Lab-wise Breakup

Course Code	15B17PH271	Semester Even		Semester II Session 2019 -2020	
				Month:	from Jan-June
Course Name	Physics Lab-2				
Credits	1	Contact Hours 2		2	

Faculty (Names)	Coordinator(s)	Alok Pratap Singh Chauhan
	Teacher(s) (Alphabetically)	Alok Pratap Singh Chauhan, Amit Verma, Anuj Kumar, Anuraj Panwar, Bhubesh Chander Joshi, D. K. Rai, Dinesh Tripathi, Himanshu Pandey, Manoj Kumar, Manoj Tripathi, N. K. Sharma, Navendu Goswami, Prashant Chauhan, S. C. Katyal, Sandeep Chhoker, Swati Rawal, Vikas Malik, Vivek Sajal

COURSE O	UTCOMES	COGNITIVE LEVELS
C171.1	Recall laser, fibre optics, semiconductor and solid state physics principles behind the experiments.	Remembering (C1)
C171.2	Explain the experimental setup and the principles involved behind the experiments performed.	Understanding (C2)
C171.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C171.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C171.5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	со
1.	Semiconductor Physics	1(a) To determine the band gap in a semiconductor using its p-n junction diode.	1-5
		1(b) To draw the I-V characteristic of Solar cell and find maximum power and fill factor.	
		2(a) To measure resistivity of semiconductor at different	

		temperatures by Four Probe Method.	
		2(b) To determine Band Gap of the semiconductor.	
		3(a) To study the Hall effect in semiconductor and to determine its allied coefficients.	
		3(b) To study the magneto resistance of given semiconductor material.	
2.	Solid State Physics	4. To study the Magnetostriction in metallic rod with the help of Michelson interferometer arrangement.	1-5
		5. To find the susceptibility of a paramagnetic substance (FeCl ₃) in the form of liquid or a solution.	
		6. Study of dielectric (constant) behavior and determination of Curie's temperature of ferroelectric ceramics.	
3.	Modern Physics	7(a) To determine the value of specific charge (e/m) of an electron by Thomson's method. (b) To determine the velocity of ultrasonic wave in the medium of liquid using ultrasonic interferometer and to determine the compressibility of the given liquid.	1-5
		8. To determine the value of specific charge (e/m) of an electron by Magnetron method.	
		9(a) To determine Planck"s Constant using LEDs of known wavelength.	
		(b) To study the photovoltaic cell and hence verify the inverse square law.	
4.	Optical Fiber	10(a) To determine the numerical aperture of a given multimode optical fiber. (b) To measure the power loss at a splice between two multimode fibers and to study the variation of splice loss with Longitudinal and Transverse misalignments of the given fibers.	1-5
Evaluation	Criteria		
Componen Mid Term V End Term V	Viva (V1)	Maximum Marks 20 20	

מצח	60	
D2D	00	
Total	100	
Total	100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- **1.** Dey and Dutta, Practical Physics
- **2.** Lab Manuals

Course Co	ode	15B11MA2	11	Semester Even	l	Semester II Month from		on 2019 -2020 020- June 2020	
Course Na	me	Mathematic	s 2						
Credits		4		(Contact	Hours 3-1	-0		
Faculty		Coordinat	or(s)	Dr. Anuj Bhard	lwaj & E	Dr. NehaAhla	wat		
(Names)		Teacher(s)	` ,					r. D. C. S. Bisht,	
	(Alphabetically) Dr. NehaAhlawat, Dr. NehaSinghal, D								
	R.C. Mittal, Prof. Sanjeev Sharma,								
COURSE	OUT	COMES						COGNITIVE LEVELS	
After pursu	ing th	e above men	tioned o	course, the studer	nts will b	e able to:			
C106.1		y different m nd order.	ethods	for solving ordin	ary diffe	rential equati	ons of	Applying Level (C3)	
C106.2	expl	ain different	tests/me	ethods of converg	gence fo	r infinite serie	es.	Understanding Level (C2)	
C106.3				f differential equal ynomials and Be				Applying Level (C3)	
C106.4		classify the partial differential equations and apply Fourier series to find their solution.				es to	Applying Level (C3)		
C106.5		explain Taylor's & Laurent's series expansion, singularities, residues and transformations.					sidues	Understanding Level (C2)	
C106.6		-		nplex variables to and integrations.	solve th	ne problems o	of	Applying Level (C3)	
Module	Title	of the	Topic	s in the Module				No. of	
No.	Mod	lule	_					Lectures for	
								the module	
1.	Seco	ond Order		r Differential E	•			5	
	Line			constant coeffi					
		erential		cients, Change	of Var	iable, Variat	ion of		
		ations		neters.					
2.		vergence of		ergence of serie			-	7	
		Series and Alternating Series, Absolute & Conditional Fourier Series Convergence, Uniform Convergence. Fourier					Hourier		
	Tour	Series.					rounci		
3.	Series Solution Series Solutions, Bessel Function, Recurrence			ırrence	7				
		Special		ons and Orthogo		ŕ			
	Func	ctions	Recur	rence relations ar	nd Ortho	gonality.			
4.	Parti			ification and Sol		_		5	
	Diffe	erential	vibrat	ing string, Soluti	on of on	e dimensiona	ıl wave		

		Equations	& heat equations.			
	5.	Complex	Limit, Continuity and Differentiability of	3		
		Variables	Functions of Complex Variables, Analytic			
			Functions, Cauchy's Riemann Equations.			
	6.	Complex	Cauchy Integral Theorem, Cauchy Integral	4		
		Integration	Formula and Applications.			
	7.	Series	Taylor and Laurent Series Expansion, Poles and	4		
		Expansion	Singularities.			
	8.	Contour	Residues, Cauchy's residue theorem and its	5		
		Integration	applications.			
	9.	Conformal	Bilinear transformation	2		
		Mapping				
Tota	al num	ber of Lectures		42		
Eva	luation	Criteria				
Con	nponer	nts	Maximum Marks			
T1			20			
T2			20			
	Semes	ter Examination	35			
TA			25 (Quiz, Assignments, Tutorials)			
Tota			100			
Rec		nded Reading mat				
1.			S. R. K., Advanced Engineering Mathematics, 3 rd Ed.,	Narosa		
		shing House, New				
2.			nill, R.V., Complex Variables and Applications, 6th Ec	l., McGrawHill,		
	1996.					
3.	Prasad, C., (a) Mathematics for Engineers (b) Advanced Mathematics for Engineers, Prasad					
		analaya, 1982.				
4.		sizg, E., Advanced	Engineering Mathematics, 9th Edition, John Wieley&	Sons, Inc.,		
	2011					
5.			ential Equations with Applications and Historical Note	s, 2nd Ed.		
	McGraw Hill, 1991.					
6.	Spiegel, M.R., Complex Variables, Schaum's outline series, MacGraw-Hill, 2009.					

Course Code	15B11EC111	Semester Even (specify Odd/Even)				Session Jan-June	2019 -2020
Course Name	Electrical Science -1						
Credits	4	Contact Ho		Hours		3+1	

Faculty (Names)	Coordinator(s)	Ashish Gupta, Madhu Jain
	Teacher(s) (Alphabetically)	Atul Srivastava, Mandeep Narula, Neetu Joshi, Nisha, Rachna Singh, Shraddha Saxena

COURSE O	DUTCOMES	COGNITIVE LEVELS
C113.1	Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws and different analyzing techniques to identify the different circuit parameters.	Apply Level (C3)
C113.2	Define and apply the networks theorems in the complex AC and DC circuits, networks. Demonstrate the physical model for given Sinusoidal AC signal and construct the phasor diagrams.	Applying Level (C3)
C113.3	Demonstrate the conept of resonance and operate different instrumental and measurement equipments.	Understanding Level (C2)
C113.4	Demonstrate the construction and working of single phase transformer.	Understanding Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic Concepts	Voltage, Current, Power and Energy analysis for Circuit elements (R, L, C), Independent and Dependent Sources, Kirchhoff's Laws, Voltage Divider rule, Current Divider rule	6
2.	DC Circuit Analysis	Star-Delta Transformation, Source transformation, Mesh	6

		and Supermesh Analysis, Nodal and super nodal Analysis	
3.	Network Theorems	Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
4.	Sinusoidal Steady State Analysis	Physical Model for a Sinusoid, Average Value, Effective Value, Phasor presentation, Addition of Phasor using Complex Numbers, Concepts of impedance and admittance.	4
5.	AC Network Analysis and Theorems	Mesh and Nodal analysis, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
6.	Resonant Circuits	Series and Parallel resonance, frequency response of Series and Parallel resonance, Q-Factor, Bandwidth	4
7.	Electrical Instruments	Essentials of an Instrument, Permanent Magnet Moving Coil (PMMC) Instruments, voltmeter, ammeter, Ohmmeter, Meter Sensitivity (Ohms-Per-Volt Rating); Loading Effect; Multimeter; Cathode Ray Oscilloscope: Construction, Working and Applications. Function Generators	6
8.	Single Phase Transformer	Principle of operation, construction, e.m.f. equation, equivalent circuit, power losses, efficiency (simple numerical problems), introduction to auto transformer.	4
		Total number of Lectures	42
Evaluat	tion Criteria		
Compo T1 T2 End Ser TA Total	onents mester Examination	Maximum Marks 20 20 35 25 (Assignment = 10, Quiz = 5, Attendance = 10) 100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 9th ed, John Wiley & Sons, 2013.
- 2. Charles K. Alexander (Author), Matthew N.O Sadiku, "Fundamentals of Electric Circuits", 6th ed, Tata Mc

	Graw Hill, 2019.
3.	Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 11 th ed, Prentice Hall of India, 2014.
4.	D.C. Kulshreshtha, Basic Electrical Engineering, Revised 1 st ed, Tata Mc Graw Hill, 2017.

Lab-wise Breakup

Course Co	de	18B15GE112	Semester: Eve	n	Semeste	er:2 nd ;	Session :2019 -20
					Month:	Januar	y - June
Course Na	me	Workshop					
Credits		1.5 Conta		Contact H	ntact Hours 03		03
Faculty (Names)		Coordinator(s)	Prabhakar Jha, Vimal Saini				
		Teacher(s) (Alphabetically)	Chandan Kumar, Deepak Kumar, Madhu Jhariya, Nitesh Ki Rahul Kumar		hariya, Nitesh Kumar, and		
COURSE O	UTCOM	ES					COGNITIVE LEVELS
C179.1	II	ne basic of manufact ures associated with		nent and v	arious s	afety	Remembering Level (C1)
C179.2		the appropriate to tools.	ols to fabricat	e joints u	tilizing w	vork-	ApplyingLevel (C3)
C179.3		e various prototypes elding trade	in the carpen	try trade,	fitting ti	rade,	CreatingLevel (C6)
C179.4	machi	nstrate the working nes and able to fabr ccuracies.					UnderstandingLevel(C2)

Module No.	Title of the Module	List of Experiments	со
1.	Carpentry	Preparation of T joint as per the given specification. Preparation of dovetail joint/ cross lap joint as per given specification.	C179.2, C179.3
2.	Welding Shop	To study Gas welding/Arc welding equipment and various safety measures associated with it. To make butt joint and lap joint.	C179.1, C179.2, C179.3

3.	Sheet Metal Shop	To prepare a square tray using GI sheet. To prepare a funnel using GI sheet.	C179.2, C179.3
4.	Fitting Shop	To prepare V- groove fit as per given specifications. To prepare square fit as per given specifications.	C179.2, C179.3
5.	Machine Shop	To perform turning, facing and grooving operation on Lathe. To perform slotting operation on Shaper Machine. To perform face milling operation on Milling Machine.	C179.4

Evaluation Criteria

Components

Maximum Marks

Viva 1 20 Viva 220

Report file, Attendance, and D2D

60 [File Work (20) + Attendance (10)+(Experimental

Work (30)]

Total 100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Reference Books, Journals, Reports, Websites etc. in the IEEE format) Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, 1. Mumbai Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and 2. Technology", 4th edition, Pearson Education India Edition, 2002. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata Mc GrawHill House, 2017. 3. John K.C., Mechanical Workshop Practice, 2nd Edition, PHI, 2010 Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice 5. Hall India, 1998 Gowri P.Hariharan and A. Suresh Babu," Manufacturing Technology – I" Pearson 6. Education, 2008 Raghuwanshi B.S., Workshop Technology Vol. I & II, Dhanpath Rai & Sons. 7.

Labwise Breakup

Course Code	15B17EC171	·		er-: II, Session: 2019 -2020 : January – May
Course Name	Electrical Science-1 L	Science-1 Lab		
Credits 2 Contact Hours		2		

Faculty (Names)	Coordinator(s)	Kaushal Nigam & Nisha Venkatesh	
	Teacher(s)	Abhay Kumar, Ashish Gupta, Atul K. Srivastava, Amit Kumar Goyal,	
	.,	Ankit Garg, Jyoti Vyas, Kirminder Singh, Monika, Madhu Jain, Ritesh Sharma, Raghvendra Singh, Sajai Vir Singh, Varun Goel, Vijay Khare.	

COURSE OU	ITCOMES	COGNITIVE LEVELS
C176.1	Understand various active and passive components and instruments (Multimeter, Bread board, Regulated D.C. power supply).	Understanding (C2)
C176.2	Acquire the knowledge of electrical network and circuit such as branch, node, loop and mesh in networks and circuits.	Analyzing (C4)
C176.3	Study and verification of reduction technique using different network theorem.	Remembering (C1)
C176.4	Study and verification of series and parallel AC circuits as well as Open & Short Circuit Test in single phase transformer.	Applying (C3)

Module Title of the List of Experiments COs

No.	Module		
1.	Introduction of active and passive components	Introduction to various components (Resistor, Capacitor, inductor, and IC) and instruments Multimeter, Bread board, Regulated D.C. power supply and CRO.	C176.1
2.	Analysis and verifications of Mesh and Node	Verification of KVL and KCL using a given circuit.	C176.2
3.	Analysis and verification of Transform Network	Realization of Equivalent Resistance of Star to Delta and Delta to Star Transformation.	C176.2
4.	Analysis and verification of of Super Node	Verification of Super Node using Voltage Source.	C176.2
5.	Analysis and verification of Divider rules for Current and Voltage	To verify the voltage divider rule (VDR) and the current divider rule (CDR).	C176.2
6.	Study and Analysis of Superposition Theorem	Verification of Superposition Theorem.	C176.3
7.	Analysis and verification of Thevenin's/Norton Theorem	Verification of Thevenin's Theorm and Norton Theorm.	C176.3

Total			100
Compon Marks Viva1 Viva2	le, Attendance, a	nd D2D	Maximum 20 20 20
12.	Study of Short Circuit test	Short Circuit Test in Single Phase Transformer using Vlab.	C176.4
11.	Study of open Circuit Test	Open Circuit Test in Single Phase Transformer using Vlab.	C176.4
10.	Study and Analysis of Resonance Circuit	To study the behavior of Series-Parallel RLC Circuit at Resonance.	C176.4
9.	Transfer Theorem Study and Verification of AC Signal in term of RMS and PP Value	To study the Root-Mean-Square(RMS), Peak, and Peak-to-Peak Values, Measurements with Oscilloscope.	C176.4
8.	Analysis and verification of Maximum Power	Verification of Maximum Power Transfer Theorem.	C176.3

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Nilsson Riedel, Electric Circuits," Pearson, 11 th Edition, 2019
Abhijit Chakrabarti, "Circuit Theory Analysis and Synthesis," Dhanpat Rai & Co.; 7th Edition, 2018
U. S. Bkashi A.U. Bakshi S. Ilaiyaraja,, "Circuit Theory Technical Publications; 3 rd Edition, 2019
Roman Malaric, "Instrumention and Measurement in Electrical Engineering, "Universal Publisher, 3 rd Edition, 2011.
DP Kothar and I J Nagrath, "Electric Machine," TMH; 4 th Edition, 2010

Course Code	15B11PH211				ter: II Session 2019 -2020 n from: January to June	
Course Name	PHYSICS-2	HYSICS-2				
Credits	4	Contact Hours 4		4		

Faculty (Faculty (Names) Coordinator(s)		Dr. Vivek Sajal & Dr. Suneet Kumar Awasthi		
		Teacher(s) (Alphabetically)	Alok Pratap Singh Chauhan, Amit Verma, Anuj Kumar, Anuraj Panwar, Anshu D. Varshney, Ashish Bhatnagar, D. K. Rai, Dinesh Tripathi, Himanshu Pandey, Manoj Kumar, Manoj Tripathi, Navendu Goswami, R. K. Dwivedi, S. C. Katyal, Suneet Kumar Awasthi, Vikas Malik, Vivek Sajal		
COURSE	COURSE OUTCOMES COGNITIVE LEVELS			COGNITIVE LEVELS	
CO1	Recall the basic concepts relating to electromagnetic theory, statistical physics, lasers, fiber optics and solid state physics.		Remembering (C1)		
CO2	Illustrate the various physical phenomena with interpretation based on the mathematical expressions involved.		Understanding (C2)		
соз	Apply the basic principles in solving variety of problems related to lasers, electromagnet theory, fiber and solid state physics.		Applying (C3)		
CO4	Analyze and examine the solution of the problems using physical and mathematical concepts involved in the course.		Analyzing (C4)		

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Electromagnetism and Optical Fiber	Coulomb's law, Gauss law and its applications, Treatment of electrostatic problems by solution of Laplace and Poisson's equations, Biot-Savart law, Ampere's law, Maxwell's equations in free space and dielectric media. Electromagnetic waves, Derivations of expressions for energy density and energy flux (Poynting vector) in an	18

Distributions and Lasers distributions and their applications. Principle and working of laser, Einstein A and B coefficients, Ruby Laser. 3. Solid State Basic ideas of bonding in solids, Crystal structure, Bragg's law X-ray diffraction, Band theory of solids, Distinction between metals, semiconductors and insulators. Electronic conduction in metals, Intrinsic and extrinsic (n and p-type) semiconductors and their electrical conductivity. p-n junction and Hall effect in semiconductors. Total number of Lectures 40 Evaluation Criteria Components Maximum Marks T1 20 End Semester Examination TA (a) Quizes /class tests (07 M), (b) Attendance (07 M) (c) Internal Assessment (05)			electromagnetic field, Radiation pressure. Propagation of EM waves through boundary-Reflection, Refraction, Absorption and Total Internal Reflection. Light propagation in fibers and Graded Index fibers, Numerical Aperture and Attenuation, Single and Multimode.	
Physics law X-ray diffraction, Band theory of solids, Distinction between metals, semiconductors and insulators. Electronic conduction in metals, Intrinsic and extrinsic (n and p-type) semiconductors and their electrical conductivity. p-n junction and Hall effect in semiconductors. 40 Evaluation Criteria Components Maximum Marks 20	2.	Distributions and	distributions and their applications. Principle and working	08
Evaluation Criteria Components T1 20 T2 End Semester Examination TA (a) Quizes /class tests (07 M), (b) Attendance (07 M) (c) Internal Assessment (05)	3.		law X-ray diffraction, Band theory of solids, Distinction between metals, semiconductors and insulators. Electronic conduction in metals, Intrinsic and extrinsic (n and p-type) semiconductors and their electrical conductivity. p-n	14
Components T1 T2 End Semester Examination TA (a) Quizes /class tests (07 M), (b) Attendance (07 M) (c) Internal Assessment (05)			Total number of Lectures	40
(d) Assignments in PBL mode (06 M) Total 100				

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	D. J. Griffiths, Introduction to electrodynamics, Pearson India.			
2.	. G. Keiser, Optical Fiber Communications, Tata Mc Graw Hill Education.			
3.	A. Beiser, Concepts of Modern Physics, Mc Graw Hill International.			
4.	4. S. O. Pillai, Solid State physics, New Age International (P) Limited.			
5.	5. B. G. Streetman & S. Banerjee, Solid State Electronic Devices, Prentice-Hall India.			

Course Code	15B11Cl211	Semester Even	Semester 2nd S Month from Janu	Session 2019 -2020 uary to June
Course Name	Software Development Fundamentals - II			
Credits	4		Contact Hours	3 (L) + 1 (T)

(Names)		Sec-62: Dr. Niyati Aggrawal, Dr. Suma Dawn Sec-128: Dr. Arti Jain
	Teacher(s) (Alphabetically)	Sec-62: Aditi Sharma, Dr. Alka Singhal, Dr. Amarjeet Kaur, Mradula Sharma, Dr. Neha Bansal, Dr. Niyati Aggrawal, Dr. Parul Agarwal, Dr. Pawan Singh Mehra, Sakshi Agarwal, Dr. Suma Dawn, Dr.Taj Alam Sec-128: Dr. Arti Jain, Dr. Charu, Dr. Chetna Gupta, Dr. Himani Bansal, Himanshu Mittal, Rupesh Koshariya

COURSE C	DUTCOMES	COGNITIVE LEVELS
C110.1	Develop C programs using structures, pointers, functions, and files.	Apply Level (C3)
C110.2	Solve problems related to data storage, retrieval, searching, and sorting by utilizing stack/queue.	Apply Level (C3)
C110.3	Make use of linked list to solve various problems.	Apply Level (C3)
C110.4	Apply binary tree data structure to perform operations like searching, insertion, deletion, and traversing.	Apply Level (C3)
C110.5	Explain basic features of object-oriented design such as objects, classes, encapsulation, polymorphism, inheritance, and abstraction.	Understand Level (C2)

C110.6	Develop C++ programs using OOPs concepts like encapsulation, inheritance, polymorphism, and standard template library.	Apply Level (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module	COs
1.	Advanced C programming	Derived data types — Enumerated , structure and Union; Revision of Functions, Pointers, Pointer arithmetic, Pointer-to-Pointers, Pointers and Arrays & Strings (1D, 2D, MD , array of pointers), Pointers-to-Functions, Pointer-to-Strucures, Pointers within Structures, Structures and Functions, Unions; Function Prototypes , Arguments Passing; Recursion; FILE handling (binary and text) — reading and writing; Searching — Linear, and binary search; Sorting — bubble, insertion, and selection; Bitwise Operations ; Stacks — implementation (array-based) and applications	16	C110.1 C110.2
2.	Implementations and applications of elementary data structures	Queues: linear, and queue applications, circular, deque – implementation and applications; Dynamic Memory Allocation Linked list - application, storage; sparse matrix; Binary trees- implementation using arrays and pointers.	15	C110.3 C110.4
3.	Object Oriented Programming	Introduction to Object-Oriented Programming using C++, objects, classes, methods, implementing functions in the class, use of scope resolution operator, Access Modifiers, static functions and static data members, constructor and destructors, Inheritance: single, multiple, multi-level and hybrid, Polymorphism: function and operator overloading, virtual member functions, abstract base classes and pure virtual functions, Introduction to SDLC.	14	C110.5 C110.6
	Total number of Lectures			

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester	35
TA	25 (Attendance = 07; Class Test, Quizzes, etc = 07; Internal
	Assessment = 05 ; Assignments in PBL mode = 06 .)
Total	100

Text	Books:
1.	E. Balagurusamy, "Programming In Ansi C", McGraw Hill Education India Pvt Ltd, 8 th Edition, 2019.
2.	G. Perry, and D. Miller, "C Programming Absolute Beginner's Guide, QUE Publication, 3rd Edition, 2013.
3.	David Griffiths, and Dawn Griffiths "Head First C 1/e Edition", O'Reilly Publication, 2012.
4.	B. Stroustrup, "The C++ Programming Language", 4th Edition, Addison-Wesley, 2013.
5.	T. Gaddis, "Starting Out with C++ from Control Structures to Objects", 9th edition, Pearson Publication, 2017.
6.	B. E. Moo, J. Lajoie, S. B. Lippman, "C++ Primer", 5th Edition, Addison-Wesley Professional, 2013.
7.	Y. P. Kanetkar, "Exploring C", BPB Publication, 2nd Edition, 2014.
8.	D. S. Malik, "C++ Programming: From Problem Analysis to Program Design, 6th Edition, Course Technology, Cengage Learning, 2012
9.	R. Thareja, "Computer Fundamentals and Programming in C", Oxford University Press, 2012.
Refe	rence Books:
1	B W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Prentice-Hall India, New Delhi, 2002.
2	H. Schildt, "C: The Complete Reference", Tata McGraw-Hill Education, 4 th Edition, TMH 2000.
3	E. Horowitz, S. Sahni, "Fundamentals of Data Structures in C", Silicon Press, 2008.
4	E Balaguruswamy, "Object Oriented Programming with C++", 4th Edition, TMH, 2008.
5	M. Vine, "C Programming for the Absolute Beginner", Second Edition, Thomson Course Technology, 2008.

6	T. A. Budd, "An Introduction to Ob ject-Oriented Programming", 3rd Edition, Addison-Wesley, 2001.
7	Y. Kanethkar, "Let Us C", BPB Publication, 16th Edition, 2018.
8	R. Lafore, "Object-Oriented Programming in C++", Fourth Edition, Sams Publishing, 2002.

Course Code	15B17Cl271	Semester : Eve	Semester 2 nd Sess Month from Jan-Ma		er 2 nd Session 2019-2020 from Jan-May 2020
Course Name	Software Development Fundamental – 2 LAB				
Credits	Credits 1		Contact Hours		2

Faculty (Names)	Coordinator(s)	Dr. Parul Agarwal (J62)
		Dr. Himani Bansal (J128)
	Teacher(s) (Alphabetically)	(J62) Aditi Sharma, Adwitiya Sinha, Alka, Amarjeet Kaur, Ankita Verma, Anuja Arora, K.Rajalakshmi, Manju, Megha Rathi, Mradula Sharma, Neha Bansal, Niyati Aggrawal, Parul Agarwal, Sakshi Agarwal, Sarishty Gupta, Shulabh (J128) Arti Jain, Bindu Verma, Chetna Gupta, Devpriya Soni, Himani Bansal, Himanshu Agrawal, Himanshu Mittal, Kritika Rani, Nitin Shukla, Rupesh, Shariq, Shikha Mehta, Shruti Jaiswal, Vartika Puri

COURSE O	UTCOMES	COGNITIVE LEVELS
C173.1	Make use of structures, pointers, functions, and files to build basic C programs.	Apply (level 3)
C173.2	Construct stack/queue based solutions for data storage, retrieval, searching, and sorting problems.	Apply (level 3)
C173.3	Apply linked list data structure to solve problems like polynomial operations and sparse matrix representation.	Apply (level 3)
C173.4	Build operations like searching, insertion, deletion, traversing on binary tree data structure.	Apply (level 3)
C173.5	Demonstrate fundamental concepts of object-oriented programming i.e. objects, classes, encapsulation, polymorphism, inheritance, and abstraction.	Understand (level 2)
C173.6	Apply object-oriented programming features like encapsulation, Inheritance, Polymorphism, and Standard Template Library to	Apply (level 3)

construct C++ programs.	

Module No.	Title of the Module	List of Experiments	со
1.	Structures	Write C programs to store heterogeneous data and perform basic queries over it.	C173.1
2.	Pointers & Functions	Write C programs using pointers and recursive functions like palindrome, factorial, fibonacci series, number system etc. using array of pointers	C173.1
3.	File Handling & Dynamic Memory Allocation	Write menu driven C programs to perform basic file operations (create, read, write, update).	C173.1
4.	Searching & Sorting	Write C programs to perform searching (Linear and binary) and sorting (Insertion, bubble, selection) on set of n numbers, strings using runtime input or stored input from a file. Program on bitwise operators .	C173.2
5.	Stacks	Write C programs using LIFO concept such as push an element, pop an element, display status of the stack and arithmetic expressions evaluation and representations.	C173.2
6.	Queue	Write programs in C to perform operations on queues using array implementation.	C173.2
7.	Linked List	Write programs in C to perform basic operations (add, delete, search etc.) via linked list representation. Use dynamic memory allocation.	C173.3
8.	Binary Tree	Write programs in C to implement binary tree properties (traversal, leaf node identification, height etc.) using array and linked list representation.	C173.4
9.	Introduction to C++ : Classes and Objects	Understand fundamental concepts of OOPs i.e. objects, classes, constructor, destructor, friend function through output based C++ programs.	C173.5
10.	Object oriented programming Concepts	Write programs in C++ using OOPs concept like encapsulation, Inheritance, Polymorphism and Abstraction.	C173.6

Evalu	Evaluation Criteria		
Lab 1	ponents Maximum Marks Test -1 20 Test -2 20 60 (Attendance-5, Lab Records-5, Class Test/Quizzes-30, Project-20) 100		
Text	Books:		
1.	E. Balagurusamy, "Programming In Ansi C", McGraw Hill Education India Pvt Ltd, 8 th Edition, 2019.		
2.	B. S. Gottfried, "Programming with C", Schaum's Outlines, Mc Graw Hill, 4th Edition, 2014.		
3.	G. Perry, and D. Miller, "C Programming Absolute Beginner's Guide, QUE Publication, 3rd Edition, 2013		
4.	David Griffiths, and Dawn Griffiths "Head First C 1/e Edition", O'Reilly Publication, 2012.		
5	B. Stroustrup, "The C++ Programming Language", 4th Edition, Addison-Wesley, 2013.		
6.	T. Gaddis, "Starting Out with C++ from Control Structures to Objects", 9th edition, Pearson Publication, 2017.		
7.	B. E. Moo, J. Lajoie, S. B. Lippman, "C++ Primer", 5th Edition, Addison-Wesley Professional, 2013		
8.	Y. P. Kanetkar, "Exploring C", BPB Publication, 2nd Edition, 2014.		
9.	D. S. Malik, "C++ Programming: From Problem Analysis to Program Design, 6th Edition, Course Technology, Cengage Learning, 2012		
10.	R. Thareja, "Computer Fundamentals and Programming in C", Oxford University Press, 2012.		
Refe	rence Books:		
1	B W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Prentice-Hall India, New Delhi, 2002.		
2	H. Schildt, "C: The Complete Reference", Tata McGraw-Hill Education, 4th Edition, TMH 2000.		
3	E. Horowitz, S. Sahni, "Fundamentals of Data Structures in C", 2008, Silicon press, 2014.		
4	E Balaguruswamy, "Object Oriented Programming with C++", 4th Edition, TMH, 2008		
5	P. van der Linden, "Expert C Programming: Deep C Secrets", Prentice Hall, ISBN: 0131774298.		
6	M. Vine, "C Programming for the Absolute Beginner", Second Edition, 2008 Thomson Course Technology.		
7	T. A. Budd, "An Introduction to Ob ject-Oriented Programming", 3rd Edition, Addison-Wesley, 2001		

8	Y. Kanethkar, "Let Us C", BPB Publication, 16th Edition, 2018.
9	R. Lafore, "Object-Oriented Programming in C++", Fourth Edition, Sams Publishing, 2002.