
Topology Management in Self- Adaptive MANET: A
Distributed Approach

Samir Biswas, Jishan Mehedi and M.K.Naskar

Advanced Digital and Embedded Systems Lab,
Department of Electronics & Telecommunication Engineering, Jadavpur University, Kolkata – 700032

E-mail : samir_etceju@yahoo.com, jmehedi2007@yahoo.co.in, mrinalnaskar@yahoo.co.in

ABSTRACT
This paper proposes a distributed algorithm for the maintenance of topology of a network in a MANET
(Mobile Ad-hoc Network). In this algorithm, it is assumed that every node possesses GPS receiver.
Nodes receive the position and velocity information of their neighbors at the end of each beacon
interval through GPS. Next, these nodes check whether a certain condition is violated or not. A node
changes its velocity if the condition is not satisfied; otherwise it tries to keep the velocity constant. In
this way each node modifies its velocity for the next beacon interval. The simulation run of the algorithm
is carried out on a number of synthetically generated network scenarios and results thus obtained
show the effectiveness of the proposed algorithm.

Keywords: Mobile Ad-Hoc Network, Topology Management, Distributed Algorithm.

1. INTRODUCTION
A Mobile Ad-Hoc Network (MANET) is a group of
wireless autonomous mobile nodes forming an
environment to communicate with each other
dynamically without any fixed infrastructure or
administration [1]. In such a network, the nodes can
move in any arbitrary manner without any prediction.
Each node acts as a usual trans-receiver, which can
also find the network routes to aid the network to
form a complete connected graph.

As a result, the routing and topology management
has become an important issue in a MANET. Many
researchers have developed efficient routing protocols
which ensure to find the exact route to connect the
transmitting mobile node to its intended caller, may
be outside the transmitting range of the transmitter,
via other node(s) without having much delay and
unnecessary control overhead.

Existing routing protocols for MANET can be
classified into four different basic categories namely
flooding, proactive routing, reactive routing and
dynamic cluster based routing [2]. However none of
these routing schemes guarantees constant network
connectivity during the movement and each of these
schemes have constant route maintenance overhead.
A particular node may even be disconnected in the
worst case.

Centralized topology management schemes in
[3, 4, and 5] discuss a self-adaptive movement
control algorithm, which ensures the retention of
network connectivity even during the positional
variat ion of the nodes. But in this case, a
coordinator has to be elected and all other nodes
should follow the instructions from the coordinator.
The main disadvantages of the centralized topology
management scheme are increase in control
overhead and non-scalability. Once the coordinator

Topology Management in Self- Adaptive MANET: A Distributed Approach 27

fails to perform, the whole network becomes non-
functional.

In this paper, we have suggested a distributed
topology management algorithm where all the nodes
of the network will remain connected throughout the
operation so that the nodes can follow a fixed routing,
which eliminates the routing overhead. Each node is
provided with a GPS receiver that receives its position
as well as the velocity (in both magnitude and
direction) information. All the nodes can separately
calculate its own velocity on the basis of the
information received from its neighbors for the next
beacon interval in such a way that the overall topology
of the network remains same.

The paper is organized as follows. Next section
provides the formal definition of the topology
management problem. In the third section we present
the proposed distributed algorithm for maintaining
the topology. Simulation results are presented in the
fourth section. The next section presents a comparative
study between the proposed algorithm and the
centralized algorithm in [3]. We finally conclude the
paper in section six. The appendix contains the proof
of lemma 1 and lemma 2.

2. TOPOLOGY MANAGEMENT PROBLEM
Given the physical topology of a mobile ad-hoc
network, the problem is to control the movements of
the individual nodes so as to maintain a stable
neighborhood topology. The objective is to allow the
nodes to communicate amongst themselves without
the need of any variable routing protocols.

Let us consider a MANET consisting of N number
of nodes n0, n1, n2 …. nN-1. We assume that each node
has a maximum transmission range of Rmax. Now, any
two nodes ni and nj are called neighboring nodes if
they can communicate amongst themselves without
the need of any routing. So any two nodes ni and nj

will be neighbors if the distance between them D(i,j)
= Rmax. The network topology will be maintained if
D(i.j) = Rmax for any two neighboring nodes ni nj at
any time t.

3. THE PROPOSED ALGORITHM

3.1 Assumptions
The algorithm is based on following assumptions:

(1) All nodes are enabled with GPS receivers. These
receivers can furnish the current position and
velocity information of an individual node.

(2) All the nodes have a predefined maximum
velocity, Vmax.

(3) Acceleration and deceleration of the nodes are
taken to be instantaneous.

(4) It is assumed that if the nodes are within the
appropriate range, the instruction message will
never be lost in transit.

(5) At the beginning, all the nodes have a
configuration that creates a connected topology.

(6) Each node has a unique identification number.

3.2 Neighborhood selection algorithm
Let, Rmax be the maximum range of message
communication of each individual node. Then at the
beginning a node selects as its neighbor, all nodes
which are at a distance less than Rmax from that node.
Next through Hello packets it sends its current
position, velocity and node identification number to
all its neighboring nodes and also receives the same
from its neighbors. A node stores position and velocity
information and identification number of its
neighbors. This concludes the neighborhood selection
procedure.

3.3 Movement Algorithm
Each node sends its current position and velocity
information to all its neighboring nodes with the help
of hello packets after a fixed duration T. This time
interval T is defined as the “Beacon Interval”. A node
after receiving the position and velocity information
of all its neighbors resolves the velocity along two
mutually perpendicular directions; say the X-axis and
the Y-axis.

At the beginning, each node is assigned a velocity
at random. Then in each subsequent beacon interval

28 • IC3–2008 UFL & JIITU

it calculates the current distance from its neighbors
and also predicts the new distance from its neighbors
after the end of the beacon interval based on the
current velocities of the neighbors. It then checks
whether the predicted distance along any axes exceeds
a predefined threshold distance Rth or if the distance
becomes less than zero i.e. the nodes cross each other.
We call these two cases as the violation conditions.
In both the cases the node adjusts its velocity suitably
so that these two conditions are not violated. If the
predicted distance remains greater than zero and less
than Rth then the node moves with its previous velocity.
We now analyze this algorithm in more details.

For simplicity we assume all the nodes are
moving along the positive X axis. For a particular
node say A its neighbor is either in front of it (say B)
or behind it (say C). We separately treat these two
cases.

3.3.1 Case I: For a node in front

Fig. 2: Illustrating Case II of Movement Algorithm

Let the current velocity of node A be VA and that
of node C be VC; the current distance between them
be dAC=dA-dC. Now, the new distance between them
after time T is given by

dAC|New = dAC + (VA–VC)*T

As before two cases may arise dAC|New > Rth and
dAC|New < 0 when node A must change its velocity to
bring the distance between them to a stable distance
R where 0<R<Rth (chosen according to lemma 2).
Let the new velocity be VA|New. Therefore,

R = dAC + (VA|New – VC)*T

Or, VA|New = VC + (R – dAC)/T ...(2)

If the new predicted distance between the nodes
is greater than zero and less than Rth then the node
keeps its velocity intact. In this way a node calculates
its velocity for all its neighbors for the next beacon
interval. The final velocity for the next beacon interval
is chosen as follows.

We assign a weight Wi to the velocity calculated
on the basis of information received from the ith node
as,

Wi = (dNew (predicted) – Rth) +1
for dNew (predicted) > Rth

= |dNew (predicted) | +1
for dNew (predicted)< 0

= 1 otherwise.

where dNew (predicted) is the predicted new distance
between the nodes after time T.

Now, the node calculates its velocity for the next
interval as V=ΣWiVi / ΣWi. Where Vi is the velocity
calculated for the i th neighbor and Wi is its

Fig. 1: Illustrating Case I of Movement Algorithm

Let, the current velocity of node A be VA and that
of node B be VB; the current distance between them
be dAB=dB-dA; and the threshold distance be Rth. Choice
of Rth is given in lemma 1 in appendix. If T be the
beacon interval, the new distance between them after
time T is given by,

dAB|New = dAB + (VB-VA)*T

Now two conditions may arise when appropriate
action must be taken. They are dAB|New<0 or dAB|New >
Rth according as VA>VB or VA<VB. In both the case
node A adjusts its velocity to VA|New so that the distance
between them returns to a specific distance R after
the time T where 0<R< Rth. The choice of this distance
R is given in lemma 2 in appendix. And we have

R = dAB + (VB–VA|New)*T

Or, VA|New = VB + (dAB – R)/T ...(1)

3.3.2 Case II: For a node which is behind

Topology Management in Self- Adaptive MANET: A Distributed Approach 29

corresponding weight. We note that by choosing
velocity in this way the velocity calculated for the
nodes for which violation occurs gets greater weight
and hence greater precedence than the cases in which
no violation occurs. If all the nodes choose their
velocity according to the above algorithm the network
is able to maintain a fixed topology.

3.3.3 Algorithm Steps

Algorithm : Topology management of a MANET

Input : A MANET comprising of M number of nodes.

Output: A MANET which has a fixed topology.

For the ith node

Initialization:

Vx(i) Velocity of the ith node along X axis;

Vy(i) Velocity of the ith node along Y axis;

X(i) Position of ith node along X axis;

Y(i) Position of ith node along Y axis;

N Number of neighbors of the ith node;

Receive current position and velocity of all
neighbors;

For j:=1 to N do

Calculate relative distance of the jth neighbor

dx=X(j)-X(i);dy=Y(j)-Y(i);

If dx>=0

Calculate dx_new=dx+(V(j)-V(i))*T;

If dx_new>=Rth

If Vx(j)<Vmax/2

Vx_predicted (j)=Vmax/2;

Else

Choose Vx_predicted (j) at random
between Vx(j) and Vmax;

End if;

Weight_x(j)=dx_new-Rth+1;

Else if dx_new<0

If Vx(j)>Vmax/2

Vx_predicted (j)=Vmax/2;

Else

Choose Vx_predicted (j) randomly
between 0 and Vx(j);

End if;

Weight_x(j)=|dx_new|+1;

Else

Vx_predicted (j)=Vx(i);

Weight_x(j)=1;

End if;

Else

dx_new=|dx|+ (V(i)-V(j))*T;

If dx_new>Rth

If Vx(j)>Vmax/2

Vx_predicted (j)=Vmax/2;

Else

Choose Vx_predicted (j) randomly
between 0 and Vx(j);

End if;

Weight_x(j)=dx_new-Rth+1;

Else if dx_new<0

If Vx(j)<Vmax/2

Vx_predicted (j)=Vmax/2;

Else

Choose Vx_predicted (j) at random
between Vx(j) and Vmax ;

End if;

Weight_x(j)=|dx_new|+1;

Else

Vx_predicted (j)=Vx(i);

Weight_x(j)=1;

End if;

End if;

Similarly calculate Vy_predicted (j) and Weight_y(j)
for the jth node along Y axis;

End For;

30 • IC3–2008 UFL & JIITU

Calculate

Vx(i)=
Σ

Σ
 Weight_ x(j) * Vx_ predicted (j)

 Weight_ x(j);

[for j = 1 to N]

Similarly calculate Vy(i);

End algorithm: Topology management of a
MANET

4. SIMULATION RESULTS
The proposed algorithm was simulated on a
synthetically designed environment and encouraging
results were obtained. The simulation was done using
Matlab software in Windows environment. For our
simulation we considered five nodes with random
initial velocities along both X and Y axis. The
maximum communication range Rmax was chosen as
70 km. Therefore, the threshold distance Rth was
chosen according to lemma 1, Rth=Rmax /v2 – 5 = 44.5
Km. Also the maximum velocity of the nodes were
taken as Vmax = 80 Km/hr. The beacon interval was
taken as 6 minutes.

The initial positions and velocities of the nodes
were as follows.

Table 1: Initial Position and Velocity of nodes

The simulation was carried out for an interval of
60 hours=3600 minutes. The results obtained are
shown in Fig. 3 to Fig. 6.

From figure 3 and 4 (showing the initial and final
topology of the network) we can see that the nodes
calculate their velocity for each beacon interval in
such a way that the topology of the overall network
remains the same. Figures 5 shows how the distances
of the neighbors vary for node 1. Similar graphs were
also obtained for other nodes. From the graphs it is

Node Initial
Position

Initial
Velocity

Neighboring
Nodes

1 (0,0) 35âx + 10ây 2,3,4,5
2 (40,0) 25âx + 35ây 1,4,5
3 (-40,0) 35âx + 25ây 1,4,5
4 (0,40) 45âx + 15ây 1,2,3
5 (0,-40) 15âx + 45ây 1,2,3

Fig. 3: Initial topology of the network

Fig. 4: Final topology of the network

Fig. 6: Distance of the neighbor nodes from node 1

clear that the distance between the neighboring nodes
never exceed the maximum communication range Rmax

= 70 Km. this clearly shows the effectiveness of the
algorithm in maintaining the topology of a network.

Topology Management in Self- Adaptive MANET: A Distributed Approach 31

5. PERFORMANCE COMPARISON
We also perform a comparative study between the
distributed topology management algorithm presented
in this paper and the centralized topology management
algorithm. From the results as presented above we
see that the distributed algorithm is as effective as the
centralized one in maintaining the topology of a
mobile ad-hoc network. However, the distributed
algorithm is better in the sense that it completely
eliminates the control overhead of the coordinator,
which was present in the centralized approach. In the
centralized topology management algorithm presented
in the coordinator had to issue appropriate commands
to the nodes in order to maintain the network topology
and to ensure that a node always remains in contact
with the coordinator. But this greatly increases the
control overhead of the coordinator, and hence that
of the network. In distributed algorithm we have
shown how a node can suitably adjust its velocity so
that the topology of the network always remains the
same and at the same time the neighboring nodes
always remain within the communication range of
each other. Thus, the control overhead of a node is
reduced to just sending hello messages containing its
current position and velocity, as received by their GPS
receivers, to its neighboring nodes, after each beacon
interval T. Further the centralized algorithm
maintained the topology when the nodes possessed
velocities only in one direction, but the distributed
algorithm is able to maintain the topology even when
the nodes posses velocities along any direction. Thus,
by eliminating routing overhead by topology
management and control overhead by distributed
algorithm a highly effective protocol for mobile Ad-
hoc network may be realized.

6. CONCLUSION
In this paper, we have presented a distributive
algorithm for mobile nodes in a MANET to maintain
the network topology. This algorithm may also be
applied even when all the nodes are not moving in
the same direction. Due to the application of a
distributed scheme, the control overhead is reduced
as compared to a centralized approach and the
topology is not vulnerable if one of the nodes becomes
non-functional, as there is no concept of central
coordinator. The simulation results show the
effectiveness of the algorithm. Presently, we are
working on a distributive scheme where the nodes
will have more flexibility in choosing its velocity and
still maintain the network topology.

REFERENCES
1. National Institute of Standard and Technology,

“Mobile Ad-hoc Networks (MANETs)”, http://
w3.antd.nist.gov/wahn_mahn.shtml.

2. Elizabeth M.Royer and Chai-Keong Toh, “A
Review of current routing protocols for Ad-Hoc
Mobile Networks”, IEEE Personal Communica-
tions, Vol. 6, No. 2, pp. 46-55, April 1999.

3. S.Samanta, S.S.Ray, S.SenGupta, M.K.Naskar, “A
Novel Algorithm for Managing Network
Configuration”, Asian International Mobile
Computing Conference 2006, Kolkata, Jan 04-07,
pp. 51-58.

4. S.S.Basu and A.Chaudhari, “Self-adaptive Topology
Management for Mobile Ad- hoc Network”, IE(I)
Journal-ET, Vol.84, July 2003.

5. Soumya Sankar Basu, Atal Chaudhari, “Self-
Adaptive MANET: A CentralizedApproach”,
Foundations of Computing and Decision Sciences,
Vol.29, 2004.

32 • IC3–2008 UFL & JIITU

Proof: Let us consider the situation shown in
figure 1. Let VA and VB be the current velocities of
the nodes and dAB be the distance between them.
Therefore the distance between them after time T as
predicted by both the nodes

dAB|New (predicted) = dAB + (VB-VA)*T

Let there be a violation condition for which both
the nodes must alter its velocity i.e. either dAB|New

(predicted) <0 or dAB|New (predicted) >Rth. Let node A
changes its velocity to VA|New and node B changes its
velocity to VB|New, which are given by

VA|New = VB + (dAB – R1)/T

 VB|New = VA + (R2 – dAB)/T [from (1) and (2)]

If Vmax be the maximum velocity of the nodes
then we must have 0< VA|New <Vmax and 0< VB|New <Vmax

from which we have the following conditions.

dAB + VB*T –Vmax*T < R1 < dAB + VB*T ...(3)

and dAB – VA*T < R2 < dAB – VA*T + Vmax*T ... (4)

The actual final distance between the two nodes,

dAB|New (actual) = dAB + (VB|New - VA|New)*T

= R1+R2 – (dAB + (VB-VA)*T)

Now two cases may arise,

Case 1: If dAB|New (predicted) > Rth

In this case node A increase its velocity and node
B decrease its velocity. So we must ensure dAB|New

(actual) doesn’t become less than 0. Hence dAB|New

(actual) > 0 which gives,

R1+R2 > (dAB+(VB-VA)*T) ...(5)

Case 2: If dAB|New (predicted) < 0

In this case node A decrease its velocity and node
B increase its velocity. So we must ensure dAB|New

(actual) doesn’t become greater than Rth. Hence dAB|New

(actual) < Rth which gives,

R1+R2 < (dAB + (VB-VA)*T) + Rth ...(6)

Hence we must choose R1and R2 such that
inequalities (3), (4), (5) and (6) are simultaneously
satisfied. From (3) and (4) if we choose R1 = dAB +
VB*T –Vmax*T /2 and R2 = dAB – VA*T + Vmax*T/2 i.e.

APPENDIX

Lemma 1: Choice of threshold distance Rth.
If Rmax be the maximum range of communication,
the threshold distance chosen for this algorithm to
ensure that the distance between the neighboring
nodes does not exceed Rmax is Rth<Rmax/v2.

Proof: In this algorithm the velocities of the
nodes are resolved along two mutually perpendicular
directions X and Y axes and the algorithm ensures
that the distance between any two nodes doesn’t
exceed the threshold distance Rth along any of these
axes.

Now, let dx and dy be the distance of a node from
its neighbor along X axis and Y axis respectively.
Therefore the absolute distance between the nodes

d=v(dx
2+dy

2).

Our algorithm ensures that 0<dx<Rth and
0<dy<Rth. Therefore, the maximum absolute distance
between any two nodes occur when dx=dy=Rth for
which dmax=v2*Rth. This distance dmax must be less than
the maximum communication range Rmax. Therefore

dmax < Rmax

Or v2*Rth < Rmax

Or Rth < Rmax/v2

Lemma 2: Selection of the stable distance R and
new velocity VNew.
If Vmax be the maximum velocity of the nodes, T be
the beacon interval and d be the current distance
between any two nodes, then in case the predicted
distance dNew becomes > Rth or < 0 the stable distance
R to which the node must return by changing its
velocity must be such that the new velocity VNew

becomes, for a node B in front and dNew (predicted)
> Rth or for a node B in back and dNew(predicted) < 0

VNew=Vmax / 2; when VB=Vmax / 2
VB<VNew<Vmax; VB>Vmax / 2

for a node B in front and dNew (predicted) < 0 or for
a node B in back and dNew(predicted) > Rth

VNew=Vmax / 2; when VB=Vmax / 2
0<VNew<VB; VB<Vmax / 2

Topology Management in Self- Adaptive MANET: A Distributed Approach 33

we take the mean of the two extreme values we see
that R1+R2 = 2dAB+ (VB-VA)*T which satisfies both
inequalities (5) and (6). Hence ideally the stable
distance R must be chosen as

R=d + VB*T - Vmax*T/2 for a node B in front.

R=d- VB*T + Vmax*T/2 for a node B which is behind.

For both the cases VNew=Vmax/2 (from (1) and (2)).
But, again for the network to be stable we would want
that when dNew (predicted)>Rth, VNew>VB when node
B is in front and VNew<VB when node B is behind,
and when dNew (predicted)<0, VNew<VB when node B
is in front and VNew>VB when node B is behind.

Combining this with the previously obtained stable
velocity we determine the final stable velocity as,

for a node B in front and dNew (predicted) > Rth or
for a node B in back and dNew(predicted) < 0

VNew=Vmax / 2; when VB=Vmax / 2

VB<VNew<Vmax; VB>Vmax / 2

for a node B in front and dNew (predicted) < 0 or for a
node B in back and dNew(predicted) > Rth

VNew=Vmax / 2; when VB=Vmax / 2

0<VNew<VB; VB<Vmax / 2

