
Efficient and Predictable Process Scheduling

M.V. Panduranga Rao, K.C. Shet1 and K. Roopa2

National Institute of Technology Karnataka, Mangalore
1Department of Computer Engineering, National Institute of Technology, Surathkal, Karnataka

2Mphasis Limited, Bangalore
E-mail : raomvp@yahoo.com ; kcshet@yahoo.co.uk ; roopa.sindhe@gmail.com

ABSTRACT
Real-time applications such as multimedia audio and video are increasingly populating the workstation
desktop. To suppor tthe execution of these applications in conjunction with traditional non-realtime
applications, we have created a parametric scheduler for multimedia and Real-Time applications.
Workstations and personal computers are increasingly being used for applications with real-time
characteristics such as speech understanding and synthesis, media computations and I/O, and
animation, often concurrently executed with traditional non-real-time workloads. This paper presents
a system that can schedule multiple independent activities so that:

• Activities can obtain minimum guaranteed execution rates with application-specified reservation
granularities via CPU Reservations.

• CPU Reservations, which are of the form “reserve X units of time out of every Y units”, provide not
just an average case execution rate of X/Y over long periods of time, but the stronger guarantee
that from any instant of time, by Y time units later, the activity will have executed for at least X time
units.

Keywords: scheduler, dispatcher, RTOS, deadline, graph, rms, edf, preemption, DDS, CPU
Reservations.

1. INTRODUCTION

1.1 Scheduler
The scheduler’s job is to allocate shared resources to
tasks. Those resources could be CPU, peripheral, etc.
 The scheduler is driven through a clock tick. Each
task is assigned a period (which assigns the frequency
of execution) and a due time (which assigns the phase
of execution).

1.2 Deadline
The deadline is used to temporally limit a task’s
allocation of resources. A task which exceeds its
allotted time will be suspended by the scheduler

regardless of whether or not it has completed. This
frees up a resource for other tasks and prevents an
errant task from seizing shared resources.

1.3 Deadline-Driven Scheduler (DDS)
DDS s use the deadline of a task to make decisions as
to which task has to be dispatched next. At the so
called “task release” time (the time this task became
available for scheduling), DDS will re-order the ready
task queue according to increasing deadline order. The
ready queue consists of ready but
unfinished tasks. The dispatcher then (re)starts the
ready task with the earliest deadline, and hence the
earliest deadline-first scheduling.

132 • IC3–2008 UFL & JIITU

The above case does not consider the possibility
that tasks may miss their deadlines. If all tasks have
hard-deadlines and need to be “guaranteed”, the new
task will not be entered in the ready queue, unless
there is enough time in the system to accomplish this
task and all other previously accepted tasks. If there
is not enough time, this task may be rejected.

It is not necessary that the task is a periodic one
(as it is implied below), although periodic tasks can
be dispatched by a deadline driven scheduler.

1.4 At runtime
Select the task with the highest criticalness (the
highest order bits).

If two or more tasks have the same criticalness
then select the task with the minimum laxity
(deadline-execution).

If two or more tasks have the same criticalness
and laxity then first come first serve.

This algorithm gives us the best tradeoff between
flexibility and determinism.

A Scheduling System consists of two conceptual
parts, (a) a Scheduler and (b) a Dispatcher. Schedulers
develop the task schedules, determining the exact
points in time that resources are allocated to tasks.
Dispatchers are the mechanisms that implement
schedules. Schedules must satisfy constraints imposed
by the operational objectives of the system.

Schedules can be priority-based or time-driven.
Priority-based schedules are more flexible and
powerful. They fall broadly into two priority
assignment methods: (a) the fixed and (b) the dynamic
priority assignment methods [14].

Under fixed priority (FP), static priorities are
assigned to tasks, off-line. During run-time, the
dispatcher uses these priorities to determine which
task is going to execute when. Popular FP rules
include the Rate-Monotonic (RM) and the
Deadline-Monotonic (DM). The RM and DM rules
have been shown to be optimal under the following
conditions. RM can be used when, Ti = Di, that is
when the periods and the relative deadlines are
identical for each periodic task i and all periodic

tasks are initiated at the same time e.g., at t = 0.
RM assigns fixed priorities to periodic tasks so that
tasks with smaller periods get a higher priority. DM
is used when for some periodic tasks j, Tj < Dj, that
is, when there are tasks with relative deadlines that
are earlier than the tasks’ periods. DM assigns
priorities so that tasks with shorter deadlines receive
higher priorities. If not all tasks are initiated at t =
0, there is no polynomial algorithm to find the
priority assignment that produces a feasible
schedule, and determine if the tasks set is
schedulable. It has been shown that, under a given
priority assignment we need to check (“simulate”)
the entire schedule in [0, r+H), where r := maxj{rj},
rj is the time since t = 0 where task j is initiated for
the first time, and H is the Least-Common Multiple
(LCM) of all task periods. We note that in the worst
case H = T1 × T2 × · · · × Tn, if the periods are
relatively prime. This can effectively lead to very
long hyper-periods.

Under a dynamic priority rule, priorities are
assigned to tasks dynamically upon their arrival at
the system. In general purpose schedules priorities
are based on some task attribute, such as the release
time, the deadline or the execution requirement. In
RTS the Earliest Due Date (EDD) or the Least Laxity
First (LLF) rules are used, where the task with the
earliest deadline, or the task with the least laxity,
respectively, receive higher priority [6] [8].

2. DEADLINES
The best-known example of a time constraint is a
deadline, but it is a simple one and there are many
others (as we will discuss). The use of deadlines in
real-time computing is a relatively recent small
fraction of the overall theory and practice of deadline-
based resource management in various fields (notably
logistical fields).

In particular, the real-time computing community
historically focuses primarily on hard deadlines (e.g.,
[]). The traditional model of an action having a hard
deadline at time td is simply that the action’s
completion either meets or misses its deadline, as
illustrated in Fig. 1.

Efficient and Predictable Process Scheduling 133

The semantics of a deadline — i.e., the specific
way in which system timeliness depends on whether
any particular deadline is met, such as whether a miss
constitutes a failure — is not part of the definition of
a deadline, contrary to popular misconception in the
real-time computing community [11] [19] [13].

When the term “deadline” is used without the
qualifier “hard,” it refers to the general case of a
deadline — a soft deadline, of which a hard deadline
is a special case: the action is either more or less
timely, depending on what its completion time is with
respect to its deadline td [2].

• lateness = completion time - deadline = 0 - td = -td

• tardiness = max[0,lateness] = max[0,td] = 0

• earliness = max[-lateness,0] = max[td,0] = td

The case where the action completes at its
deadline results in

• lateness = completion time - deadline = td - td = 0

• tardiness = max[0,lateness] = max[0,0] = 0

• earliness = max[-lateness,0] = max[0,0] = 0

An example case where the action completes at
twice its deadline results in

• lateness = completion time - deadline = 2*td - td = td

• tardiness = max[0,lateness] = max[0,td] = td

• earliness = max[-lateness,0] = max[-td,0] = 0

On the next page, we show that deadlines are a
special, limited, case of a more general and expressive
model of time constraints: time/utility functions.

3. SCHEDULER IMPLEMENTATION
Three major aspects of the scheduler implementation
are discussed in this section:

• Precomputed Scheduling Graph: A
scheduling graph is precomputed from the set
of CPU reservations, preallocating sufficient
time to satisfy all reservations on an ongoing
basis.

• Time Interval Assignment: Specific time
intervals are set aside within the scheduling
graph for the execution of feasible time
constraints.

• EDF Constraint Execution: Feasible
constraints are executed in Earliest Deadline
First order.

3.1 Precomputed Scheduling Graph
The fundamental basis of this scheduling work is the
ability to precompute a repeating schedule such that
all accepted CPU reservations can be honored on a
continuing basis and accurate feasibility analysis of
time constraints can be performed [11]. Furthermore,
this schedule may be represented in a data structure

Fig. 1: Traditional Hard Deadline

“More or less” timely with respect to a deadline
is always measured in terms of “lateness” and its
derivative cases “tardiness” and (to a lesser extent)
“earliness:” as illustrated in Fig. 3.

• lateness = completion time - deadline

• tardiness = max[0,lateness]

• earliness = max[-lateness,0]

Fig. 2: Traditional Deadline

Fig. 3: Deadline Timeliness Metrics

The best (most timely) case with respect to a
deadline is that the action completes in zero time, so

134 • IC3–2008 UFL & JIITU

Each node in the graph represents a periodic
interval of time that is either dedicated to the execution
of a particular activity or is free. For instance, the
leftmost node dedicates 3ms for the execution of
activity B.

Each left-to-right path through the graph is the
same length, in this case 10ms. This length is the base
period of the scheduling graph and corresponds to
the minimum active reservation period [21].

The scheduler repeatedly traverses the graph from
left to right, alternating choices each time a branching
point is reached. When the right ends of the graph are
reached, traversal resumes again at the left. In this
example, the schedule execution order is:

(B, 3ms), (E, 1ms), (A , 4ms), (free, 2ms),
(B, 3ms), (E, 1ms), (D, 1ms), (C, 2ms), (free, 3ms),
(B, 3ms), (E, 1ms), (A, 4ms), (free, 2ms),
(B, 3ms), (E, 1ms), (D, 1ms), (F, 5ms).

After this the schedule repeats.

The execution times associated with schedule
graph nodes are periodic and fixed during the
lifet ime of the graph; they do not drift . For
instance, if activity D is first scheduled to run
during the time interval [T, T+1ms], it will next
run during [T+20ms, T+21ms] , then
[T+40ms, T+41ms], etc. Of course, when an
interrupt occurs , whatever t ime i t takes is
unavailable to the node intervals in which it
executes, causing them to receive less time than
planned. However, the effects of such an event
are limited to the executing activity and thread,
rather than being propagated into the future.
Allowing perturbations to affect the future
execution of the scheduling plan would have
disastrous effects to the satisfiability of already
granted time constraints.

Each node following a branching point in the
graph is scheduled only half as often as those
preceding it. For instance, activity A is only scheduled
every 20ms — half as often as activity E at 10ms.
Likewise, C is scheduled every 40ms, half as often as
D. This makes it possible to schedule reservations with
different periods using the same graph, provided that
each reservation period is a power-of-two multiple of
the base period [1] [4].

Reservations where the period is not such a
multiple are scaled and scheduled at the next smaller
power-of-two multiple of the base period. For
instance, A might have originally requested 6ms
every 30ms but because the base period of the graph
is 10ms, its reservation was actually granted at 4ms
per 20ms — the same CPU percentage but at a higher
frequency. Applicat ions are told the actual
reservation granted, allowing them to iterate and
change their reservation request in response if they
deem it appropriate.

The scheduling graph must be updated upon CPU
reservation changes. Criteria used in graph
construction include minimizing the number of
context switches between activities and maximizing
the time slices. The graph is constructed to allow
sufficient time for the context switches between nodes.
See Section 4.1 for a more complete description of
graph construction [3].

that may be used at run-time to decide, in time
bounded by a constant, which activity to run next.
We currently represent this precomputed schedule as
a binary tree, although more generally it could be a
directed graph [5].

Fig. 4. Shows a scheduling graph for six activities
with the following reservations:

Fig. 4: Scheduling graph with a base period of 10ms

Table 1:

Activity A B C D E F
Amount 4ms 3ms 2ms 1ms 1ms 5ms
Period 20ms 10ms 40ms 20ms 10ms 40ms

Efficient and Predictable Process Scheduling 135

Benefits of the precomputed scheduling graph
include:

• CPU reservations are enforced with essentially
no additional run-time scheduling overhead. The
scheduling decision involves only a small
number of pointer indirections. This number is
bounded by a constant and is independent of the
number of threads, activities, and time
constraints.

• Accurate feasibility analysis for time constraints
can be performed because it is known in advance
when an activity will be executed and when free
time intervals will occur.

3.2 Time Interval Assignment
The scheduler analyzes the feasibility of each time
constraint when a thread submits it. If the constraint
is determined to be feasible, the BeginConstraint()
call returns a success status code and the scheduler
promises that at least the estimated amount of time
has been reserved for the constraint’s execution
between the specified start time and deadline. If
infeasible, a different status code is returned and no
time is reserved. Constraint feasibility analysis and
reserving time for accepted constraints are both
accomplished using time interval assignment data
structures [19].

Recall that the scheduling graph allows us to
know in advance both the time intervals during which
each activity will be run and the time intervals that
are not dedicated to any activity. Thus, it is possible
to assign specific future time intervals for the
execution of the time constraint, both from the activity
of the thread requesting the time constraint and from
the free intervals. If sufficient time intervals are
available over the lifetime of the constraint, then they
are marked as assigned to the execution of that
constraint. In this case, the constraint is feasible and
the requesting thread receives a success status code
from the BeginConstraint() call. Otherwise, the
constraint is infeasible [17].

Each node in the scheduling graph has a (possibly
empty) list of interval assignment records associated
with it, ordered by start time. Interval assignments

and the next several scheduling graph nodes dedicated
to activities A or E, or are free are listed in the first
two columns below:

Table 3:

are made by adding references to interval assignment
records to scheduling graph nodes covering the
interval’s time period. These records contain the start
and end times of the assigned interval within the node,
and a reference to the constraint for which the
assignment is being made.

Note that a time constraint will not result in
changes to the underlying precomputed scheduling
graph, but only in adding interval assignment records
to the lists in some of the graph nodes.

As an example, suppose that the time constraints
below are issued by threads of the activities listed at
the times given, with CPU reservations as in the
previous example:

Table 2:

 Activity Issue
Time

Estimate Start
Time

Deadline

C1 A 205ms 11ms 230ms 270ms
C2 E 213ms 11ms 215ms 265ms
C3 A 225ms 10ms 225ms 270ms

Node Interval (ms) Activity @ 205ms @ 213ms
204 - 208 A
208 - 210 free
213 - 214 E
217 - 220 free C2(3)
223 - 224 E C2(1)
224 - 228 A
228 - 230 free C2(2)
233 - 234 E C2(1)
243 - 244 E C2(1)
244 - 248 A C1(4) C1(4)
248 - 250 free C1(2) C1(2)
253 - 254 E C2(1)
257 - 260 free C1(1) C1(1), C2(1)
263 - 264 E C2(1)
264 - 268 A C1(4) C1(4)
268 - 270 free

Assuming that no previous interval assignments
had been made to those intervals, the feasibility
analysis for constraints C1 and C2 will succeed,
resulting in the interval assignments listed in the last
two columns, and the feasibility analysis for C3 will
fail.

136 • IC3–2008 UFL & JIITU

The interval assignment procedure first assigns
node intervals already dedicated to the requesting
activity, assigning free node intervals only if needed.
This rule explains why C1 is assigned 4ms in the
interval (264-268ms) and only 1ms from the earlier
free interval (257-260ms). Note that the interval (259-
260ms) remains available for other assignments.

During this procedure, when a node is visited,
all available time intervals are assigned to the
constraint up to the required estimate. The procedure
stops once the estimate is reached.

C3 cannot be guaranteed. It could be assigned only
the intervals (225-228ms), (259-260ms), and (268-
270ms) — just 6ms of the needed 10ms. When the
analysis fails, any tentatively assigned intervals are
deassigned [20].

4. ADDITIONAL SCHEDULER DETAILS

4.1 Scheduling Graph Computation
The precomputed CPU scheduling graph is the
foundation upon which guaranteed CPU reservations,
accurate time constraint feasibility analysis, and
guaranteed time constraints are built, all while keeping
the context switch overhead low and independent of
the system load. Special attention is paid to
minimizing this overhead, as we are targeting large
systems, possibly with hundreds of concurrent
activities [2] [7] [18].

As already stated, the precomputed scheduling
plan of our prototype is a binary tree; more complex
data structures, such as trees with variable branching-
factor, could be used. Independent of the selected
representation, the precomputed scheduling plan must
satisfy a minimal set of requirements: account for
context switch overheads, minimize the number of
context switches, and distribute free CPU evenly over
time.

The context switch time must be accounted for
in the scheduling plan in order to have an accurate
representation of CPU usage. This is required for a
precise feasibility analysis of time constraints.
Likewise, it is also particularly important when there
are activities that require very small and frequent

execution intervals (e.g., with a period on the order
of 1ms).

Unnecessary context switches are avoided by
scheduling activities as close as possible to their
desired periodicity and with as few execution intervals
per period as possible (preferably one). Also, to avoid
wasting CPU, all the execution intervals in the
scheduling plan are required to be larger than a certain
minimum [15].

Evenly distributing the free CPU intervals over
time increases the chances for time constraints to be
able to use these intervals (if needed), irrespective of
their start times or deadlines. Likewise, given a
relatively uniform distribution of the free CPU, a
legacy scheduler (see Section 3.5) can be assigned a
“uniformly slower” CPU to manage, providing a
uniform execution rate for timeshared activities (i.e.,
those with no reservations) [16].

The goals of minimizing the number of context
switches and distributing the free CPU uniformly in
the general case are very difficult to achieve. Consider
the problem of assigning a set of activities with periods
T and 2T. This will result in a scheduling graph with
nodes on one branch of period T and on two branches
of period 2T. The general problem of evenly
distributing the free CPU between the two 2T-
branches is NP-hard.

To avoid this complexity, our algorithm doesn’t
attempt to compute the best prescheduling plan but
to efficiently compute a plan that is “good enough”.
For instance, we try to incrementally modify the
current scheduling plan whenever the new reservation
has a period no smaller than the base period of the
current plan. If unsuccessful, a new scheduling graph
is computed.

The computation of a new scheduling plan uses
heuristic search over a quantized representation of the
CPU resource. Briefly, the CPU resource is
represented as a complete binary tree (called the
availability tree) of depth floor(log2 (maxY/minY)),
where maxY and minY are the maximum and minimum
periods among the reservations being considered.
Each node of the availability tree represents a
recurring execution interval with a period determined

Efficient and Predictable Process Scheduling 137

by the node’s depth in the tree. This period is (minY ×
2depth), where the root has depth zero.

Each potential branch (i.e., sequence of nodes
with same period) in a scheduling graph corresponds
to exactly one node with the same period in the
availability tree. Assigning a reservation to a branch
in the scheduling graph is equivalent to finding an
acceptable node in the availability tree.

Each node of the availability tree is labeled with
the amount of time currently available for assignment
within the execution interval it represents. Initially,
this amount is the same for all nodes and equal to
minY. An algorithm invariant is that the label of each
availability tree node is always the minimum of the
labels of its two children. The labels of sibling nodes
are independent.

Reservation assignments are made in decreasing
order of percentages. This heuristic improves the
performance of the algorithm. Backtracking is
triggered whenever a reservation can not be placed
given the current tentative assignments. Once all
reservations are assigned to branches, the size and
position of the all scheduling graph nodes can be
determined.

Many such graph construction algorithms are
possible. While the simple one outlined above is
sufficient for our prototype to demonstrate the benefits
of using a precomputed scheduling plan, exploring
the space of practical graph construction algorithms
is one possible area of future research.

The time spent computing a new plan is charged
against the requesting activity and does not interfere
with the execution of other activities. In our current
implementation, at any time, there can be at
most one active computation of a new scheduling
plan.

4.2 Next Thread Selection
Upon a timer interrupt or whenever the current thread
blocks, the next thread to run is selected using the
following rules:

If the time remaining in the current node is below
a minimum threshold, select the next node.

If the node has an active interval assignment,
execute the constraint with the earliest deadline.

Else if the node is reserved for an activity, select
a runnable thread of the activity, if any, choosing
in order: (1) threads with pending denied
constraints, (2) threads with late constraints, (3)
round-robin among runnable threads.

Else if a briefly blocked activity has become
runnable, chose a thread within it to run in the
manner of the previous step.

Else use the CPU interval for the round-robin
queue of activities, choosing a thread as
previously described.

The following steps determine the actual context
switch overhead:

Update the state of the current thread, activity,
and constraint (if any) (O(1)). The constraint
update may result in removing it from the EDF
list, which also takes O(1) time.

Determine the next execution interval. This may
require moving to the next node. Unless
unexpected system events cause execution to fall
behind schedule and multiple nodes have to be
traversed (and updated), this step is also O(1).

Select a thread to run on behalf of the current
constraint when the node has an active interval
assignment. This step may require a traversal of
the constraint inheritance list. A path
compression algorithm often reduces this
traversal to no more than two steps, i.e. O(1).
Selecting the current constraint may require
traversal of the EDF list until a constraint with
a runnable thread is found. This case should be
rare, however, since blocking within a constraint
“voids its warranty”, making its deadline
impossible to guarantee.

Select a thread to run on behalf of an activity
(always O(1)).

In summary, the scheduling decision is always
an O(1) operation except in the cases where the thread
that would normally have been chosen has blocked
in a constraint — violating a precondition needed for
guarantees to hold.

138 • IC3–2008 UFL & JIITU

4.3 Implementation Parameters
Some parameters of our current implementation are:

Expected context switch overhead. Actual
reserved time intervals are extended by this
amount to allow time to switch between
activities.

Minimum execution interval (ten times the
expected context switch overhead) — no CPU
reservation shorter than this is accepted. Used
to ensure that the processor has some time to do
work other than just switch between activities.

Maximum reservation round-up (three times the
expected context switch overhead) — maximum
length of time by which an interval may be
extended beyond the amount requested when
making a reservation. Small extensions are
permitted to reduce fragmentation of the
scheduling graph.

Maximum reservation period (1sec) — provides
for a limit on the depth of the scheduling graph.

Initial reservations for kernel activities (main
kernel activity 30ms/300ms (10%), helper
activity 15ms/300ms (5%)).

Any particular set of parameter choices obviously
imposes some limits on the total number of concurrent
reservations that can be accommodated. The actual
number of independent reservations that can be
accommodated is, of course, highly dependent upon
the particular reservations requested. However, it
should be understood these choices do not place a
limit on the number of concurrent activities or threads
in the system — just on those with independent CPU
reservations.

5. RESULTS

5.1 Low-level Performance Measurements
Determining a good “expected context switch” value
to use as spacing between scheduled time intervals is
a hard problem, due to variations caused by cache
effects. While we presently use the minimum context
switch value (20µs on the PC, 50µs on the set-top
box) when building the scheduling graph, a “better”

value might be something closer to the median or
average.

Another relevant performance measure is the time
that it takes to switch threads when one thread blocks
on a mutex held by another. As previously discussed,
the time to establish a CPU reservation may depend
greatly upon both the new reservation parameters and
the existing reservations. That having been said, a
number of simple relevant measurements can be
reported.

The time to do an incremental CPU reservation
in which only a single graph node is added is 150µs,
out of which 19µs are spent modifying the graph. The
remainder is the relatively constant overhead
associated with the RPC to the kernel and acquiring
the appropriate references and locks. Releasing a
reservation can always be accomplished in an
essentially constant time of 98µs, out of which 11µs
are spent modifying the graph.

Fig. 5. Graph, the times to make an intentionally
complex cumulative sequence of CPU reservations.
Times shown represent only the time to actually
modify the scheduling graph and do not include the
essentially constant kernel overheads previously
described. All requests reserve 400µs, but at varying
periods. The sequence of periods is a pattern, which
begins [9]: 1s, 1s, 500ms, 1s, 500ms, 250ms, 1s,
500ms, 250ms, 125ms, etc.

Fig. 5: Scheduling graph construction times.

5.2 Time Constraint Results
Fig. 6. is the graph of the average-case execution time
of randomly occurring sporadic tasks, each of which
needs 50ms of CPU time to execute. Such tasks may
occur in response to user input, such as mouse clicks

Efficient and Predictable Process Scheduling 139

[10] [12], in response to which a window might need
to be redrawn. Response time between the user input
and completion of the task plays an important role in
the user’s perception of the responsiveness of the
system. Below 100ms, most people perceive the
response as instantaneous. In these experiments, our
goal was to do the 50ms of work within 200ms of the
randomly occurring aperiodic events (simulating user
input) — a just noticeable but acceptable response
time.

6. FURTHER RESEARCH
One possible line of future research is to explore
integrating this kind of scheduler into general-purpose
commercial operating systems with their own
scheduling algorithms and policies. A first approach
would be to use the legacy scheduling algorithms to
schedule free and unused time intervals, although
closer integration may be appropriate under some
circumstances. While in principle, this should be easy
and yield good results, in practice we expect
interesting things would be learned along the way.

7. CONCLUDING REMARKS
This research demonstrates the effectiveness and
practicality of using a Precomputed Scheduling
Graph both to implement continuously guaranteed
CPU Reservations with application-defined periods
and to implement guaranteed Time Constraints with
accurate a priori feasibility analysis. Our results show
that one need not sacrifice efficiency to gain the
predictability benefits of CPU reservations and time
constraints.

Furthermore, CPU reservations and time
constraints lend themselves to incremental
development of real-time applications. Use of CPU
reservations and time constraints can be incrementally
added both to existing applications and those under
development as needed to ensure local and global
timeliness properties of the code.

Our experiences gained from implementing and
experimenting with the algorithms described in this
paper lead us to the conclusion that there is no sound
reason why practical, efficient, real-time services
enabling independent real-time applications can not
and should not be present in nearly all general-purpose
operating systems.

8. ACKNOWLEDGMENT
This research work was supported by continuous
support of Don Bosco Institute of Technology,
Bangalore. The guidance by second author and helped
by researchers around India and other countries
through emails and information’s collected through
various bulletin boards.

REFERENCES
1. Chih-Lin Hu, “On-Demand Real-Time Information

Dissemination: A General Approach with Fairness,
Productivity and Urgency”, 21st International
Conference on Advanced Information Networking
and Applications, AINA ’07, 2007. Page(s):362 –
369, 21-23 May 2007.

2. C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S.
H. Son and M. Marley, “Performance Specifications
and Metrics for Adaptive Real-Time Systems,”
IEEE Real-Time Systems Symposium, Orlando, FL,
Dec 2006.

3. Jensen 03a, A Timeliness Paradigm for
Mesosynchronous Real-Time Systems, E. Douglas
Jensen, 9th Embedded and Real-Time Applications
and Systems Symposium, May 2005.

4. Jensen et al. 02a, Guest Editors, “ Introduction to
Special Section on Asynchronous Real-Time
Distributed System”, E. Douglas Jensen and Binoy
Ravindran, IEEE Transactions on Computers,
August 2005.

5. Clark et al. 04, “Software Organization to Facilitate
Dynamic Processor Scheduling”, Raymond K.
Clark, E. Douglas Jensen, and Nicolas F. Rouquette,

Fig. 6: Execution of 50ms of sporadic work with and
without constraints, no reservations.

140 • IC3–2008 UFL & JIITU

Proc. of the IEEE Workshop on Parallel and
Distributed Real-Time Systems, Jan 2007.

6. L. Gauthier, S. Yoo and A. Jerraya, “Automatic
generation and targeting of application-specific
operating systems and embedded systems software,”
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 20(11), pp.1293-
1301, November 2005.

7. Lu, C., Stankovic, A., Tao, G. and Son, H.S.
“Feedback Control Real-time Scheduling:
Framework, Modeling and Algorithms”, special
issue of Real-Time Systems Journal on Control-
Theoretic Approaches to Real-Time Computing,
Vol. 23, No. 1/2 July / September, pp. 85-126, 2002.

8. A. Wierman, and M. Harchol-Balter. “Classifying
scheduling policies with respect to unfairness in an
M/GI/1”. In Proceedings of ACM Sigmetrics, 2003.

9. C. D. Gill, D. L. Levine and D. C. Schmidt,
“The Design and Performance of a Real-Time
CORBA Scheduling Service,” Real- Time Syst., vol.
20, pp. 117-154, 2001.

10. W.T. Chan, T.W. Lam and K.S. Mak, “Online
Deadline Scheduling with Bounded Energy
Efficiency”, Proceedings of the 4th Annual
Conference on Theory and Applications of Models
of Computation (TAMC), 416-427, 2007.

11. M. Harchol-Balter, B. Schroeder, N. Bansal, and M.
Agrawal. “Implementation of SRPT scheduling in
web servers”. ACM Transactions on Computer
Systems 21(2): 207-233, 2003.

12. A. Bar-Noy, R. E. Ladner, and T. Tamir. “Windows
scheduling as a restricted version of bin packing”.
In Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 224-233,
2004.

13. I. Rai, G. Urvoy-Keller, and E. Biersack. “Analysis
of LAS scheduling for job size distributions with
high variance”. In Proceedings of ACM Sigmetrics,
2003.

14. Lam, T., Ngan, T.J. and TO, K. “Performance
Guarantee for EDF under Overload”, In

proceedings of the Journal of Algorithms, vol. 52,
pp. 193-206, 2004.

15. I. Rai, G. Urvoy-Keller, M. Vernon, and E. Biersack.
“Performance modeling of LAS based scheduling
in packet switched networks”. In Proceedings of
ACM Sigmetrics- Performance, 2004.

16. H.L. Chan, W.T. Chan, T.W. Lam, L.K. Lee and
K.S. Mak, “Energy Efficient Online Deadline
Scheduling”, Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pp. 795—804, 2007.

17. D. Dyachuk and R. Deters, “Scheduling of
Composite Web Services” in DOA’06: In
proceedings of the OTM Workshops 2006, LNCS
4277, pp. 19 – 20, 2006.

18. S. Aalto, U. Ayesta, and E. Nyberg-Oksanen. “Two-
level processor-sharing scheduling disciplines:
Mean delay analysis”, In Proceedings.of ACM
SIGMETRICS ’04, pages 97–105, 2004.

19. A. Streit. “Evaluation of an Unfair Decider
Mechanism for the Self-Tuning dynP Job
Scheduler”, In Proceedings of the 13th international
Heterogeneous Computing Workshop (HCW) at
IPDPS, pages 108 (book of abstracts, paper only on
CD). IEEE Computer Society Press, 2004.

20. M.V. Panduranga Rao, Dr. K.C. Shet, K. Roopa and
K.J. Sri Prajna, “Implementation of a simple co-
routine based scheduler“, In Knowledge based
computing systems & Frontier Technologies
NCKBFT, MIT Manipal, Karnataka,INDIA. 19th &
20th Feb 2007.

21. M.V. Panduranga Rao, Dr. K.C. Shet, R.
Balakrishna and K. Roopa, “Development of
Scheduler for Real Time and Embedded System
Domain”, 22nd IEEE International Conference on
Advanced Information Networking and
Applications - Workshops, WAINA ’08, 2008. FINA
2008, Fourth International Symposium on Frontiers
in Networking with Applications. Page(s):1 – 6, 25-
28 March 2008, Gino-wan, Okinawa, JAPAN.

