
Multi-tier Virtual Machine Architecture: VM-on-VM (n, n-1)
Implementation

Prakhar Agarwal and Vikas Saxena

Jaypee Institute of Information Technology University, Noida
E-mail : prakhar.jiit@gmail.com, vikas.saxena@jiit.ac.in

ABSTRACT
The maintenance of Virtual Machine (VM) and inter-VM communication is still a challenge in virtual
machines development. This paper proposes a scheme called “VM-on-VM”, which creates multiple
layers of VMs hosting the operating systems (OS) and allows them to share conventional hardware in
an innovative fashion. The concept of reverse-hierarchy has been devised to demonstrate the proposed
scheme.

1. INTRODUCTION
Virtual Machine is a software implementation of a
machine that executes programs like a real machine
[1]. [2]It’s an efficient, isolated duplicate of real
machine with no direct correspondence to the real
hardware [3].

1.1 Classification of VMs
Virtual Machine derives its original motivation from
the desire of using multiple OSs simultaneously on a
single machine. VM also works as an Emulator.
Virtual machines are classified in two major categories
based on their use and degree of correspondence to
any real machine [1]:

a. A system virtual machine (SVM) provides support
for execution of complete operating system (OS)

b. A process virtual machine (PVM) that provides
support for execution of a single process

This paper presents a scheme for SVM.

1.2 Virtualization
[4]Successful partitioning of a machine to support
concurrent execution of multiple operating systems

poses several challenges. Firstly, one virtual machine
should not adversely affect other’s performance.
Secondly, support to a variety of operating systems.
Thirdly, performance overhead due to virtualization
should be small.

Multiplexing hardware through various layers of
virtual machines plays a major role in implementing
the interaction between the operating systems and real
hardware.

2. PRELIMINARIES
In traditional virtual machine architecture each VM
emulates the underlying bare hardware into an
independent virtual copy of main computer. Each
operating system has its own dedicated VM.

The contemporary approach is referred to as
native execution or full virtualization and has been
implemented by the use of Virtual Machine Monitor
(VMM), also called Hypervisor- Type I and Type II
[6].

Type-I Hypervisor runs directly on the bare
hardware. Type-II Hypervisor is the software that runs
on OS environment [6]. Figure.1 exhibits the current
architecture using Type-I hypervisor.

Multi-tier Virtual Machine Architecture: VM-on-VM (n, n-1) Implementation 65

Fig. 1: Current VM Architecture

[1] Multiple VMs running private operating
system are used in server consolidation. Instead of
running the different processes on different machines,
Virtual Machine Architecture provides a platform for
running different services on different VMs. This
feature has been termed as Quality-of-Service
Isolation (QoS isolation) [1].

2.1 Limitations
Although the contemporary designs considerably
reduce the hardware requirements. But after a strong
scrutiny, following imperfections have surfaced which
need to be addressed:

(1) Inter-VM communication: The QoS Isolation
aims at consolidating the services to one
machine. This is achieved by establishing
communication among various VMs to operate
as one unit. Thus a term called inter-VM
communication comes under play. The
benchmark used to evaluate this communication
is based on Netperf [7], [8]. Each VM runs a
Netperf server and Netperf client. These VMs
are then connected in a ring topology [8]. We
have successfully eradicated the use of such
external requirement in our proposed scheme.

(2) Error Reporting mechanism: The present models
of VMs fail to bring out the very crucial
component of OS development, i.e. error

handling. This important element has been
silently ignored in all the designs and has left
many loose threads in virtualization
development. Our scheme addresses this issue
also.

(3) Lack of Multi-purpose of Hypervisor:
Hypervisors used in the virtualization of the
machine are limited to work on either bare
hardware (Type-I) or on an OS (Type-II). Thus
we have to make an extra effort to identify which
hypervisor is to be employed during the
implementation of any virtualization model.
This increases the requirement of manpower and
related resources.

3. PROPOSED ARCHITECTURE
The limitations highlighted above motivate us to
further enhance the virtualization techniques. Some
critical drawbacks and their possible solutions are
discussed in this section.

3.1 Multi-tier VM Interface
Starting from the current designs, we propose to
design a hierarchy of virtual machines through multi-
tier model. To achieve this, first of all we will rectify
the demerit of hypervisor discussed above. We
propose to build a Hybrid Virtual Machine Monitor
(HVMM) which can virtually run on Hardware, OS
and even on VM. A more simple term to define such
a component would be: a multi-purpose VMM. It can
eliminate the requirement of different types of
hypervisor and help in reducing the inter-operatibility
issues.

3.2 Reverse Hierarchy Model
In our model, bottom-most layer is occupied by real
hardware. Just above the hardware layer we have
placed a Hybrid Virtual Machine Monitor (HVMM-
1). Above that, the base Virtual Machine of our model
(VM-1) is present. Then presiding over VM-1 is
another HVMM-2 using which VM-1 hosts another
VM-2 and an operating system OS-1. Further, VM-2
and OS-1 have HVMM-3 and HVMM-4 over them
respectively. The first virtual machine, VM-1, will

66 • IC3–2008 UFL & JIITU

Fig. 2: Multi-tier VM architecture

As it is clear from the above figure, we have
proposed an idea of hosting a VM on a VM. HVMM
plays an integral role in successfully supporting this
scheme. All major virtualization tools like VMware[4]
and XEN[9] do not support this feature. The present
designs exhibit compulsory requirements of different
types of hypervisors and therefore are less flexible.
The major disadvantage of these contemporary models
is that if an OS doesn’t require all the resources
provided by its host VM then these resources are
wasted unknowingly. This wastage takes place at every
OS-VM communication channel. The hard fact is that
we can not share these resources with any other VM.

So, to prevent this situation and in return maximize
the use of any VM, we are exploiting all such free
resources to host another VM. The whole process
continues in an upward direction or we can say it
represents a reverse-hierarchy. According to the need
of the OS, it is placed appropriately in this hierarchy.
The OS with minimum requirements sits at the top-
most level and vice-versa providing a very streamlined
process for resource utilization.

3.3 Inter-VM communication
As discussed previously, Netperf is the external
requirement to establish interaction among all the
VMs on a single hardware. The use of Hybrid Virtual
Machine Monitor eliminates this flaw from the
contemporary designs. An added feature of HVMM
is that it enables communication between its Host and
its Guest. When we are hosting a VM-on-VM, the
communicating interface between them is HVMM.
There is no need of any other element. The interaction
takes place in the form “packets”. These “packets” at
each layer take care of the status of each operating
system.

Whenever, new OS is loaded a performance check
is done and the whole tree is optimized for best
performance. All messages and signals are sent via
this method only. This is what we refer to as tree
topology. This unique design enhances the use of
virtual machines. Using virtual machines in
combination increases the productivity of each virtual
machine. This approach scores over previous
implementations by providing Direct sharing of
resources among the various operating systems and
VMs.

Numerous systems have been designed which use
virtualization to subdivide the ample resources of a
modern computer. Some require special hardware
while some fail to support a range of operating
systems. Our model exhibits the super functionality
of the hypervisor to perform the inter-layer
communication. There is no requirement of any other
scheme to achieve this task. Secondly, the networking
in the whole system is present by default through
virtual communications network.

not be capable of hosting any operating system as it
is the base machine. At any stage of this hierarchy
we’ll find that total number of OSs is one less than
total number of VMs. Thus, the scheme gets its name
as (n, n-1) implementation, where,

n = number of VMs at a specific layer

n-1 = number of OSs at the corresponding layer.

Figure 2 will give a clear understanding of the
concept.

Multi-tier Virtual Machine Architecture: VM-on-VM (n, n-1) Implementation 67

This model also minimizes the maintenance effort
to an enormous extent. The present models demand
maintenance of each and every virtual machine if ever
a real hardware failure occurs. Each VM will need to
be re-configured with accordance to the new hardware
to achieve the “best stable condition”. This unwanted
process has been very easily removed in our model.
The base virtual machine, VM-1 or the hypervisor is
the only VM directly interacting with the real
hardware. All other virtual machines are interacting
with this base VM with connections traversing through
the hierarchy. So, if ever there is any kind of hardware
failure, then only VM-1 specifications need to be
modified. This saves a lot of possible computations
and time.

3.4 Error- Reporting Mechanism
Lastly, every virtual machine in this model maintains
an Error Log Retention File (ERL File) which keeps
a record of all kind of associated errors and keeps the
record in the log until proper remedial action is taken.
The main VM, that is, VM-1 maintains a Master
Failure Log (MFL) which records all the notifications
received from child VMs. Thus, if the MFL is empty,
that means all ERL Files are also empty. Logically,
the binary digit ‘0’ represents zero errors while ‘1’
indicates one or more errors. Figure.3 explains this
concept.

Failure of any of the operating systems in the
complete hierarchy is notified in an easy and
systematic manner. The VM hosting this failed
operating system records the error in its ERL File.
This ERL File then sends this information to the parent
VM which further notifies its super-parent. This
process is executed in the entire structure with an entry
being made at each level until it reaches the MFL. In
simple terms, MFL is dependent on ERL Files present
at each and every layer of virtual machines. When an
error is resolved the status bit of that error will turn
‘0’ which will be replicated in corresponding and root
ERL as well as MFL.

All these features equip our model to be in a
healthy and protected state round the clock, thus
promoting system development and maintenance on

the run. This model decreases the amount of human
labor required in keeping the system up to date. Every
kind of system maintenance task is performed by the
system itself and hence this a better approach as
compared the existing models.

4. FUTURE WORK
There is a great scope in this area of computing. One
of the few future developments can be implementing
multiple Base Virtual Machines (VM-1) on a single
hardware. We could then have multiple virtual
machines trees residing on a single hardware. This
will take the concept of virtual machines to next level
where VMs will no more be a choice but rather a
necessity.

5. CONCLUSION
We have proposed a methodology of implementing
Multi-tier reverse hierarchy of virtual machines. The
model presented here shows how a simple concept of
trees is exploited in building the next generation virtual
machines. Our results prove that existing models have
many shortcomings which have been very carefully
eradicated in our model. This kind of future of virtual

Fig. 3: Error Reporting Diagram

68 • IC3–2008 UFL & JIITU

machines provides an excellent area of study for great
advancement.

REFERENCES
1. http://en.wikipedia.org/wiki/Virtual_machine
2. Gerald J. Popek and Robert P. Goldberg (1974).

“Formal Requirements for Virtualizable Third
Generation Architectures”. Communications of the
ACM 17 (7): 412 –421.

3. Smith, Daniel E.; Nair, Ravi. “The Architecture of
Virtual Machines”. Computer 38 (5): 32–38. IEEE
Computer Society. doi:10.1109/MC.2005.173.

4. The Book Of VMware - The Complete Guide To
VMware Workstation (2002)

5. Operating System Concepts, Sixth Edition, Abraham
Silberschatz, Peter Baer Galvin, Greg Gagne

6. http://en.wikipedia.org/wiki/Hypervisor
7. Benjamin Qu´etier, Vincent Neri, Franck Cappello.

Selecting a Virtualization System For Grid/P2P
Large Scale Emulation.

8. http://www.netperf.org/netperf/
9. Paul Barham, Boris Dragovic, Keir Fraser, Steven

Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the

nineteenth ACM symposium on Operating systems
principles, pages 164–177. ACM Press, 2003

10. Open Virtual Machine Format Specification (OVF)
v0.9- White Paper

11. Running Multiple Operating systems concurrently
on an IA32 PC using virtualization techniques,
Kevin Lawton, 1999

12. Amit Singh. An introduction to virtualization. In
http ://www.kernel thread.com/pub lications/
virtualization/, March 2004

13. S. Devine, E. Bugnion, and M. Rosenblum.
Virtualization system including a virtual machine
monitor for a computer with a segmented
architecture. US Patent, 6397242, Oct. 1998.

14. K. Govil, D. Teodosiu, Y. Huang, and M.
Rosenblum. Cellular Disco: Resource management
using virtual clusters on shared-memory
multiprocessors. In Proceedings of the 17th ACM
SIGOPS Symposium on Operating Systems
Principles, volume 33(5) of ACM Operating
Systems Review, pages 154–169, Dec. 1999

15. J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A.
Silberschatz. Retrofitting quality of service into a
time-sharing operating system. In Proceedings of the
USENIX 1999 Annual Technical Conference, June,
1999.

