Course Description

Course Code	15B11CI211	Semester Even	Semester 2nd S Month from Janu	Session 2019 -2020 ary to June
Course Name	e Software Development Fundamentals - II			
Credits	4		Contact Hours	3 (L)+ 1 (T)

Faculty (Names)	Coordinator(s)	Sec-62: Niyati Aggarwal, Suma Dawn Sec-128: Arti Jain
	Teacher(s) (Alphabetically)	Sec-62: Alka Singhal, Aditi Sharma, Amarjeet Kaur, Mradula Sharma, Neha Bansal, Niyati Aggarwal, Parul Arora, Pawan Singh Mehra, Sakshi Agarwal, Suma Dawn, Taj Alam Sec-128: Arti Jain, Charu, Chetna Gupta, Himani, Himanshu Mittal

COURSE OUTCOMES		COGNITIVE LEVELS
C110.1	Develop C programs using structures, pointers, functions, and files.	Apply Level (C3)
C110.2	Solve problems related to data storage, retrieval, searching, and sorting by utilizing stack/queue.	Apply Level (C3)
C110.3	Make use of linked list to solve various problems.	Apply Level (C3)
C110.4	Apply binary tree data structure to perform operations like searching, insertion, deletion, and traversing.	Apply Level (C3)
C110.5	Explain basic features of object-oriented design such as objects, classes, encapsulation, polymorphism, inheritance, and abstraction.	Understand Level (C2)
C110.6	Develop C++ programs using OOPs concepts like encapsulation, Inheritance, Polymorphism, and Standard Template Library.	Apply Level (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Advanced C programming	Derived data types – Enumerated, structure and Union; Revision of Functions, Pointers, Pointer arithmetic, Pointer-to-Pointers, Pointers and Arrays & Strings (1D, 2D, MD, array of pointers), Pointers-to-Functions, Pointer-to-Strucures, Pointers within Structures, Structures and Functions, Unions; Function Prototypes, Arguments Passing; Recursion; FILE handling (binary and text) – reading and writing; Searching – Linear, and	16

		binary search; Sorting – bubble, insertion, and selection; Bitwise Operations;	
2.	Implementations and applications of elementary data structures	Stacks – implementation (array-based) and applications; Queues: linear, and queue applications, circular, deque – implementation and applications; Linked list - application, storage; sparse matrix; Binary trees- implementation using arrays and pointers.	15
3.	Object Oriented Programming	Introduction to Object-Oriented Programming using C++, objects, classes, methods, implementing functions in the class, use of scope resolution operator, Access Modifiers, static functions and static data members, constructor and destructors, Inheritance: single, multiple, multi-level and hybrid, Polymorphism: function and operator overloading, virtual member functions, abstract base classes and pure virtual functions, Introduction to SDLC.	14
	Α	Total number of Lectures	45
Evaluatio	on Criteria		
Compone	ents Ma	aximum Marks	
T1 20		0	
T2 20		0	
End Semester 35		5	
TA	TA 25 (Attendance = 07; Class Test, Quizzes, etc = 07; Internal asse		
		Assignments in PBL mode = $06.$)	
Total	100)	

Tex	Text Reading material:					
1.	E. Balagurusamy, "Programming In Ansi C", McGraw Hill Education India Pvt Ltd, 8 th Edition, 2019.					
2.	B. S. Gottfried, "Programming with C", Schaum's Outlines, Mc Graw Hill, 4th Edition.					
3.	G. Perry, and D. Miller, "C Programming Absolute Beginner's Guide, QUE Publication, 3rd Edition, 2013					
4.	David Griffiths, and Dawn Griffiths "Head First C 1/e Edition", O'Reilly Publication, 2012.					
5	B. Stroustrup, "The C++ Programming Language", 4th Edition, Addison-Wesley, 2013.					
6.	T. Gaddis, "Starting Out with C++ from Control Structures to Objects", 9th edition, Pearson Publication, 2017.					
7.	B. E. Moo, J. Lajoie, S. B. Lippman, "C++ Primer", 5th Edition, Addison-Wesley Professional, 2013					
8.	Y. P. Kanetkar, "Exploring C", BPB Publication, 2nd Edition, 2014.					
9.	D. S. Malik, "C++ Programming: From Problem Analysis to Program Design, 6th Edition,					

	Course Technology, Cengage Learning, 2012
10.	R. Thareja, "Computer Fundamentals and Programming in C", Oxford University Press, 2012.
11.	Study Material provided by faculty
Rec	ommended Reading material:
1	B W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Prentice-Hall India, New Delhi, 2002.
2	H. Schildt, "C: The Complete Reference", Tata McGraw-Hill Education, 4th Edition, TMH 2000.
3	E. Horowitz, S. Sahni, "Fundamentals of Data Structures in C", 2008, Silicon press
4	E Balaguruswamy, "Object Oriented Programming with C++", 4th Edition, TMH, 2008
5	P. van der Linden, "Expert C Programming: Deep C Secrets", Prentice Hall, ISBN: 0131774298.
6	M. Vine, "C Programming for the Absolute Beginner", Second Edition, 2008 Thomson Course Technology.
7	T. A. Budd, "An Introduction to Ob ject-Oriented Programming", 3rd Edition, Addison-Wesley, 2001
8	Y. Kanethkar, "Let Us C", BPB Publication, 16th Edition, 2018.
9	R. Lafore, "Object-Oriented Programming in C++", Fourth Edition, Sams Publishing, 2002.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11EC111	Semester (specify	Even	Seme -2020	ster	2 nd	Session	2019
		Odd/Even)	Mont	h fro	m J	an-June	
Course Name	Electrical Science -1							
Credits	4		Contac Hours	t			3+1	

Faculty (Names)	Coordinator(s)	Ashish Gupta, Madhu Jain
	Teacher(s) (Alphabetically)	Atul Srivastava, Jyoti Vyas, Kaushal Nigam, Mandeep Narula, Neetu Joshi, Nisha, Rachna Singh, Sajaivir Singh, Shraddha Saxena,

COURSE	COGNITIVE LEVELS	
C113.1	Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws and different analyzing techniques to identify the different circuit parameters.	Apply Level (C3)
C113.2	Define and apply the networks theorems in the complex AC and DC circuits, networks. Demonstrate the physical model for given Sinusoidal AC signal and construct the phasor diagrams.	Applying Level (C3)
C113.3	Demonstrate the conept of resonance and operate different instrumental and measurement equipments.	Understanding Level (C2)
C113.4	Demonstrate the construction and working of single phase transformer.	Understanding Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic Concepts	Voltage, Current, Power and Energy analysis for Circuit elements (R, L, C), Independent and Dependent Sources, Kirchhoff's Laws, Voltage Divider rule, Current Divider rule	6
2.	DC Circuit Analysis	Star-Delta Transformation, Source transformation, Mesh and Supermesh Analysis, Nodal and super nodal Analysis	6
3.	Network Theorems	Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
4.	Sinusoidal Steady State Analysis	Physical Model for a Sinusoid, Average Value, Effective Value, Phasor presentation, Addition of Phasor using Complex Numbers, Concepts of impedance and admittance.	4
5.	AC Network Analysis and Theorems	Mesh and Nodal analysis, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
6.	Resonant Circuits	Series and Parallel resonance, frequency response of Series and Parallel resonance, Q-Factor, Bandwidth	4
7.	Electrical	Essentials of an Instrument, Permanent Magnet Moving	6

	Instruments Coil (PMMC) Instruments, voltmeter, ammeter, Ohmmeter, Meter Sensitivity (Ohms-Per-Volt Rating); Loading Effect; Multimeter; Cathode Ray Oscilloscope: Construction, Working and Applications. Function Generators				
8.	Single Phase Transformer	Principle of operation, construction, e.m.f. equation, equivalent circuit, power losses, efficiency (simple numerical problems), introduction to auto transformer.	4		
		Total number of Lectures	42		
Evaluation	Criteria				
Componen	its	Maximum Marks			
T1		20			
T2		20			
End Semester Examination		35			
TA		25 (Assignment = 10 , Quiz = 5, Attendance = 10)			
Total		100			

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 9 th ed, John Wiley & Sons, 2013.					
2.	Charles K. Alexander (Author), Matthew N.O Sadiku, "Fundamentals of Electric Circuits", 6 th ed, Tata Mc Graw Hill, 2019.					
3.	Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 11 th ed, Prentice Hall of India, 2014.					
4.	D.C. Kulshreshtha, Basic Electrical Engineering, Revised 1st ed, Tata Mc Graw Hill, 2017.					

Detailed Syllabus

Lecture-wise Breakup

Course Code		15B11MA2	.11	Semester Even	Semester	r II Sessio	n 2019 -2020
					Month f	rom Jan 20	20- June 2020
Course Na	me	Mathematic	es 2				
Credits		4		Contact	Hours (3-1-0	
Faculty		Coordinat	or(s)	Dr. Anuj Bhardwaj & I	Dr. Neha A	hlawat	
(Names)		Teacher(s)		Dr. Anuj Bhardwaj, Pr	of. B.P. C	hamola, D	r. D. C. S. Bisht,
		(Alphabeti	cally)	Dr. Neha Ahlawat, Dr.	Neha Sin	ghal, Dr. P	uneet Rana, Prof.
				R.C. Mittal, Prof. Sanje	eev Sharma	a,	COCNETUE
COURSE	OUT	COMES					COGNITIVE
A ftor purcu	una th	a abova man	tionad	ourse the students will	ha ahla ta:		LEVELS
	annl [.]	v different m	ethods	for solving ordinary diffe	erential equ	uations of	Applying Level
C100.1	seco	nd order	emous	for sorving oralitary and	erentiai eq		(C3)
C106 2	5000		,				Understanding
	expl	ain different	tests/me	ethods of convergence for	or infinite s	series.	Level (C2)
C106.3	find	the series sol	ution o	f differential equations a	nd use it to)	Applying Level
	cons	truct Legend	re's pol	ynomials and Bessel's fi	unctions.		(C3)
C106.4	class	sify the partia	l differ	ential equations and appl	ly Fourier s	series to	Applying Level
	find	their solution	1.				(C3)
C106.5 explain Taylor's &			& Laur	ent's series expansion, si	ngularities	s, residues	Understanding
	and	transformatio	ons.			0	Level (C2)
C106.6 apply the concept			t of con	plex variables to solve t	he problen	ns of	Applying Level
	Complex unreferituation and integrations. (Complex unreferituation and integrations. a Title of the Topies in the Medule					(C3)	
Module		e of the	lopic	in the Module			
NO.	NIOG	lule					Lectures for
1	Seco	and Order	Linoo	r Differential Equation	s of Soor	nd Order	
I. Second Order		with	with constant coefficients and with variable		5		
	Diff	arontial	coeffi	cients Change of Var	riable Va	riation of	
	Eaus	ations	Param	eters	ilable, va	ination of	
2	Conv	vergence of	Conve	ergence of series. Tes	sts of cor	ivergence	7
	Serie	es and	Alterr	ating Series Absolu	te & C	conditional	,
	Four	ier Series	Conve	ergence Uniform Co	nvergence	Fourier	
			Series				
3. Serie		es Solution	Series	Solutions, Bessel Fu	unction, F	Recurrence	7
and Special		Special	Relati	ons and Orthogonality.	Legendre	functions,	
Functions		tions	Recur	rence relations and Orth	ogonality.	2	
4. Partial		al	Classi	fication and Solution o	of PDE, Ed	quation of	5
	Diffe	erential	vibrat	ing string, Solution of or	ne dimensi	onal wave	
	Equa	ations	& hea	t equations.			
5.	Com	plex	Limit	, Continuity and I	Differentia	bility of	3
	Vari	ables	Funct	ions of Complex V	Variables,	Analytic	

		Functions, Cauchy's Riemann Equations.				
6.	Complex	Cauchy Integral Theorem, Cauchy Integral	4			
	Integration	Formula and Applications.				
7.	Series	Taylor and Laurent Series Expansion, Poles and	4			
	Expansion	Singularities.				
8.	Contour	Residues, Cauchy's residue theorem and its	5			
	Integration	applications.				
9.	Conformal	Bilinear transformation	2			
	Mapping					
Total num	ber of Lectures		42			
Evaluation	n Criteria					
Componer	nts	Maximum Marks				
T1		20				
T2		20				
End Semester Examination		35				
ТА		25 (Quiz, Assignments, Tutorials)				
Total		100				

Recommended Reading material:

Jain, R. K. & Iyenger, S. R. K., Advanced Engineering Mathematics, 3rd Ed., Narosa

Publishing House, New Delhi, 2008.

- 2. Brown, J.W. & Churchill, R.V., Complex Variables and Applications, 6th Ed., McGrawHill, 1996.
- **3. Prasad, C.,** (a) Mathematics for Engineers (b) Advanced Mathematics for Engineers, Prasad Mudranalaya, 1982.
- 4. **Kreysizg, E.,** Advanced Engineering Mathematics, 9th Edition, John Wieley& Sons, Inc., 2011
- 5. Simmons, G. F., Differential Equations with Applications and Historical Notes, 2nd Ed. McGraw Hill, 1991.
- 6. Spiegel, M.R., Complex Variables, Schaum's outline series, MacGraw-Hill, 2009.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11PH211	Semester: Even		Semester: II Session 2019 -2020 Month from: January to June		
Course Name	PHYSICS-2					
Credits	4		Contact H	lours	4	

Faculty (Names)	Coordinator(s)	Dr. Vivek Sajal & Dr. Suneet Kumar Awasthi
	Teacher(s)	Alok Pratap Singh Chauhan
	(Alphabetically)	Anuj Kumar
		Anuraj Panwar
		Anshu D. Varshney
		Ashish Bhatnagar
		D. K. Rai
		Dinesh Tripathi
		Himanshu Pandey
		Manoj Kumar
		Manoj Tripathi
		Navendu Goswami
		R. K. Dwivedi
		S. C. Katyal
		Suneet Kumar Awasthi
		Vikas Malik
		Vivek Sajal

COURSE	OUTCOMES	COGNITIVE LEVELS
C102.1	Recall the basic concepts relating to electromagnetic theory, statistical physics, lasers, fiber optics and solid state physics.	Remembering (C1)
C102.2	Illustrate the various physical phenomena with interpretation based on the mathematical expressions involved.	Understanding (C2)
C102.3	Apply the basic principles in solving variety of problems related to lasers, electromagnet theory, fiber and solid state physics.	Applying (C3)
C102.4	Analyze and examine the solution of the problems using physical and mathematical concepts involved in the course.	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Electromagnetism and Optical Fiber	Coulomb's law, Gauss law and its applications, Treatment of electrostatic problems by solution of Laplace and Poisson's equations, Biot-Savart law, Ampere's law, Maxwell's equations in free space and dielectric media. Electromagnetic waves, Derivations of expressions for energy density and energy flux (Poynting vector) in an electromagnetic field, Radiation pressure. Propagation of EM waves through boundary-Reflection, Refraction, Absorption and Total Internal Reflection. Light propagation in fibers and Graded Index fibers, Numerical Aperture and Attenuation, Single and Multimode.	18

2.	Statistical Distributions and Lasers	Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac distributions and their applications. Principle and working of laser, Einstein A and B coefficients, Ruby Laser.	08	
3.	Solid State Physics	Basic ideas of bonding in solids, Crystal structure, Bragg's law X-ray diffraction, Band theory of solids, Distinction between metals, semiconductors and insulators. Electronic conduction in metals, Intrinsic and extrinsic (n and p-type) semiconductors and their electrical conductivity. p-n junction and Hall effect in semiconductors.	14	
		Total number of Lectures	40	
Evaluatior	n Criteria			
Componer	nts	Maximum Marks		
T1		20		
T2		20		
End Semes	ter Examination	35		
TA		25		
		(a) Quizes /class tests (07 M),		
		(b) Attendance (07 M)		
		(c) Internal Assessment (05)		
		(d) Assignments in PBL mode (06 M)		
Total		100		

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	D. J. Griffiths, Introduction to electrodynamics, Pearson India.					
2.	G. Keiser, Optical Fiber Communications, Tata Mc Graw Hill Education.					
3.	A. Beiser, Concepts of Modern Physics, Mc Graw Hill International.					
4.	S. O. Pillai, Solid State physics, New Age International (P) Limited.					
5.	B. G. Streetman & S. Banerjee, Solid State Electronic Devices, Prentice-Hall India.					

Course Description

Course Code	15B17Cl271	Semester : Even		Semester 2 nd Session 2019 -2020 Month from Jan-May 2020			2019 -2020
Course Name	Software Developme	ent Fundamenta	I - 2 LAB	1 VIOIIIII I		11-1 v idy 20	,20
Credits 1 Contact Ho		ours			2		

Faculty (Names)	Coordinator(s)	Dr. Parul Agarwal (J62)
		Dr. Himani Bansal (J128)
	Teacher(s) (Alphabetically)	 (J62) Aditi Sharma, Adwitiya Sinha, Alka, Amarjeet Kaur, Ankita Verma, Anuja Arora, K.Rajalakshmi, Manju, Megha Rathi, Mradula Sharma, Neha Bansal, Niyati Aggrawal, Parul Agarwal, Sakshi Agarwal, Sarishty Gupta, Shulabh (J128) Arti Jain, Bindu Verma, Chetna Gupta, Devpriya Soni, Himani Bansal, Himanshu Agrawal, Himanshu Mittal, Kritika Rani, Nitin Shukla, Rupesh, Shariq, Shikha Mehta, Shruti Jaiswal, Vartika Puri

COURSE O	UTCOMES	COGNITIVE LEVELS
C173.1	Make use of structures, pointers, functions, and files to build basic C programs.	Apply (level 3)
C173.2	Construct stack/queue based solutions for data storage, retrieval, searching, and sorting problems.	Apply (level 3)
C173.3	Apply linked list data structure to solve problems like polynomial operations and sparse matrix representation.	Apply (level 3)
C173.4	Build operations like searching, insertion, deletion, traversing on binary tree data structure.	Apply (level 3)
C173.5	Demonstrate fundamental concepts of object-oriented programming i.e. objects, classes, encapsulation, polymorphism, inheritance, and abstraction.	Understand (level 2)
C173.6	Apply object-oriented programming features like encapsulation, Inheritance, Polymorphism, and Standard Template Library to construct C++ programs.	Apply (level 3)

Module No.	Title of the Module	List of Experiments	со				
1.	Structures	Write C programs to store heterogeneous data and perform basic queries over it.	C173.1				
2.	Pointers & Functions	Write C programs using pointers and recursive functions like palindrome, factorial, fibonacci series, number system etc. using array of pointers	C173.1				
3.	File Handling & Dynamic Memory Allocation	Write menu driven C programs to perform basic file operations (create, read, write, update).	C173.1				
4.	Searching & Sorting	Write C programs to perform searching (Linear and binary) and sorting (Insertion, bubble, selection) on set of n numbers, strings using runtime input or stored input from a file. Program on bitwise operators .	C173.2				
5.	Stacks	Write C programs using LIFO concept such as push an element, pop an element, display status of the stack and arithmetic expressions evaluation and representations.	C173.2				
6.	Queue	Write programs in C to perform operations on queues using array implementation.	C173.2				
7.	Linked List	Write programs in C to perform basic operations (add, delete, search etc.) via linked list representation. Use dynamic memory allocation.	C173.3				
8.	Binary Tree	Write programs in C to implement binary tree properties (traversal, leaf node identification, height etc.) using array and linked list representation.	C173.4				
9.	Introduction to C+ + : Classes and Objects	Understand fundamental concepts of OOPs i.e. objects, classes, constructor, destructor, friend function through output based C++ programs.	C173.5				
10.	Object oriented programming Concepts	Write programs in C++ using OOPs concept like encapsulation, Inheritance, Polymorphism and Abstraction.	C173.6				
Evaluation Componer	Evaluation Criteria Components Maximum Marks						

Lab Test -1	20
Lab Test -2	20
ТА	60 (Attendance-5, Lab Records-5, Class Test/Quizzes-30,
Project-20)	
Total	100

Text Books:

 E. Balagurusamy, "Programming In Ansi C", McGraw Hill Education India Pvt Ltd, 8th Edition, 2019.

- 2. B. S. Gottfried, "Programming with C", Schaum's Outlines, Mc Graw Hill, 4th Edition, 2014.
- G. Perry, and D. Miller, "C Programming Absolute Beginner's Guide, QUE Publication, 3rd
 Edition, 2013
- 4. David Griffiths, and Dawn Griffiths "Head First C 1/e Edition", O'Reilly Publication, 2012.
- 5 B. Stroustrup, "The C++ Programming Language", 4th Edition, Addison-Wesley, 2013.
- 6. T. Gaddis, "Starting Out with C++ from Control Structures to Objects", 9th edition, Pearson Publication, 2017.
- 7. B. E. Moo, J. Lajoie, S. B. Lippman, "C++ Primer", 5th Edition, Addison-Wesley Professional, 2013
- 8. Y. P. Kanetkar, "Exploring C", BPB Publication, 2nd Edition, 2014.
- D. S. Malik, "C++ Programming: From Problem Analysis to Program Design, 6th Edition, Course
 Technology, Cengage Learning, 2012
- 10 R. Thareja, "Computer Fundamentals and Programming in C", Oxford University Press, 2012.

Reference Books:

- 1 B W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Prentice-Hall India, New Delhi, 2002.
- 2 H. Schildt, "C: The Complete Reference", Tata McGraw-Hill Education, 4th Edition, TMH 2000.
- **3** E. Horowitz, S. Sahni, "Fundamentals of Data Structures in C", 2008, Silicon press, 2014.
- 4 E Balaguruswamy, "Object Oriented Programming with C++", 4th Edition, TMH, 2008
- 5 P. van der Linden, "Expert C Programming: Deep C Secrets", Prentice Hall, ISBN: 0131774298.
- **6** M. Vine, "C Programming for the Absolute Beginner", Second Edition, 2008 Thomson Course Technology.
- T. A. Budd, "An Introduction to Ob ject-Oriented Programming", 3rd Edition, Addison-Wesley, 2001
- 8 Y. Kanethkar, "Let Us C", BPB Publication, 16th Edition, 2018.
- 9 R. Lafore, "Object-Oriented Programming in C++", Fourth Edition, Sams Publishing, 2002.

Detailed Syllabus Labwise Breakup

Course Code	15B17EC171	Semester -: E (specify Odd/E	Even Even)	Semester-: II, Session: 2019 -2020 Month-: January – May	
Course Name	Course Name Electrical Science-1 Lab				
Credits	2		Contact I	Hours	2

Faculty (Names)	Coordinator(s)	Kaushal Nigam & Nisha Venkatesh				
	Teacher(s)	Abhay Kumar, Ashish Gupta, Atul K. Srivastava, Amit Kumar Goyal, Ankit Garg, Jyoti Vyas, Kirminder Singh, Monika, Madhu Jain, Ritesh Sharma, Raghvendra Singh, Sajai Vir Singh, Varun Goel, Vijay Khare.				

COURSE O	UTCOMES	COGNITIVE LEVELS
C176.1	Understand various active and passive components and instruments (Multimeter, Bread board, Regulated D.C. power supply).	Understanding (C2)
C176.2	Acquire the knowledge of electrical network and circuit such as branch, node, loop and mesh in networks and circuits.	Analyzing (C4)
C176.3	Study and verification of reduction technique using different network theorem.	Remembering (C1)
C176.4	Study and verification of series and parallel AC circuits as well as Open & Short Circuit Test in single phase transformer.	Applying (C3)

Modul e No.	Title of the Module	List of Experiments	COs
1.	Introduction of active and passive components	Introduction to various components (Resistor, Capacitor, inductor, and IC) and instruments Multimeter, Bread board, Regulated D.C. power supply and CRO.	C176. 1
2.	Analysis and verifications of Mesh and Node	Verification of KVL and KCL using a given circuit.	C176. 2
3.	Analysis and verification of Transform Network	Realization of Equivalent Resistance of Star to Delta and Delta to Star Transformation.	C176. 2
4.	Analysis and verification of of Super Node	Verification of Super Node using Voltage Source.	C176. 2
5.	Analysis and verification of	To verify the voltage divider rule (VDR) and the current	C176.2

	Divider rules for Current and Voltage	divider rule (CDR).	
6.	Study and Analysis of Superposition Theorem	Verification of Superposition Theorem.	C176. 3
7.	Analysis and verification of Thevenin's/ Norton Theorem	Verification of Thevenin's Theorm and Norton Theorm.	C176.3
8.	Analysis and verification of Maximum Power Transfer Theorem	Verification of Maximum Power Transfer Theorem.	C176.3
9.	Study and Verification of AC Signal in term of RMS and PP Value	To study the Root-Mean-Square(RMS), Peak, and Peak-to- Peak Values, Measurements with Oscilloscope.	C176.4
10.	Study and Analysis of Resonance Circuit	To study the behavior of Series-Parallel RLC Circuit at Resonance.	C176.4
11.	Study of open Circuit Test	Open Circuit Test in Single Phase Transformer using Vlab.	C176. 4
12.	Study of Short Circuit test	Short Circuit Test in Single Phase Transformer using Vlab.	C176. 4
Evaluati Compon Viva1 Viva2 Report fi	on Criteria ents le, Attendance, an	d D2D	Iaximum Marks 20 20 60 (15+15+30)
Total		100)

Rece Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Nilsson Riedel, Electric Circuits," Pearson, 11th Edition, 2019			
2.	Abhijit Chakrabarti, "Circuit Theory Analysis and Synthesis," Dhanpat Rai & Co.; 7th Edition, 2018			
3.	U. S. Bkashi A.U. Bakshi S. Ilaiyaraja,, "Circuit Theory Technical Publications; 3rd Edition, 2019			
4.	Roman Malaric, "Instrumention and Measurement in Electrical Engineering, "Universal Publisher, 3 rd Edition, 2011.			

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17PH271	Semester Eve	'n	Semeste Month:	er II from	Session Jan-June	2019 -2020
Course Name	Physics Lab-2						
Credits	1		Contact H	lours			2

Faculty (Names)	Coordinator(s)	Alok Pratap Singh Chauhan
	Teacher(s) (Alphabetically)	Alok Pratap Singh Chauhan, Amit Verma, Anuj Kumar, Anuraj Panwar, Bhubesh Chander Joshi, D. K. Rai, Dinesh Tripathi, Himanshu Pandey, Manoj Kumar, Manoj Tripathi, N. K. Sharma, Navendu Goswami, Prashant Chauhan, S. C. Katyal, Sandeep Chhoker, Swati Rawal, Vikas Malik, Vivek Sajal

COURSE	OUTCOMES	COGNITIVE LEVELS
C171.1	Recall laser, fibre optics, semiconductor and solid state physics	Remembering (C1)
	principles behind the experiments.	
C171.2	Explain the experimental setup and the principles involved behind the	Understanding (C2)
01/112	experiments performed.	
C171.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C171.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C171.5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	СО	
1.	Semiconductor Physics	 1(a) To determine the band gap in a semiconductor using its p-n junction diode. 1(b) To draw the I-V characteristic of Solar cell and find maximum power and fill factor. 2(a) To maximum printing for an incomplete print different different. 	1-5	
		 2(a) To measure resistivity of semiconductor at different temperatures by Four Probe Method. 2(b) To determine Band Gap of the semiconductor. 3(a) To study the Hall effect in semiconductor and to determine its allied coefficients. 3(b) To study the magneto resistance of given semiconductor 		
		(b) To study the magneto resistance of given semiconductor naterial.		
2.	Solid State Physics	 4. To study the Magnetostriction in metallic rod with the help of Michelson interferometer arrangement. 5. To find the susceptibility of a paramagnetic substance (FeCl₃) in the form of liquid or a solution. 6. Study of dielectric (constant) behavior and determination of Curie's temperature of ferroelectric ceramics. 	1-5	
3.	Modern Physics	 7(a) To determine the value of specific charge (e/m) of an electron by Thomson's method. (b) To determine the velocity of ultrasonic wave in the medium of liquid using ultrasonic interferometer and to determine the compressibility of the given liquid. 8. To determine the value of specific charge (e/m) of an 	1-5	

		 electron by Magnetron method. 9(a) To determine Planck"s Constant using LEDs of known wavelength. (b) To study the photovoltaic cell and hence verify the inverse square law. 			
4.	Optical Fiber	10(a) To determine the numerical aperture of a given 1 multimode optical fiber. (b) To measure the power loss at a splice between two multimode fibers and to study the variation of splice loss with Longitudinal and Transverse misalignments of the given fibers.	1-5		
Evaluation Criteria					
Components Maxim		Maximum Marks			
Mid Term Viva (V1)		20			
End Term Viva (V2)		20			
D2D		60			
Total		100			

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Dey and Dutta, Practical Physics	
2.	Lab Manuals	

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15GE112	Semester: Eve	en	Semester: 2 nd ; Session: 2019-20	
				Month:	January - June
Course Name	Workshop	-	-		_
Credits	1.5		Contact Hours		03

Faculty (Names)	Coordinator(s)	Prabhakar Jha, Vimal Saini
	Teacher(s) (Alphabetically)	Chandan Kumar, Deepak Kumar, Madhu Jhariya, Nitesh Kumar, and Rahul Kumar

COURSE	OUTCOMES	COGNITIVE LEVELS
C179.1	Tell the basic of manufacturing environment and various safety measures associated with it.	Remembering Level (C1)
C179.2	Apply the appropriate tools to fabricate joints utilizing work- bench tools.	Applying Level (C3)
C179.3	Create various prototypes in the carpentry trade, fitting trade, and welding trade	Creating Level (C6)
C179.4	Demonstrate the working principle of lathe, shaper and milling machines and able to fabricate the prototypes of desired shape and accuracies.	Understanding Level(C2)

Modul e No.	Title of the Module	List of Experiments	СО
1.	Carpentry	Preparation of T joint as per the given specification. Preparation of dovetail joint/ cross lap joint as per given specification.	C179.2, C179.3
2.	Welding Shop	To study Gas welding/Arc welding equipment and various safety measures associated with it. To make butt joint and lap joint.	C179.1, C179.2, C179.3
3.	Sheet Metal Shop	To prepare a square tray using GI sheet. To prepare a funnel using GI sheet.	C179.2, C179.3
4.	Fitting Shop	To prepare V- groove fit as per given specifications. To prepare square fit as per given specifications.	C179.2, C179.3
5.	Machine Shop	To perform turning, facing and grooving operation on Lathe. To perform slotting operation on Shaper Machine. To perform face milling operation on Milling Machine.	C179.4
Evaluation Criteria			
Components Viva 1 Viva 2 Report file, Attendance, and D		Maximum Marks 20 20 20 20 20 20 20	Work

(30)]
Total

Reco Refe	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai
2.	Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4 th edition, Pearson Education India Edition, 2002.
3.	Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata Mc GrawHill House, 2017.
4.	John K.C., Mechanical Workshop Practice, 2nd Edition, PHI, 2010
5.	Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998
6.	Gowri P.Hariharan and A. Suresh Babu," Manufacturing Technology – I" Pearson Education, 2008
7.	Raghuwanshi B.S., Workshop Technology Vol. I & II, Dhanpath Rai & Sons.