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ABSTRACT
Reducing the VLSI layout area of on-chip networks can result in lower costs and better performance.
Those layouts that are more compact can result in shorter wires and therefore the signal propagation
through the wires will take place in less time. The grid-pyramid network is a generalized pyramid
network based on a general 2D Grid structure (such as mesh, torus, hypermesh or WK-recursive
mesh). Such pyramid networks form a wide class of interconnection networks that possess rich
topological properties. In this paper, we study these topologies from the VLSI-layout efficiency point
of view. Also, we investigated on the layout of RTCC-pyramid networks that we believe can be considered
in the class of Grid-pyramid networks.
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1. INTRODUCTION
The number of transistors per chip has vastly increased
in recent years and will likely increase by another
order of magnitude in the next two decades [8]. These
changes made it necessary for chip-multiprocessors
and SoCs to use smaller layouts. More compact
layouts can lead in shorter wire lengths and therefore
reducing signal propagation delay as well as lower
cost in the implementation process. The collinear
layout that we discuss in this paper can result in better
packagablity of the network, not only in one-layer
chips, but also in today’s technology for multi-level
chip designs.

When the same physical chip area is used and
the network is wire-bounded, a network layout with
smaller layout area (when unit link width is assumed)
will lead to an implementation with faster
communication links. More precisely, a layout with
smaller area by a factor of f (in terms of unit of area
where a unit of length is taken as the physical width

of a link) will lead to communication links whose
bandwidth is higher than that of another layout with
larger area by a factor of f , since more wires can
be used to implement a single communication link
using the former layout. Thus, the impact of efficient
VLSI layout on cost and performance become more
crucial [10].

The grid-pyramid networks were first introduced
in [2] as a generalized pyramid topology. Various
topological properties of these networks were studied
in [2]. Here, we study the packagibility and
implementation properties of this family of networks.
As we see in the following sections this class of
networks are so appropriate in VLSI implementation
according to their cost-effective layout area and the
regular topologies they have. We selected these class
of networks to show how efficient they can be placed
on chips.

In section 2, we formally state some definitions,
which are used throughout the paper; collinear layouts



186 • IC3–2008 UFL & JIITU

and their special cases are introduced in this section.
Section 3 briefly introduces the most known VLSI
complexity model, called Thompson Model [7], which
will be used in the subsequent sections. Number of
required tracks and layout area of grid-pyramid
networks are obtained in section 4.  We present the
layout of RTCC and RTCC-Pyramid network in
section 5. Finally, the paper is concluded in section
6.

2. DEFINITIONS AND PRELIMINARIES
Definition 1. An a × b mesh network, Ma,b, is a set of
nodes V (Ma,b) = {(x, y) | 1 ≤ x ≤ a, 1 ≤ y ≤ b), where
nodes (x1, y1) and (x2, y2) are connected by an edge iff
|x1 – x2| + |y1 – y2| = 1[1]. See Fig. 1 (a).

Definition 2. The a × b torus network, denoted
as Ta,b, consists of a set of nodes V(Ta,b) = {(x, y) | 1 ≤
x ≤ a, 1 ≤ y ≤ b}, where each node (x1, y1) is connected
to its four neighboring nodes (x1 ± 1 mod a, y1) and
(x1, y1 ± 1 mod b). See Fig. 1(b).

Definition 3. An a × b hypermesh, HMa,b, is a set
of nodes V (HMa,b) = {(x, y) | 1 ≤ x ≤ a, 1 ≤ y ≤ b)
where nodes (x1, y1) and (x2, y2) are connected by an
edge iff x1 = x2 or y1 = y2. See Fig. 1 (d).

Definition 4. A t-level WK-recursive mesh
network WK (d, t) with amplitude d and expansion
level t, consists node set V (WK(d, t)) = {atat – 1...a1 | 0
≤ a1 < t}. The node with address A = (atat – 1...a1) is
connected to:

(1) all the nodes with addresses (atat–1...a1k), 0 ≤
k < t, k ≠ a1, as sister nodes, and (2) node (atat – 1...aj +

1aj – 1 (aj)j), if for one j, 1 ≤ j < t; aj–1 = aj–2
 = ... = a1 and

aj ≠ aj–1, as a cousin node. See Fig. 1.

Definition 5. A grid-pyramid of n levels, denoted
by PG,n, consists of a set of nodes V(PG,n) = {(k, x, y) |
0 ≤ k ≤ n, 1 ≤ x, y ≤ 2k}. A node (k, x, y) ∈ V (PG,n) is
said to be node at level k. All the nodes in level k
form a 2k × 2k  grid network G which can be one of
the grid-based networks: mesh, torus, hypermesh or
WK-recursive mesh, i.e. (G ∈ M, T, HM, WK); the
resulted pyramid can then be then denoted as Pm,n,
PT,n, PHM,n, and PWK,n, respectively.

Fig. 2 shows all grid pyramid networks.

Definition 6. A VLSI layout is called collinear if
all the nodes are placed along a straight line [11].

Definition 7. A C-node cycle consists of a set of
nodes {0, 1, 2, 3, …, C-1} and set of edges {e0, e1, e2,
..., eC-1} such that ei = (i , i+1 mod C).

                   (a)                             (b) 

                   (c)                             (d) 

Fig. 1: The topologies of (a)M4,4 (b)T4,4 (c)WK4,2 (d)HM4,4

Fig. 2: The topologies of (a)PM,2 (b)PT,2 (c)PWK,2 (d)PHM,4

 
                     (a)                                 (b) 

                      (c)                               (d) 
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Definition 8. The definition of the RTCC(C, L)
is based on a C-node cycle. We name all the nodes in
this cycle, ‘Extern nodes’ or ‘Open nodes’. An
RTCC(C, 2), consists of a number of C discrete
RTCC(C, 1) networks, or C-node cycles, numbered 0
to C-1. Each external node i of each C-node cycle j is
connected to node j of C-node cycle i. It is obvious
that a node whose number is equal to the number of
the RTCC(C, 2) in which it resides, is not directly
connected to any other cycle, and is of node degree
one less than other nodes in the network. There is one
such node in each RTCC(C, 1) used to construct an
RTCC(C, 2), and thus a total of C such nodes. We
name these nodes as the external nodes of the
RTCC(C, 2), the number of each one being equal to
the number of the RTCC(C, 1) to which it belongs. In
a similar manner, the RTCC(C, 3) can be defined as
C discrete RTCC(C, 2) networks that are connected
in such a way that each external node i in RTCC(C, 2)
number j is connected to external node j in
RTCC(C, 2) number i. Once again, a node whose
number is equal to the address of the RTCC(C, 2) in
which it resides, is not directly connected to any other
cycle, and is of node degree one less than other nodes
in the network [18]. Fig. 3 shows an RTCC (4,2).

All the nodes in level k form an RTCC (C, L)

network. Hence, there exist a total of N = Σ L
k 0=  Ck =

(CL+1-1)/C-1 nodes in a P-RTCC(C, L). A node with
address (k,(akak-1 …a1)) is connected, within the RTCC
network at level k > 0 ,  to node
(k,(akak-1 …a2(a1±1)modC)) , as the neighbouring brother
nodes, and connected to a node with address schema
(k,(akak-1 …aj+2 aj+1aj(aj-1)j), 1 ≤ j ≤ L-1) if there exists
one j such that 1≤ j ≤ L-1, aj-1= aj-2=…= a1 and aj ≠ aj-

1; as a cousin node  (nodes at the same level). This
node is also connected to nodes (k+1,(akak-1 …a2a1b),
for 1≤ b ≤ C, in level k+1, as a child node, and
connected to node (k-1,(akak-1 …a2)), in level k-1, as a
father node. Fig. 4 illustrates an RTCC-pyramid
network, P-RTCC(4,2) [19].

Fig. 3: The topology of RTCC(4,2)

Definition 9. An RTCC-pyramid network,
denoted as P-RTCC(C,L), consists of a set of nodes
V(P-RTCC(C,L)) = { (k, (akak-1 …a1)) | 0 ≤ k ≤ L,
0 ≤ ai ≤ C-1, 1 ≤ i ≤ k or k = 0 and a1=1 }. A node with
addressing scheme (k, (akak-1 …a1)) is said to be a node
at level k, e.g. the apex is at level 0. The part
(akak-1 …a1) of the address determines the address of
a node within the RTCC network at layer k.

 

Fig.4.  An P-RTCC(4, 2) network. We illustrate the 
apex node and the corner nodes of low-grade level in 

the network. 

3. THOMPSON GRID MODEL
Thompson proposed a mathematical model for VLSI
computations which is widely accepted and is known
as the Thompson grid model [7]. In this model, he
presumed the chip consists of some vertical and
horizontal tracks which are spaced apart at unit
intervals. Two layers of interconnect are used to route
the wires. Vertical wires are routed in one layer while
horizontal wires are routed in the other. The circuit
is viewed as a graph G in which vertices correspond
to processing elements and edges to wires.

Wires can cross each other but cannot overlap
with each other. To change direction, wires may
turn into the other layer by vias. The graph is then
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embedded in a two-dimensional grid. An embedding
of a graph G in a Thompson grid is an assignment of
nodes of G to intersection points in the grid and the
edges of G to paths along the grid tracks.  The area
of a layout is the area of the smallest upright rectangle
that contains all the nodes and wires. When there
are two layers of wires, it is guaranteed that we can
lay out the network within the area. The maximum
wire length is the length of the longest wire in the
layout.

4. LAYOUT OF GRID-PYRAMID
In this section, we present a method for laying out
PG,.n network, on chip. We use a recursive method
based on layout of the base network for constructing
the layout.

First, we assume that we have an efficient layout
scheme for the base network.

To find the collinear layout complexity of PG,n

we use a recursive process. Let the number of tracks
which are needed by PG,n be T (PG,n). Consider the
case where there is just one node in PG,n and no links.
This is the case of PG,0 for which we have T (PG,0) = 1,
because it is an isolated node that can be put in one
square.

For PG,n, we need to lay PG,n–1 out and add a G2n,

2n with 4N (G2n–1, 2n–1) edges connected the base
network to the last layer of PG,n–1. Hence, the layout
of PG,n requires T(PG,n) = 4N (G2n–1, 2n–1) + T (G2n, 2n)
tracks.

4.1 Mesh-Pyramid layout
Now, let us investigate the layout of the mesh-
pyramid. For this purpose it is needed to find the
number of tracks required by mesh networks in their
layout. We can put each row of the mesh in a track,
then all links connecting those nodes in the same
track. Then, we should put n copies of such a row
in a grid area to obtain an efficient layout of n2-area
for the Mn,n.

Fig.5 shows the collinear layout of M4,4. For
building Mesh-Pyramid network we can use the same
layout mechanism.

Fig. 5: Collinear layout of M4,4

Now, let us examine the area needed by PM,1,
which is a M2,2 that all of its vertices are connected
to the apex node. It is clear that T(PM,1) = 4N (PM,0)
+ T(M21,21). Since T(M2,2) = 4, we can simply
conclude that PM,1 needs 8 tracks to lay out on a
chip. Similarly, for PM,n, we need to lay PM,n–1 out
and add a M2n×2n with 4N  (M2n–1×2n–1) edges
connecting the base mesh to the last layer of PM,n–1.
Hence, the collinear layout of PM,n needs T(PM,n) =
4N (M2n–1×2n–1) + T (M2n×2n) = 22n + O (2n) tracks.
Since N = N (PM,n) = (4n + 1 – 1)/3, we have

T(PM,n) =
3
2
N

+ O Ne j
Since a mesh-pyramid has a maximum vertex

degree of 9, if each node in the layout consumes a 9
square area, then PM,n can be laid out in 13.5N2 + O

(N N ) area. In Fig.6. the collinear layout of PM,2 is
shown.

Fig. 6: Collinear layout of PM,2

4.2 Torus-Pyramid layout
Now that we have obtained the number of tracks
and the area needed by mesh-pyramid to lay out on
a chip, we use the same approach to describe layout
of the torus-pyramid.

Yeh and Parhami in [4] described a method for
laying out k-ary n-cubes. They used a bottom-up
approach, starting with a k-node ring. Using their
method, we need 2n + 2 tracks and n2 + O (n2)-area
for the layout of Tn,n. In Fig. 7 we can see a collinear
layout of T4,4.
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Fig. 7: Collinear layout of T4,4

Similar to that of Mesh-Pyramid, for the PT,n,
we need to lay PT,n–1 out and add a T2n,2n with 4N (T2n–

1×2n–1) edges connecting the mesh to the last layer of
PT, n–1. Hence, the layout of PT,n needs T(PT,n) = 4N(T2n–

1, 2n–1)+ T(T2n,2n) = 22n + O (2n + 1) tracks. Since N = N

(PT,n) (4n + 1 – 1)/3, we have T(PT,n) =
3
2
N

+ O ( N ).

As the torus-pyramid has a maximum vertex degree
of 9, each node in the layout consumes a 9 square
area, so the area consumed by PT,n on a chip would

be 13.5N2 + O (N N ) squares (like that of a mesh-
pyramid). Fig. 8 shows the layout of PT,2.

Fig. 8: Collinear layout of PT,2

4.3 Hypermesh-Pyramid layout
Layout of the hypermesh and its pyramid network
is slightly different to that of the mesh-pyramid and
torus-pyramid.

In [5], it is shown that an N-node complete graph

can be optimally laid out using N 2 / 4  tracks for a
collinear layout, and can be laid out in N4/16 + o(N4)
area for a 2D layout. Fig. 9 shows the collinear layout
of HM4,4.

Fig. 9: Collinear layout of HM4,4

For the layout of a hypermesh-pyramid, we have:
T(PHM, 1) = 4N (PHM, 0) + T(HM21,21). Since T(HM2,2)
= 4, PHM,1 needs 8 tracks for its layout. For a PHM, n,
we have :

T(PHM,n) = 4N (HM2n–1×2n–1) + T (HM2n × 2n) = 22n

+ o (22n) tracks.

Since N = N (PHM,n) = (4n + 1 – 1)/3, we have
T(PHM,n) = 1.5N + o(N).

In a hypermesh-pyramid, each node is connected
to all of nodes in the same row and the same column.
Also, each node is adjacent to its father (except for
the apex) and four children (except for the last layer
nodes), hence the maximum degree of a node in a
hypermesh-pyramid equals 2n + 1 – 1 for n ≥ 2. So,
the hypermesh-pyramid can be laid out in the area

of 23n + 1 + o (23n + 1) which is 6N 6 N + o (N N )-
area. You can see collinear layout of PHM,2 in Fig. 10.

Fig. 10: Collinear layout of PHM,2

4.4 WK-Pyramid layout
Finally, we work on the VLSI layout of WK-pyramid
networks. In [6], an efficient layout for WK-recursive
networks was proposed. The WK(d, t) network

requires d d d
d

t t t+1 1+ 2 2
1

− −
−

−
 tracks to lay out

collinearly. It means it needs an area of N2/16 + o
(N2). The collinear layout of WK4,2 is shown in Fig.
11.

Fig. 11: Collinear layout of WK4,2

Here, we use the same scheme to obtain the
layout of a WK-pyramid network. To this end, it is
enough to lay out WK (4, n). So, the layout of PWK, n
needs T(PWK, n) = 4N (WK (4, n – 1)) + T (W K (4,
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n)) tracks. Since N (W K (4, n – 1)) = 4n – 1, we have

T (PW K, n) =
13
6 × 4n –

2
3 . That means PW K, n can be

laid out in 39/2N2 + O(N) area. Collinear layout of
PWK,2 is shown in Fig. 12.

Fig. 12: Collinear layout of PWK,2

5. RTCC AND RTCC-PYRAMID LAYOUTS
In this section we investigate on another grid
network, which is not one of the networks
introduced in [2] for using as a base network while
building pyramids, but we think that it has the
important characteristics of a grid network. We
follow with the two dimensional and multilayer layout
of RTCC, and then use them for constructing the
RTCC-Pyramid layout.

5.1 Two dimensional layout of RTCC
An RTCC(C, L) contains C subgraphs isomorphic
to RTCC(C, L-1), each pair of which are connected
by 1 link. If we let RTCC(C, L-1) as a supernode,
then the RTCC(C, L) becomes a C-supernode
complete graph.

To lay out an RTCC(C, L), we first place nodes
belonging to each RTCC(C, L-1) into a block which
we call (L-1)-block, and lay out the RTCC(C, L)
using that of complete graph, stated in [5]. Then we
should continue this process recursively until the
remainder graph is the C-ring and then we can simply
lay out the ring.

To lay out RTCC(C, L), base on the layout of
the complete graph [5], the area of N2 / 16 + o (N2)
will be required. For level h-block we first connect
the wires outside the block to appropriate the (h-1)-
blocks within it, and then follow the technique of
laying out the KCh graph. Hence, the layout area will
be obtained from:

( ) ( )( ) ( )
2 2( 1) 2

2 12 2... 1
16 16 16

L L L
LL LC C Co C o C o C

−
−+ + + + + = +

and so an RTC(C, L) can be laid out in N2/16 +
o(N2), where N = CL. The collinear layout of RTCC
(4, 2) is shown in Fig. 13.

Fig. 13: Collinear layout of RTCC(4,2)

5.2 Multilayer layout of RTCC
In order to obtain the multilayer layout of RTCC(C,
L) we use the same bottom-up approach, used in [4]
for k-ary n-cube and several other networks.

A collinear layout of a ring can be obtained by
placing the C nodes along a row and connecting
neighboring nodes in one track and then connecting
node 0 to C-1, in another track [4]. Let the number
of tracks which are needed by RTCC(C, L-1) be fC
(L – 1). To obtain the collinear layout of RTCC(C,
L) we need C copies of RTCC(C, L-1) which are
placed in a space, horizontally C times of the space
of RTCC(C, L-1) and two extra tracks to connect
the level L inter-block links. Therefore, the number
of tracks needed to layout the RTCC(C, L) is fC (L)
= CfC (L – 1) + 2, and because fc (1) = 2, we have

fC (L) = CfC (L – 1) + 2 (CL – 1  + CL–2 + ... + C +
1)

fC (L) = 2( 1)
1

= 2( 1)
1

C
C

N
C

L −
−

−
−

Now, we use the approach of orthogonal
multilayer layout [4] scheme to obtain an S-layer
layout.

The number of tracks per layer above a row is

( )
( )

/ 22 1

/ 2 1

LC

S C

⎢ ⎥⎣ ⎦⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦⎢ ⎥

and the number of tracks per layer

to the right of the column is 
( )

( )

/ 22 1

/ 2 1

LC

S C

⎢ ⎥⎣ ⎦⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦⎢ ⎥

. So the

area of the S-layer RTCC(C, L) is:
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2 2

2 22 2

8
/ 2
N No

S CS C
⎛ ⎞

+ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

And its volume is:
2 2

2 2

8
/ 2
N No

S C SC
⎛ ⎞

+ ⎜ ⎟
⎢ ⎥ ⎝ ⎠⎣ ⎦

5.3 Layout of RTCC-Pyramid
Now that we obtained an efficient layout for RTCC
network, we can use it in constructing a layout for
its pyramid network.

For the P-RTCC(C,L) layout, it is enough to
layout RTCC(C,L), and then connect each node
belongs to the last layer of P-RTCC(C,L-1) to the
corresponding node in RTCC(C,L). So the collinear
layout of P-RTCC(C,L) needs T(P – RTCC(C, L))
= C × N (RTCC(C, L–1)) + T(RTCC(C, L)) tracks.

Since N(RTCC(C, L–1)) =
3

2
C CL −

and by theorem

7, T(RTCC(C,L)) =
2 1

1

C

C

L −

−
e j

,  we have T(P –

RTCC(C, L)) =
3

2
+

2 1

1

+1 2C C C

C

L L
− −

−
e j

=
3
2 CL+1 +

O(CL–1) =
3
2 CN + O (N/C) and so a P-RTCC(C,L)

needs 
3
2 CN + O (N/C) tracks to layout collinearly,,

where N is the number of nodes of P-RTCC(C,L).

Since P-RTCC(C,L) has a maximum vertex

degree of C + 4, it can be laid out in 
3
2 C2N2 + O

(CN2) area. You can see the collinear layout of P-
RTCC(4,2) in Fig. 14.

Fig. 14: Collinear layout of P-RTCC(4,2)

6. CONCLUSION
In this paper, we have investigated on the area of
layouts for grid-pyramid networks, including the
mesh-pyramid, torus-pyramid, hypermesh-pyramid
and WK-pyramid. Also we added RTCC as base
network for grid pyramid networks and studied
RTCC-Pyramid’s layout on chip. We have obtained
the number of tracks required for collinear layout of
these networks as well as the area required for them
on a chip. We showed that a mesh-pyramid (or torus-

pyramid) requires 13.5N2 + O (N N ) area for its
layout, while a hypermesh-pyramid consumes an area

of 6N 6 N  + o (N N ) and a WK-pyramid network
can be laid out on an area of 39/2N2 + O(N). We also
showed that an RTCC network can be laid out in N2/

16 + o (N2) area and 
2 2

2 2

8
/ 2
N No

S C SC
⎛ ⎞

+ ⎜ ⎟
⎢ ⎥ ⎝ ⎠⎣ ⎦

volume

(when the chip is multilayer). By using the RTCC

layout results, we obtained 
3
2 C2N2 + O (CN2) as the

area boundary needed for RTCC-Pyramid network
to sit on the chip.
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