 is not cloned any more but C1

repeats this procedure on arrival to next node
assuming the role of C0.

i.e. Table, General. The Table filter attributes are as
under:-

Fig. 7: The OID values in tcpConnTable

Effective Network Monitoring Using Mobile Agents 181

Further we notice that clones are launched from
first node in partitioned itinerary (indicated by a kink
in Fig. 8(b) and Fig. 8(c)) and not launched from
home node. This also yields performance
improvement, if initial itinerary has been given based
on network topology. The cloning is done immediately
on arrival at node, any SNMP polling is done, after
the clone is prepared, so that it can be immediately
dispatched to next node on priority. However SNMP
polling and clone dispatching is done concurrently in
two separate threads. In nutshell, itinerary I is
partitioned into k=Ãn/pø, itineraries I0,I1,…..Ik-1 where
last itinerary Ik-1 may contain less than p nodes and
itinerary Ii is taken care by clone Ci . In Fig 8, three
cases of this strategy has been shown with p=n, p=1,
p=2 . The first two cases are extreme. The case-I (with
itinerary I0={N1, N2,…N7}) is being followed in
conventional approaches, i.e. No Partitioning
[6][7][8] , whereas case-II reflects the extreme cloning
to obtain immediate results. In case-II we have 6
itinerary parts i.e. I0={N1}, I1={N2}…. I6={N7}. In
case-III we have 4 itinerary parts i.e. I0={N1, N2},
I1={N3,N4}, I2={N5,N6}, I3={N7}. The intermediate
values of p i.e. 1<p<n reflect intermediate response
time cases and may be chosen as per application
demands.

5.7 Network Monitoring Architecture
The proposed network management concepts (Ref
para 4) have been implemented and evaluated using a

Fig. 9: NetMonitor Architecture

(a) NetAdmin Aglet This aglet plays the role of
Mobile Agent Generator (MAG) and presents a
user interface (UI), as shown in Fig. 11, to
customize NetMonitor aglet’s itinerary, 3-D
network state monitoring parameters i.e. list of
plain MIB variables, monitored health functions
and list of filters to be applied. Polling
parameters such as polling interval, polling
samples etc. are also setup. It allows us to control
itinerary partition factor p. It handles result
Message sent by NetMonitor aglet, when it
comes back holding SNMP data and processes
the network state. The state brought by
NetMonitor aglet can be from multiple nodes
depending upon value of p. The UI can also
invoked when NetAdmin receives dialog
Message. By default RFC-1213 MIB is loaded,
but other MIBs can also be loaded. The user can
choose scalar[3] as well as tabular MIB
variables in any order.

(b) NetMonitor Aglet It has the major
functionalities. It takes parameters from
NetAdmin Aglet and migrates to first active node
in Itinerary. It may decide to clone itself,
depending upon the itinerary partition factor and
the balance itinerary left. Then it checks SNMP
agent version at this managed host. It acquires

Fig. 8: Itinerary Partitioning Strategy

(a) Case-I (p?n) (b) Case-II (p=1)

(c) Case-III (p=2)

MA based approach integrated with SNMP using IBM
Aglet SDK [13] and AdventNet’s SNMP API.[14]
The proposed architecture (NetMonitor Ref Fig. 9) is
based on three aglets, termed as NetAdmin NetMonitor
and NetTrap aglet.

182 • IC3–2008 UFL & JIITU

3D network state data i.e. data for plain OIDs,
OIDS in health function expression and filter
expressions. After evaluating expressions it
applies filters. If for some health function, isTrap
attribute, is set, it sets up NetTrap aglet and
dispatches it to home node. MA compresses data
before migration to next node in itinerary, (if
none, then migrates to home). Upon coming to
home it generates result Message and sends it
to NetAdmin aglet for processing network state
and to launch a UI for displaying the results.

It records various timings and evaluation
parameters such as on arrival, before dispatch,
preprocessing time, SNMP polling time, cloning
time, state size accumulated etc. for studying
effectiveness of the proposed approach.

(c) NetTrap Aglet it is very small aglet, launched
by NetMonitor, in the event of some trap being
fired (isTrap health function expression
evaluates to true). It generates trap Message,
upon reaching home node and delivers it to
NetAdmin aglet. The NetAdmin aglet notifies the
received trap to manager via a UI. However,
automatic network recovery decisions can be

made and implemented using MA based
approach, but are not catered for in our MAF.

5.8 Performance Evaluation
The implementation has been tested on network
shown in Fig 11. The N1, N5 nodes have Linux OS
and remaining are based on WinXp. All nodes have
Intel PIV 2.4GHz, 512MB RAM and are connected
using 100Mbps Ethernet.

The NetAdmin aglet was configured to launch
NetMonitor aglet to fetch data for plain MIB variables
sysDescr, sysUpTime, sysName, ifNumber, ,
ipFragFails, , icmpInMsgs, icmpInErrors,
tcpMaxConn, tcpInErrs, tcpOutRsts,.The Table filters

Fig. 10. Test Bed Network for NetMonitor

Fig. 11: NetAdmin Aglet UI

Effective Network Monitoring Using Mobile Agents 183

on tables ifTable ipAddrTable, ipRouteTable
tcpConnTable udpTabl were also added.Health
function DiscardRate(t) (Ref para2) was also
monitored. The test runs were made first by varying
no. of snapshots/samples of these variables from 1 to
6 as well as varying partition factor p from 1 to 5 and
with/without using table filters. The results with p=5
(i.e. No Itinerary Partitioning, and No Filters/Health
Functions) have been shown in Fig. 12(a). We observe
that as MA migrates from home node to N5, its state
size increases that affects migration time also.

If we compare state size increase in Fig 12(a)
and 12(b), the semantic compression of state is visible.
The results in Fig 12(b) were obtained when we used
table filters and health functions. The data aggregated
at each node reduces to 1/3rd approximately. The
reduction in state size depends upon how much
filtering of data has taken place.

The effect of itinerary partition factor is observed
from Fig. 13.We obtain least network response time

with p=1 , where SNMP polling takes place
simultaneously on all nodes in the itinerary. As we
increase p the response time increases and is limited
by p=n i.e. conventional itinerary approach.

6. CONCLUSION
In this paper, we have discussed research approaches
in the area of network management and monitoring
that employ hybrid models i.e. using mobile agent
technology integrated with SNMP. We proposed some
new concepts like 3-dimensional network state, string
based expressions, customized reliable traps based on
health functions, global filtering, enhanced SNMP
table handling and itinerary partitioning strategy.
These concepts have been implemented in our MAF
(NetMonitor) and performance improvements
analyzed. String based expression increases scalability
w.r.t. creating customized health functions and filters
in a most effective manner. Itinerary partitioning
approach reduces network response time.

Our future work involves discovering network
topology for efficient and intelligent planning of
itinerary to achieve better network response time at
NMS.

REFERENCES
1. Stallings W., “SNMP, SNMPv2, SNMPv3 and

RMON 1 and 2”, 3rd ed., Addison Wesley, 1999.
2. ISO/IEC 9596, Information Technology, Open

Systems Interconnection, Common Management
Information Protocol (CMIP) Part 1: Specification,
Geneva, Switzerland, 1991.

Fig. 12: Test Run Results : Effect of using Table Filters and Health Functions (a) State size increases as MA
moves from Home node to N5 node (b) State size increases, but not significantly, when Table Filters and Health

functions were used.

 (a) (b)

Fig. 13: Effect of Itinerary Partition Factor on
network response time

184 • IC3–2008 UFL & JIITU

3. McCloghrie K., Rose M., “Management Information
Base for Network Management of TCP/IP based
internets: MIB-II”, RFC 1213, 1991.

4. Baldi M., Picco G.P., “Evaluating the Tradeoffs of
Mobile Code Design Paradigms in Network
Management Applications”, Proceedings of the
20th Int. Conf. on Software Engineering (ICSE’98),
April 1998.

5. Fahad, T., Yousef, S.; Strange, C.; Pattinson, C.
“The effect of mobile agents in managing network
systems” 3G Mobile Communication Technologies,
2003.

6. Susilo, G., Bieszczad, A.; Pagurek, B.
“Infrastructure for advanced network management
based on mobile code” Network Operations and
Management Symposium, 1998. NOMS 98., IEEE
Volume 2, 15-20 Feb. 1998

7. Zapf M., Herrmann K., Geihs K., “Decentralized
SNMP Management with Mobile Agents” ,
Proceedings of the 6th IFIP/IEEE Int. Symposium
on Integrated Network Management (IM’99), May
1999.

8. Antanio. Puliafito and O. Tomarchio, “Advanced
Network Management Functionalities through the
use of Mobile Software Agents”, in Proceedings of
Workshop on Intelligent Agents for
Telecommunication Applications (IATA’99), LNCS
vol.1699, August 1999.

9. Gavalas D., Greenwood D., Ghanbari M., O’Mahony
M., “Advanced Network Monitoring Applications
Based on Mobile/Intelligent Agent Technology”,
Computer Communications, 23(8), April 2000.

10. Buchanan, W.J., Naylor, M., Scott, A.V. “Enhancing
network management using mobile agents”,
Engineering of Computer Based Systems, 2000.
(ECBS 2000) Proceedings.

11. Kona, M.K., Cheng-Zhong Xu “A framework for
network management using mobile agents” Parallel
and Distributed Processing Symposium.,
Proceedings International, IPDPS 2002,

12. V.K. Verma, R.C. Joshi, “Advanced Network
Monitoring : An Itinerary Partitioning Approach”
submitted for ICCCN Conference, 2006

13. IBM Research. The Aglets Software Development
Kit, IBM Aglets WorkBench 1998. http://
www.trl.ibm.co.jp/aglets/

14. AdventNet SNMP API , http://www.adventnet.com/
products/snmpbeans/

15. JFormula Expression parser API for java http://
www.japisoft.com/formula

16. Oliveira, R.; Berger, F.; Labetoulle, J.; “Managing
SNMP environments using mobile SnmpSql”
Systems Management, 1998. Proceedings of the
IEEE Third International Workshop on 22-24 April
1998

