Jaypee Institute of Information Technology

M.Tech Biotechnology

Semester I

Course Descriptions

Course Code	17M11BT111	Semester Odd	(M.Tech	er VII (Integrated) / I Sem a) Session 2019 -2020 from July to December
Course Name		Biomolecules and cell communication		
Credits	3	Contact Hours 3		3

Faculty (Names)	Coordinator(s)	Dr. Reema Gabrani
	Teacher(s) (Alphabetically)	Dr. Reema Gabrani

COURSE OUTCOMES			
C110.1	Explain the signal molecules and major cell signaling pathways		
C110.2	Analyze cell signaling pathways in normal and diseased conditions		
C110.3	10.3 Interpret the mechanisms and regulation of cell cycle and cell death		
C110.4	Analyze the therapeutic drug targets for cancer		

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Signal molecules	Cytokines and Hormones, Growth factors, neurotransmitters, extracellular matrix components as signaling molecules; autocrine, paracrine, juxtacrine and endocrine signaling	3
2.	G-protein linked signaling pathways	G Protein-Coupled Receptors, Heterotrimeric G Proteins, Second messengers, Effector enzymes, Mechanism of transduction, Switching Off and Desensitization of Receptors, Visual transduction pathway	8
3.	Signaling mediated by enzyme linked cell surface receptor	Photoreceptor development in Drosphila, Ras to MAP kinase, Phosphoinositide-3-kinase and signaling through insulin receptor, JAK-STAT pathway, Signal Transduction via Integrins	7
4.	Nuclear receptor based signaling	Classification and Structure of Nuclear Receptors, Signaling by steroid hormones, Retinoids, Vitamin D3, and the T3-Hormone, Mechanisms of Transcriptional Regulation by Nuclear Receptors	4
5.	Bacterial Chemotaxis	Two-component signaling pathway, histidine kinase associated receptor, Adaptation, Chemotaxis in pathogenicity, symbiotic associations and biofilm	4
6.	Cell cycle regulation and cell death	Cyclin-CDK variation, Checkpoint signaling, Ubiquitin proteasome proteolytic system, Intrinsic and Extrinsic apoptotic pathways	8

7.	Malfunction of Signaling Pathways and Tumorigenesis	Hallmarks of cancer, Developmental pathways and cancer: Notch signalling from Drosophila to humans, Wnt signalling, Hedgehog pathway; Epigenetic changes in cancer, Signalling pathways as therapeutic targets, Analysis of signalling events via case studies	8
		Total number of Lectures	42
Evaluation	n Criteria		
Componer	nts	Maximum Marks	
T1		20	
T2		20	
End Semester Examination		35	
TA		25 (Presentation, Assignments)	
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	1. ljsbrand Kramer, "Signal transduction", Academic Press, 2015 Harper		
2.	Wendell Lim, Bruce Mayer, Tony Pawson, "Cell signaling", Taylor &Francis, 2014		
3.	Alberts, Johnson, Lewis, Morgan, Raff, Roberts and Walter, "Molecular Biology of the Cell" Sixth Edition, Garland Science Publication, 2014		
4.	Refereed papers from scientific journals for case studies		

Course Code	17M11BT112	Semester Odd		Semeste	er I Session 2019 -2020
		(specify Odd/l	Even)	Month	from July to December
Course Name	Molecular Modeling and Drug design				
Credits	3		Contact I	Hours	LTP 300

Faculty (Names)	Coordinator(s)	Dr Chakresh Kumar Jain
	Teacher(s) (Alphabetically)	Dr Chakresh Kumar Jain

COURSE	OUTCOMES	COGNITIVE LEVELS
C112.1	Explain macromolecular structures, their Mathematical representation and visualization	Understanding (C2)
C112.2	Explain structural modeling, simulation and dynamics	Understanding (C2)
C112.3	Apply computational drug designing and simulation approaches for drug discovery	Applying (C3)
C112.4	Compare in-silico ligand-target interaction methods	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Molecular Modeling	Introduction to structure of DNA, protein and RNA. Structure representation and visualization, Coordinate Systems, Potential Energy Surfaces, Software and Hardware for molecular modeling, Tools such as Swiss pdb viewer, Pymol, VMD etc.	5
2.	Quantum Mechanics and Force Fields	Electron methods and molecular orbital calculations, General Features of Molecular mechanics force field, Bond Stretching. Angle Bending. Introduction to Nonbonded Interactions. Electrostatic Interactions. Van der Waals Interactions. Hydrogen Bonding in Molecular Mechanics. Force Field Models for the Simulation of Liquid Water.	5
3.	Energy Minimization and computer simulations	Minimization and Related Methods for exploring the Energy Surface. Non-Derivative method, Minimization methods. Computer Simulation Methods. Simple Thermodynamic Properties and Phase Space. Boundaries. Analyzing the Results of a Simulation and Estimating Errors.	5
4.	Molecular Dynamics and simulations	Molecular Dynamics Simulation Methods. Molecular Dynamics Using Simple Models. Metropolis Method. Monte Carlo methods, Web Based Resources, Databases and tools such as GROMACS, AMBER, & CHARMM.	6
5.	Structure Prediction	Principles of structure prediction, comparative modeling and protein folding, Comparative and <i>ab-inito</i> modeling, CASP, validations, Projects such as ROSETTA, protein	6

		folding at home.	
6.	Drug designing	Introduction to drug discovery and drug development, Rational approach to drug design, Approaches to lead optimization such as conformation restriction, pharmacophore etc. Designing drugs against enzymes and receptors, Computer Aided Drug Design methods. ADMET, QSAR Tools and databases such as AUTODOCK, MOLEGRO, Drug Bank etc.	16
		Total number of Lectures	43
Evaluati	on Criteria		
Compon	ents	Maximum Marks	
T1		20	
T2		20	

1 2		20	
End	Semester Examination	35	
TA		25 (Assignment-1, MCQ, Project, Presentation)	
Tota	l	100	
	rence Books, Journals, Rep	rial: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, orts, Websites etc. in the IEEE format) et, "An introduction to Chemoinformatics" Springer pumodel of publication,	
2.	Gasteiger Johann, "Chemoinformatics A text book "John Wiley, 2008		
3.	Andrew R. Leach, "Molecular Modeling principles and applications" Pearson Education, Second edition, 2001		

Course Code	17M12BT114	Semester Odd	Sem	ester I Session 2019 -2020
			Mon	th from July to December
	Enzyme Technology			
Credits	3		Contact Hours	3

Faculty (Names)	Coordinator(s)	Dr. Priyadarshini
	Teacher(s) (Alphabetically)	Dr. Priyadarshini, Dr. Smriti Gaur

COURSE OU	COURSE OUTCOMES		
CO1	Explain enzyme kinetics and its regulation.		
CO2	Outline the purification and characterization strategies for industrial enzymes.		
CO3	Plan the production of metabolites in biological system.		
CO4	Apply acquired knowledge for commercialization of products.		

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Fundamentals of Enzymology Objectives and strategies of Enzyme purification, Introduction to enzyme Kinetics, Mechanism of enzyme action and control of enzyme activity with examples related to control of metabolic pathways.		8
2.	Sources of industrial enzymes	Natural & recombinant), enzymes in the cell and in organized systems, enzyme turnover, correlation between rate of turnover and structure and function of enzymes	6
3.	Enzyme immobilization	Preparation and kinetics of immobilized enzymes, enzyme reactors, membrane reactors, packed bed reactors, continuous flow reactors, stirred tank reactor, fluidized reactors, along with their application in dairy, cereal, fruit juice, oil and fat industry, and their safety aspects, use of immobilized raffinase, lipase, invertase and lactase in industry Recent advances in enzyme technology.	
4.	Enzymes as commercial products	The large-scale use of enzymes	
5.	Enzymes in plant fiber based industry	Biopulping Paper and Pulp industry, Textile industry and in Laundry detergents 4	
6.	Enzymes in Waste remediation	Explosives, Organophosphates in Pesticide Residues and Nerve Gas, Oil and Gas Desulfurization	
7.	Enzymes in Animal nutrition and in Food production	Pig husbandry, Chicken feed, cattle fodder like Milk and Cheese industries, Sugar industry, Meat industry, Oil, Fat, Flavor and Fragrance industry	4

8.	Enzymes as therapy targets and Pharmaceuticals	Proteases, Cycloxygenase, Antivirals, and reverse transcriptase, Polyketide Synthases in Pharmaceutical processing, FDA-Approved Enzyme Drugs and research and development products.	4	
9.	Introduction to Metabolic engineering	Analysis of sequence of reactions and Stoichiometry, Synthesis of primary and secondary metabolites, The genetic switch in E.coli illustrating the dynamic nature of the genome, Metabolic Flux analysis and Metabolic control analysis, Case studies.	7	
		Total number of Lectures	42	
Evaluat	ion Criteria			
Compo	nents	Maximum Marks		
T1		20		
T2		20		
End Semester Examination		35		
TA		25 (Assignment 1, Assignment 2)		
Total		100		

	umended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, nce Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Industrial enzymes and their applications Helmut Uhlig, John Wiley and sons.
2.	Biochemical engineering and Biotechnology Atkins and Mavituna 2nd edition Stockton Press New york
3.	Industrial Enzymology . Godfrey T. West ,S.(eds) 1996, Mac millan Press London
4.	Industrial Application of Immobilized enzymes . Tanaka , A . Tosa , T . and Kobayashi, T .(eds).1993 Marcel Dekker , New York
5.	Gerharts W, "Enzyme Industry-Production and Applications"
6.	Tailor, R.F., "Protein immobilisation-Fundamentals and application"
7.	Zubay G., "Biochemistry"

Subject Code	17M12BT119	Semester ODD	Semester I Session 2019-2020 Month from July to December
Subject Name	PHYTOTHERAPE	UTICS AND PHARMA	COLOGY
Credits	3	Contact Hours	3
Faculty	Coordinator(s)	1. Dr.Vibha Rani	
(Names)	Teacher(s) (Alphabetically)	1. Dr.Vibha Rani	

COURSE	COUTCOMES	COGNITIVE LEVELS	
CO130.	Analyze the existing biotechnological techniques to develop	Analyzing (C4)	
1	plant based therapeutics		
CO130.	Evaluate the classes, synthesis and structure functional	Evaluating (C5)	
2	relationship of phytomolecules		
CO130.	Explain the therapeutic applications of phytochemicals	Understanding (C2)	
3			
CO130.	Identify the current aspects of phytomedicines on toxicity and	Applying (C3)	
4	clinical trials		
CO130.	Case studies to analyze Ayurpharmacoepidemiology Analyzing (C4)		
5	1 1 2 2		
CO130.	Use of bioinformatics tools and approaches to predict the	Creating (C6)	
6	molecular function of novel bioactive molecules		

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1	Introduction		2
2	Medicinal Plants Metabolites	Introduction to metabolites Secondary metabolites, properties and beneficial aspects.	4
3	Isolation technique extraction procedure	Isolation from medicinal plants. Isolation from aromatic plants.	4
4	Characterization technique	Qualitative and quantitative Analysis Gas Chromatogrophy High Performance Liquid Chromatography: (HPLC) High Performance Thin Layer Chromatography: (HPTLC)	4
5	Structure functional relationship	Mechanism of Action Unidentified Therapeutic Intakes Factors That Affect Metabolism	4
6	Therapeutic Application	Plants used in respiratory system. Plants used in urinary system. Plants used with antimicrobial activity. Plants used with Plants used in dermatology.	8

		Dients used in conditions system			
		Plants used in cardiovascular system. Plants used in romatology.			
7 Toxicity Issue and Clinical		Current aspects of phytomedicine on toxicity	6		
	Trials	and clinical trials			
9	Case studies	Related to phytotherapeutics	8		
10	Potential risks associated and future aspects	Discussion	2		
12					
	,	Total number of Lectures	42		
Evaluati	on Criteria				
Compone	nts Maximum Ma	arks			
T1	20				
T2	20				
End Seme	ster Examination 35				
TA	25 (Class Tes	st-1, Assignment-1&2, Case studies 1, 2& 3)			
Total	Total 100				
	9	or(s), Title, Edition, Publisher, Year of Publica , Reports, Websites etc. in the IEEE format)	tion etc. (Text		
1.	Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives. Valdir Cechinel- Filho (Ed.). 2012 John Wiley & Sons, Inc.				
2.	Phytotherapeutics (Recent Progress in Medicinal Plants). S. K. Sharma, J. N. Govil, V. K. Sing. 2005. Studium Press.				
3.	Phytotherapies: Efficacy, Safety, and Regulation. Iqbal Ramzan (Ed.) 2015 John Wiley & Sons, Inc.				
4.	Recent research articles and reviews related to each module.				

Course Code	17M15BT111	Semester Odd		Semeste	er I Session 2019 -2020
		(specify Odd/E	ven)	Month i	from July to December
Course Name	Biotechniques Lab-I				
Credits	3		Contact I	Iours	6

Faculty (Names)	Coordinator(s)	Dr. Reema Gabrani
	Teacher(s) (Alphabetically)	Dr. Chakresh K. Jain, Dr. Indira P. Sarethy, Dr. Priyadarshini, Dr. Reema Gabrani, Dr. Sujata Mohanty, Dr. Vibha Gupta, Dr. Vibha Rani

COURSE OUTCOMES		
C111.1	Apply basic analytical techniques in biotechnology	
C111.2	Develop skills in molecular biology techniques	
C111.3	Examine and analyse gene expression	
C111.4	Make use of purification techniques for natural products	

Module No.	Title of the Module	List of Experiments	
1.	Analytical techniques	To explore drug-protein interactions	2
2.	Molecular biology techniques	Cloning strategy: Virtual lab, Screening of recombinants isolate recombinant plasmid DNA from bacterial cells Restriction enzyme digestion, separate and visualize DNA band by agarose gel electrophoresis	
3.	Gene expression techniques	Designing primers for amplification of gene of interest by PCR, PCR amplification, analyze PCR products; Analysis of a recombinant protein by polyacrylamide gel electrophoresis	3
4.	Purification techniques	To obtain antimicrobial compound from bacterial culture; to purify the antimicrobial compound by column chromatography; use of bioactivity-guided fractionation to analyse and quantify the compound	3
		Total	12

Evaluation Criteria

Components	Maximum Marks
Mid-Term Viva	20
Day-to-Day (Lab record,	
attendance, performance)	60
Final Viva	20
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1	Introduction to Biotechnology, Laboratory Manual:
1.	http://www.austincc.edu/awheeler/Files/BIOL%201414%20Fall%202011/BIOL1414_Lab%20

	Manual Fall%202011.pdf
2.	Frederick M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J.G. Seidman, John A. Smith, Kevin Struhl (eds.) Current Protocols in Molecular Biology. John Wiley & Sons Inc; ringbou edition (December 4, 2003)
3.	Molecular Biology web book- http://www.web-books.com/MoBio/
4.	Methods standardized in lab

Detailed Syllabus

Lecture-wise Breakup

Course C	urse Code 18M11GE11 Semester Odd Semester I Session 2019 -202				019 -2020			
			Month from July to Decemb			er		
Course N	ame	Research	Metho	odology &	k Intellec	tual Pr	operty Rights	
Credits	Contact Hours 2-0-0							
Faculty		Coordin	ator(s	Prof.	B.P. Cha	mola		
(Names)		Teacher((Alphabo)		y Prof.	B.P. Cha	mola		
COURSE	OUT	COMES						COGNITIVE LEVELS
After purs	uing t	he above n	nentior	ned cours	e, the stu	dents v	vill be able to:	
CO1	unde	erstand the	basic o	concepts a	and types	s of res	search	Understanding Level (C2)
CO2		ne a researd yze researd	-			on, me	thodologies and	Analyzing Level (C4)
CO3		w researched to their				patents	s and their filing	Understanding Level (C2)
CO4	understand and analyze the statistical data and apply the relevant test of hypothesis in their research problems				Analyzing Level (C4)			
Module No.	Title of the Module Module				No. of Lectures for the module			
1.	Research What is research? Types of research. What is no research? How to read a Journal paper?				3			
2.	Report How to write report? Use of Mendeley in report writing. How to write a research paper? Problem identification and solving.			4				
3.	Ethics, IPR and Research ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in methodologie research process and common methodologies to attempt solution to research paper.				8			
4.	statis prob	cs of stics and ability ibutions	Basic statistical concepts. Handling of raw data, Some common probability distributions.			7		
5.	Test of hypothesis testing. Parametric and non-parametric data, Introduction to regression analysis.				8			

	analysis		
	<u>,</u>	Total number of Lectures	30
	(Course delivery	method: open ended discussion, guided self-study, lectures)	
Eva	luation Criteria		
Con	ponents	Maximum Marks	
Viva	a −1 before T2 1 Exam	15	
Viva	1 −2 after End Sem.	20	
End	Semester Examination	35	
Assi	gnments	30 (Quiz, Assignments)	
Tota	al	100	
		material: Author(s), Title, Edition, Publisher, Year ee Books, Journals, Reports, Websites etc. in the IEE	
1.		d Wayne Goddard, Research methodology: An Ing Students, Kenwyn, South Africa: Juta& Co. Ltd.	
2.	Kothari, C.R., R International, New D	esearch Methodology: Methods and Technique Delhi, 2009.	es, New Age
3.	Kumar, Ranjit, Re Edition, Sage Public	search Methodology: A Step by Step Guide for ations Ltd., 2005.	Beginners, 2nd
4.	Ramappa, T., Intell	ectual Property Rights Under WTO, S. Chand, New	Delhi, 2008.
5.	Wayne Goddard a Kenwyn, South Afric	and Stuart Melville, Research Methodology: A ca: Juta& Co, 2001.	n Introduction,

Course Code	18M12BT211	Semester Odd		Semeste	er I Session 2019 -2020
		(specify Odd/I	Even)	Month i	from July To December
Course Name	PUBLIC HEALTH	ECONOMICS AND POLICY			
Credits	3		Contact I	Hours	3

Faculty (Names)	Coordinator(s)	DR. ASHWANI MATHUR
	Teacher(s) (Alphabetically)	DR. ASHWANI MATHUR

COURSE	OUTCOMES	COGNITIVE LEVELS
C141.1	Explain Government policies, socio-economic conditions and research methods in Public Health	Understanding (Level 2)
C141.2	Explain fundamentals of disease epidemiology	Understanding (Level 2)
C141.3	Applying computational tools for determining health indicators from primary and secondary data	Applying (Level 3)
C141.4	Analysis of the role of health care in policy making	Analyzing (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Importance of Public Health	Introduction to Public Health, Health Promotion and Disease Prevention, Relevance of policy response in public health, Public health research methods – qualitative and quantitative methods, Role of ethics in research	6
2.	Basic Epidemiology	Introduction to Fundamentals of Epidemiology; Disease- History, prevention and intervention; measurement of occurrence, effect and impact; cohort studies	7
3.	Statistical Tool in Public Health	Introduction to probability, Probability Distribution, Hypothesis testing, Baye's Theorem, Continuous and categorical outcome	5
4.	Health Economics and micro economics	Economics and Health; Use and understanding of Universal indicators, HDI, LE, Mortality and Morbidity; Principles of economics in health	6
5.	Economic Evaluation	Welfare economics, monetary value of health changes; revealed and expressed preference approach, cost benefit analysis, cost effectiveness analysis	6
6.	Health Policy Analysis	Policy analysis process; health care and health policy; Role of government in policy making; Policy analysis processidentification, evaluation (technology assessment; economic viability)	7
7.	Health financing	Cost behaviour and break even analysis, depreciation concept, health as inventory and investment	5
		Total number of Lectures	42

Maximum Marks

Components

T1	20
T2	20
End Semester Examination	35
TA	25 (Assignment / Class Test-1 & 2)
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Schneider, M-J. Introduction to Public Health. Jones and Bartlett Publishers, USA, 5th Edition, 2020				
2.	Bhattacharya, J., Hyde, T., Tu, P. Health Economics. Palgrave Macmillan, 2006				
3.	Drummond M., et al. Methods for the Economic Evaluation of health care programmes. Oxford University Press, 2015				

Course Code	19M12BT113	Semester: Odd		Semester: DD X & M.Tech-I	
				Session 2019-2020	
				Month .	July to December
Course Name	Sustainable Agriculture				
Credits	3	Contact 1		Iours	3

Faculty (Names)	Coordinator(s)	Prof. S Krishna Sundari
	Teacher(s) (Alphabetically)	Prof. S Krishna Sundari

COURSE C	COURSE OUTCOMES				
CO131.1	Interpret various practices in sustainable agriculture and sustainable food systems				
CO131.2	• Examine methods to promote soil health, minimize water use, and decrease pollution in farm soils				
CO131.3	Outline appropriate certification guidelines and Economic Rules that apply for organic farming and biotechnological farm inputs				
CO131.4	• Recommend strategies to avoid degradation of soils on a farm through implementation of sustainable management practices in agriculture				

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Soil health	Major types of soil, Soil structure and composition, problems in soils & Soil life	4
2.	Soil degradation	Soil structural decline, factors contributing to soil degradation, mechanisms of soil degradation	4
3.	Plant nutrition	Essential requirements for plant growth, micro and macro nutrients, principles of fertilization	4
4.	Synthetic crop chemicals	Types of chemical inputs in modern agriculture, fertilizers, pesticides, insecticides, weedicides, role and mechanism	2
5.	Phytotoxicity	Factors contributing to phyto toxicity, chemical toxicity, soil pollutants, soil antagonists	4
6.	Pest and diseases in Plants	Major categories of plant diseases and associated crop issues, Pest control & Preventative measures, integrated pest management	4
7.	Sustainable ways of farming	Different methods for Sustainable ways of farming, processes involved, advantages, strategy for implementation, Introduction to Land Management programs	6
8.	Organic farming	Natural farming, Safe Cultivation techniques, Cover crops, biofertilizers, biopesticides, bioinoculants, zero chemical input agriculture	5
9.		Irrigation systems & sustainability, Weed Management, cropping seasonal variations, plantation times, crop rotation, energy farming, restoring marginal lands and brown field	3
10	Agriculture	Economic principles of agriculture, Financial sustainability	3

	economics	& planning, Integrated farmer community dynamics	
11	Agriculture	Certification & guidelines for crop inputs (organic,	3
11	regulatory matters	biological inputs, hormones and others), IPR in agriculture,	
		Role of Regulatory bodies	
		Total number of Lectures	42
Evaluation	n Criteria		
Componer	nts	Maximum Marks	
T1		20	
T2		20	
End Semes	ster Examination	35	
TA		25 ()	
Total		100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Sustainable Agriculture– Beyond Organic Farming, editor: Sean Clark, MDPI, Basel, Switzerland, 2016			
2.	Technical reports of USDA, UNDP, ICAR, 2017, 2018			
3.	Articles from Journals such as: Journal of Sustainable Agriculture; Agriculture, ecosystem & Environment; Agroecology and Sustainable Food Systems			

Course Code	14M1NBT334/17 M12BT118	Semester Odd		Semester I Session 2019 -2020 Month from July to December		
Course Name	Product Developm	evelopment in Biotechnology				
Credits	3	Contact Hours 3		3		

Faculty	Coordinator(s)	Prof. Neeraj Wadhwa
(Names)	Teacher(s) (Alphabetically)	Prof. Neeraj Wadhwa

COURSE O	COURSE OUTCOMES				
CO1	Outline various processes relevant for Biobusiness				
CO2	Compare marketing techniques and related ethics				
CO3	Select appropriate technology for the production of Biological products				
CO4	Explain financial, regulatory, health policy aspects for biobased industries				

Module	Title of the	Topics in the Module	No. of
No.	Module		Lectures for
			the module
1.	Biotechnology	Biotechnology as a function of science and	5
	Industries	business, Functional units	
	overview	Company structure and functions	
		Emerging technology and technical convergences issues	
2.	Business in the	Science/development, the idea and its	14
	context of	development , Plant tissue culture lab-	
	biotechnology	equipment- glasswares chemical requiremen	
	Entrepreneurshi	construction, techniques in culturing and export	
	p -	abroad, Vermitechnology, Mushroom cultivation,	
		single cell protein, Biofertilizer technology-	
		production, Textile processing, leather treatment,	
		leather industry set up Detergent industry,	
		bakery, Unit processes in food industry	
3.	Product	a. Production of commercially important primary	12
	development	metabolites like organic acids, amino acids and	
		alcohol & Production processes for various	
		classes of secondary metabolites: Antibiotics,	
		Vitamins and Steroids.	
		b.Production of Industrial Enzymes,	
		Biopesticides, Biofertilizers, Biopreservatives,	
		Biopolymers, Pulp and Paper , SINGLE CELL	
		PROTEIN & Mushroom culture,	
		Bioremediation.	
		Bioprocess strategies in Plant Cell organ culture	
1	Diobusiross	and Animal Cell culture.	•
4.	Biobusiness	Concerns and oppurtunities, Environmental	6
	plans	clearances requirement from government,	
		Quality checks and validation certificates,	

		Packaging concerns, Policy and regulatory	
		concerns,	
5.	Bioremediation	Product development, Sustainability,	5
	Bioethics and	Environmental concerns of product and their	
	legal issues	waste.	
		Total number of Lectures	42
Evaluation	on Criteria		
Compone	ents	Maximum Marks	
T1		20	
T2		20	
End Seme	ester Examination	35	
TA		25 (Assignment)	
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	1. Jordan, J. F. (2014). Innovation, Commercialization, and Start-Ups in Life Sciences. London: CRC Press.				
2.	Desai, V. (2009). The Dynamics of Entrepreneurial Development and Management. New Delhi: Himalaya Pub. House.				
3.	Cruger Wulf and Anneliese Crueger "Riotechnology: A Textbook of Industrial				
4	Karthikeyan,S and Arthur Ruf." Biobusiness"MJP Publication Chennai India 2009				

Course Code	17M12BT111	Semester Odd		Semeste	er MTech I	Session	2019 -2020
		(specify Odd/Even)		Month i	Month from Jan		
Course Name	Biosensors						
Credits	3		Contact I	Hours		3	

Faculty (Names)	Coordinator(s)	Prof. Sudha Srivastava
	Teacher(s) (Alphabetically)	Prof. Sudha Srivastava

COURSE	OUTCOMES	COGNITIVE LEVELS
Explain principle and working of biosensors and characterization techniques		Understand Level(C2)
CO2	Evaluate different methods of immobilization and their effect on biosensor performance	Evaluate Level (C5)
CO3	Analyze performance of a biosensor for disease diagnosis, environmental pollution, pathogen quantification	Analyze Level (C4)
CO4	Design strategy for fabrication of a given biosensor with high sensitivity and wide detection range	Create Level (C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction:	Sensors and biosensors, definitions, types of sensors, markets, target analytes, glucose and other medical sensors	2
2.	Biosensor Advancements and nanotechnology First-, second-, third generation biosensors, Nanotechnology and present day biosensors		3
3.	Basic Design Considerations		
4.	The biological component	· · · · · · · · · · · · · · · · · · ·	
5.	Types of biosensors Optical biosensors, Electrochemical biosensors Piezoelectric biosensor, Calorimetric biosensor		8
method electric ami		Non-covalent immobilization - entrapment and multipoint electrostatic attachment. Covalent attachment via thiol, amino and hydroxyl groups. Affinity interactions - avidin/biotin, , complementary oligonucleotides.	4
7.	Techniques for sensing: Physical and chemical	Absorbance, fluorescence, chemi/bioluminescence and phosphorescence, Surface Plasmon Resonance (SPR), quartz crystal microbalance, cyclic voltammetry	8
8.	Sensor stabilization	Storage and operational stability. Polyols, polymers and low Mw compounds as stabilizing agents for drying and long	3

		term storage. Stabilization mechanisms.			
9. Applications Pharmaceutical, agricultural, food safety, biomedical applications, food processing: state of the field, market potential, unique design criteria and needs, current sensors in use.		8			
	Total number of Lectures 42				
Evaluation	n Criteria				
Componer	nts	Maximum Marks			
T1		20			
T2		20			
End Semester Examination		35			
TA 2		25 (Class Test, Presentation)			
Total		100			

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Ligler, F.S. and Rowe Taitt, C.A. 2002. Optical Biosensors: Present & Future. Elsevier, The Netherlands. ISBN: 0-444-50974-7.					
2.	Yang, V.C. and T.T. Ngo. 2000. Biosensors and Their Applications. Kluwer Academic/Plenum Publishers, New York, NY. ISBN: 0-306-46087-4.					
3.	Recent research articles					

Course Code	17M12BT116	Semester Odd		Semester Odd		Semeste	er II Session 2019-20
				Month from January to June			
Course Name	Regulatory Affairs	rs					
Credits	3		Contact Hou		3		

Faculty (Names)	Coordinator(s)	Dr Shweta Dang
	Teacher(s) (Alphabetically)	Dr Shweta Dang

COURSE OU	COURSE OUTCOMES			
C120.1	C120.1 Explain regulatory markets and agencies; preclinical and clinical trials			
C120.2	Analyze the guidelines for approvals of new drugs/biologics			
C120.3	Compare innovator and generic pharmaceutical industry with Patent and Non patent exclusivity			
C120.4	Interpret ICH guidelines applicable to drugs and biotechnology based therapeutic products.			
C120.5	Assess regulatory approvals via related case studies			

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction To	CDSCO, India	2
	Regulatory agencies	USFDA, USA	
		EMEA, Europian Union	
		TGA, Australia	
2.	Introduction To	Indian Pharmacopoeia	2
	Pharmacopoeias and	(IP)	
	Monographs	British Pharmacopoeia	
		(BP)	
		United Sates	
		Pharmacopoeia (USP)	
		International	
		Pharmacopoeia (Int. Ph.)	
		European Pharmacopoeia	
		(Eur. Ph.)	
3.	Safety and efficacy of	Case studies of safety	4
	drugs/biologics,	issues in history,	
	preclinical studies,	Preclinical requirements,	
	Clinical phases	acute and chronic	
		toxicity, dose	
		determination, NOAEL,	
		phases of clinical trials	
		(I,II III)	
4.	Approval pathways for	FDA,CDER, CBER,	7
	Drugs/ biologic/	IND, NDA, BLA, recalls,	
	biopharmaceuticals in	Phase IV, filing	
	USFDA	procedures	
5.	Approval pathways for	EMEA, market	4
	Drugs/ biologic/	authorization application.	
	biopharmaceuticals in	Centralized,	
	europe	Decentralized, National,	
		Mutual recognition	

		procedure. CTD, eCTD,	
		Nees Submissions, ICH	
		M4	
6.	Approval pathways for	Central Drug Standard	3
0.	Drugs/ biologic/	Control Organization,	
	biopharmaceuticals in	INDIA, Pharmaceutical	
	India and Japan	and Medical Devices	
	•	Agency of Japan	
7.	Generics and	Hatch Wax man Act (Para	6
7.	Biosimilars	I,II,III and IV filings),	
		BPCI act USA, CDSCO	
		guildines, EMEA	
		guidelines, Status of	
		guidelines	
8.	Non Patent Exclusivities	Orphan Drug law, Market	5
ð.	1 (021 2 000210 22102052) 20105	exclusivity, Pediatrics	
		exclusivity, First to file	
		exclusivity	
0	ICH Guidelines for	Overview of ICH	5
9.	Biologics and Good	guidelines, ICH QSEM,	· ·
	Clinical Practices	ICH Q5 ,Q6,. ICH E6,	
	Chincai i ractices	ICH Q8,9,10	
	Case Studies	Relevant Case studies	4
11.	Case Studies	Relevant Case studies	4

Total number of Lectures 42

Evaluation Criteria	
Components	Maximum Marks

Components T1 20 T2 20 **End Semester Examination** 35

25 (Class Test, Assignment I and II) $\boldsymbol{100}$ TA

Total

	mended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, nce Books, Journals, Reports, Websites etc. in the IEEE format)
1.	FDA Regulatroy Affairs, David Mantos, Taylor and Francis; 2014 (3 rd edition)
2.	Biosimilars Regulatory, Clinical, and Biopharmaceutical Development Editors: Gutka, Hiten J., Yang, Harry, Kakar, Shefali, Springer 2018
3.	The common technical document (CTD), Internet: http://www.ich.org/
4.	ICH Guideline: The Common Technical Document for the Registration of Pharmaceuticals for Human Use: Quality - M4Q; Quality Overall Summary of Module 2, Module 3: Quality, Internet: http://www.ich.org/MediaServer.jser?@ ID=556&@ MODE=GLB

Course Code	17M12BT115	Semester Odd	S	Session	r VII (Integrated) / Ph.D. 2019 -2020 rom July-December
Course Name	Environmental Biotechnology				
Credits	3		Contact Ho	ours	3

Faculty (Names)	Coordinator(s) Dr. Susinjan Bhattacharya	
	Teacher(s) (Alphabetically)	Dr. Susinjan Bhattacharya

COURSE OUTCOMES		COGNITIVE LEVELS
C113.1	Interpret conventional and modern methods to understand dynamics of microbial communities	Level II (Understanding Level)
C113.2	Apply and analyze environmental issues associated with industry and agriculture	Level III (Applying Level)
C113.3	Prioritize, and recommend environmentally safe practices for sustainable environmental management	Level V (Evaluating Level)
C113.4	Compare environmental laws, regulations, environmental impact assessment for project implementation and report	Level II (Understanding Level)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
	Significance of Global environmental problems and solutions from Biotechnology	Global environmental issues and remedies from genetic manipulation of plants & microbes, Global warming, Green house gases and carbon sequestering	3
	Pollution of natural resources, causes & concerns	Water pollution, land pollution, sources of pollution, risks of bioaccumulation, implications on biotic life & human health Biodegradable and non – biodegradable matter, toxicity testing, Biosensors, Bioindicators of pollution	5
	Land degradation & Biotechnologies for land restoration	Land restoration and soil health, Engineering stress tolerant & herbicide & disease/pest resistant crops, Biotechnology of nitrogen fixation, Composting, Biofertilizers	5
	Bioremediation & Phytoremediation	Bioremediation & Microbes, Degrees of biodegradation, Factors needed for biodegradation and adaptation, types of bioremediation (in situ / ex situ), GMOs superbugs, Biosorption, Biostimulation, Bioaggumentation, , Oil spills - degradation of xenobiotics application of bioremediation in various environments/ecosystems; Effluent and water treatment; Phytoremediation and its applications	4

Management of waste and Industrial refuse	Waste management (solid & liquid wastes), treatment of urban wastes, industrial wastes, Hospital wastes, Power plant wastes, Electronic waste, mineral wastes & radiological wastes.	4
Alternate energy sources and other applications	Renewable Bioenergy, Biofuels, Biomass applications, Applications of Biotechnology in various industries: paper & pulp, tanneries, distilleries, food processing & diary industry, Biofilters, Bioplastics, Biofilms in industry & environment, Case studies.	5
Metagenomics - Invisible microbial Communities	Limitations of Pure Culture, Microbial Diversity and Variation in different extreme environments including human systems, Molecular tools to study diversity, Microarray techniques, application of genomics, transcriptomics and metabolomics to understand functional diversity of microbes	4
Procedures in Metagenomics studies	Methods of Obtaining meta DNA from diverse environments, Habitat Selection 16S rRNA based amplification and Phylogenetics, Functional Sequencing, whole genome sequencing methods, use of phylogenetic markers for diversity analyses, Significance of Bioinformatics in understanding and analysis of Genomic Data, Databases and Software available for analysis of Metagenomic Data	4
Metagenomics & Environmental Biotechnology	Function-Based Analyses of Microbial Communities, Acid Mine Drainage project, Sargasso Sea Metagenomic Survey, applying function based metagenome analysis to remediation etc.	4
Environmental laws & Regulations	Environmental regulations for industry, EPA, ISO standards for environmental management	4
	Total number of Lectures	42

	nended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, ce Books, Journals, Reports, Websites etc. in the IEEE format)
1.	"Environmental Biotechnology" by A. Sragg , Oxford University Press, Second edition Reprint 2005, ISBN 0-19-926867-3
2.	"Enviornmental Biotechnology and Application" by G. Evans , J.C. Furlong, John Wiley and Sons Ltd.
3.	"Environmental Biotechnology: Basic concepts and Applications" by Indu Shekhar Thakur , IK International, 2006
4.	"Principles of Gene manipulation and Genomics", by SB Primrose & RM Twyman, Seventh edition, Blackwell publishing
5.	"The New Science Of Metagenomics Revealing The Secrets Of Our Microbial Planet", The National Academies Press, Washington, Dc
6.	Refereed papers from scientific journals for case studies