Ordinary Differential Equations (19M21MA111)

Course C	ode	19M21M	A111	Semester	Odd	Semester I Session- 2020-21 Month from Aug 2020-Dec 2020		
Course N	ame	Ordinary I	Differenti	ial Equations				
Credits		4			Contact H	ours	3-1-0	
Faculty		Coordina	itor(s)	Prof. A. K.	Aggarwal			
(Names)		Teacher(s	_	Prof. A. K.	Aggarwal			
COURSE								COGNITIVE LEVELS
After purs	uing th	e above me	ntioned c	ourse, the stud	ents will be	able to	:	
C110.1	_	n the basic d problems.	theory o	of ordinary dif	ferential eq	uations	and solve	Applying Level (C3)
C110.2	make	use of Frob	enious m	ethod in solvin	ng differentia	al equat	tions.	Applying Level (C3)
C110.3		y matrix method to solve a system of homogeneous linear ordinary Applying Leverential equations. (C3)				Applying Level (C3)		
C110.4	explai proble	n the conce	Understanding Level (C2)					
C110.5		re use of orthogonality of functions in solving Sturm-Liouville adary value problems.						Applying Level (C3)
C110.6	explai	n the phase	plane, cr	ritical points an	d paths of n	onlinea	ır systems.	Understanding Level (C2)
Module No.	Title (Topics	in the Module	2)			No. of Lectures for the module
1.	Basic linear differe equati	ential equation with constant coefficients, variation of						
2.	Series	Power series solutions about an ordinary point, solutions about singular points; the method of Frobenius, Bessel's equation and Bessel functions.						
3.	System differe equati		with co	trix method for onstant coefficer functions.	_		-	

4	Existence and uniqueness theory	6						
5	Sturm-Liouville boundary value problems	Theory of the homogeneous linear system, the non-homogeneous linear system, Strum Theory, Strum-Liouville problems, orthogonality of characteristic functions, the expansion of a function in a series of orthonormal functions, trigonometric Fourier series, Green's function.	14					
6	Nonlinear differential equations	Phase plane, paths and critical points, critical points and path of linear systems, critical points and path of non-linear systems.	4					
		Total number of lectures	42					
Eval	luation Criteria	,						
T1 T2	nponents Semester Examination al	Maximum Marks 20 20 35 25 (Quiz, Assignments, Tutorials) 100						
	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)							
1.	1. S. L. Ross, Differential Equations, 3 rd Ed., John Wiley & Sons, Singapore, 2007.							
2.	2. G. F. Simmons, Differential Equations with Applications and Historical Notes, 3 rd Ed., CRC Press, Boca Raton, 2016.							
3.	P. L. Sachdev, A Co. 1996.	mpendium on Nonlinear Ordinary Differential Equation	ns, Wiley-Blackwell,					

E. A. Coddington and R. Carlson, Introduction to Ordinary Differential Equations, SIAM, USA,

1997.

Real Analysis (19M21MA112)

Course C	ode	19M21	MA112	Semester	Odd	Month from Aug 2020-Dec 2020				
Course N	ame	Real A	nalysis							
Credits		4			Contact	Hours	3-1-0			
Faculty		Coord	linator(s)	Prof. B.P. Ch	namola					
(Names)		Teache (Alpha	er(s) abetically)	Prof. B.P. Ch	namola					
COURSE	OUTO	COMES						COGNITI LEVELS	VE	
After purs	uing th	e above :	mentioned c	ourse, the stud	lents will b	e able to	:	,		
C111.1	•	n the co propertie	•	ompact sets, c	onnected s	ets, meti	ric space and	Understand Level (C2)	ing	
C111.2	explai	n the co	onvergence o	of sequences, s	eries and tl	neir prop	erties.	Understand Level (C2)	ing	
C1113			•	of continuity, ated problems.	compactne	ess and co	onnectedness	Applying (C3)	Level	
C111.4	explai	n the Rio	emann-Stiel	ral and its properties. Understanding Level (C2)						
C111.5			cepts of sec	heir uniform	Applying (C3)	Level				
C111.6	solve	the prob	lems on Leb		Applying (C3)	Level				
Module No.	Title o		Topics in	the Module				No. of Led for the m		
1.	Revie sets	w of		untable and untable sets, perfect sets			etric spaces,	4		
2.	_	cequences Convergent sequences, sub sequences, Cauchy sequences, power series, absolute convergence, algebra of series, rearrangements of elements in a series						5		
3.	Conti	Continuity Limits of functions, continuous functions, compactness, connectedness, monotonic functions, infinite limits and limits at infinity.						6		
4.	Stieltj	<u> </u>						9		

5.	Sequence and series of functions	Sequences and series of functions: interchanging order of limits for sequences of functions, uniform convergence, uniform convergence and continuity, uniform convergence and integration, uniform convergence and differentiation, equi-continuous families of functions, Stone Weierstrass theorem.	10
6.	Lebesgue theory	Measurable sets and their properties, Lebesgue measure, measurable functions, Lebesgue integral of functions of arbitrary sign, integrable functions.	8
		Total number of lectures	42

Evaluation Criteria

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35

TA 25 (Quiz, Assignments, Tutorials)

Total 100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. W. Rudin, Principles of Mathematical Analysis, 3rd Ed., New Delhi, McGraw-Hill Inc., 2013.
- 2. H. L. Royden, and P. M. Fitzpatrick, Real Analysis, 4rd Ed., New Delhi, Pearson, 2010.
- 3. N. L. Carothers, Real Analysis, Cambridge University Press, 2000.
- **4. T. M. Apostol,** Mathematical Analysis –A modern approach to Advanced Calculus, New Delhi, Addison-Wesley, 1974.
- 5. R. G. Bartle, and D. R. Sherbert, Introduction to Real Analysis, 4th Ed., Wiley, 2011.

Abstract Algebra (19M21MA113)

Course	Code	19M2	21MA113	Semester	ter Odd Semester I Session 2020-21 Month from Aug 2020-Dec 2020				
Course	Name	Abstr	act Algebra						
Credits		4			Contact	Hours	3-1-0		
Faculty		Coor	rdinator(s)	Dr. Pato Kun	nari				
(Names)		her(s) nabetically)	Dr. Pato Kun	nari				
COURS	SE OUTO	COME	S					COGNITIVE LEVELS	
After pu	rsuing th	e above	e mentioned c	ourse, the stud	ents will b	e able to	:		
C112.1	illustra	ite vari	ous types of g	groups and thei	r propertie	es.		Understanding Level (C2)	
C112.2	explain	n Cayle	ey, Cauchy, S	rems and solve related problems. Applying Level (C3)			Applying Level (C3)		
C112.3	explain	n the co	oncepts of ring		Understanding Level (C2)				
C112.4	_	problems on integral domain, principal ideal domains and unique zation domains (UFD).						Applying Level (C3)	
C112.5	explain modul		identify mode	ules, submodu	les, quotie	ent modu	iles and free	Applying Level (C3)	
C112.6	explair	n and a	nalyze the co	ncepts of fields	s and their	extensio	ns.	Analyzing Level (C4)	
Modu le No.	Title of Module		Topics in th	e Module				No. of Lectures for the module	
1.	Groups		group action	basic group ts, Cayley's the eorem, p-grou	orem, clas	s equation	n of a group,	10	
2.	Rings		isomorphisn fractions, in ideal domai polynomial	als and homen theorems, printegral domain and unique rings over UF over UFD's.	me and ma , Euclidea e factorizat	aximal id n domai tion dom	ns, principal nains (UFD),	12	

3.	Modules	Basic definitions and examples, submodules and direct sums, quotient modules, homomorphism and isomorphism theorems, cyclic modules, free modules.	10							
4.	Fields	Fields and their extensions, algebraic and finitely generated	10							
		field extensions, splitting fields and normal extensions,								
		algebraic closures, finite fields, separable and inseparable								
		extensions, Galois groups, fundamental theorem of Galois								
		theory.								
		Total number of lectures	42							
Eva	luation Criteria									
Con	ponents	Maximum Marks								
T1		20								
T2		20								
	Semester Examin									
TA	_	25 (Quiz, Assignments, Tutorials)								
Tota	ા	100								
Rec	ommended Read	ing material: Author(s), Title, Edition, Publisher, Year of Publ	ication etc.							
(Tex	t books, Referenc	e Books, Journals, Reports, Websites etc. in the IEEE format)								
1.	D. S. Dummit a	nd R. M. Foote, Abstract Algebra, 2nd Ed., John Wiley & Sons	s, 2008.							
2.	S. K. Jain, P. B. Bhattacharya and S. R. Nagpaul, Basic Abstract Algebra, 2nd Ed., Cambridge University Press, 2014.									
3.	I. N. Herstein, Topics in Algebra, 2 nd Ed., John Wiley & Sons, 2006.									
4.	J. B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson Education, 2013.									

C. Carstensen, B. Fine, B. and G. Rosenberger, Abstract Algebra: Applications to Galois Theory,

Algebraic Geometry and Cryptography, Heldermann Verlag, 2011.

5.

General Topology (19M21MA114)

Course C	Code 19M21MA114 Semester Odd Semester I Sessi Month from Aug 2				ion 2020-21 020-Dec 2020			
Course N	ame	General To	pology	y				
Credits		4			Contact	Hours	3-1-0	
Faculty		Coordinat	or(s)	Prof. Alka	Tripathi			
(Names)		Teacher(s) (Alphabetic	cally)	Prof. Alka	Tripathi			
COURSE	E OUT	COMES						COGNITIVE LEVELS
After purs	suing th	e above ment	tioned c	ourse, the stu	dents will b	e able to	:	
C113.1	explai	n metric spac	ce, topo	logical spaces	and related	l concept	ts.	Understanding Level(C2)
C113.2	solve	problems on	differer	nt types of top	ologies.			Applying Level (C3)
C113.3	•	n continuou d concepts.	s maps	, continuity	theorem, h	omeomo	rphisms and	Understanding Level (C2)
C113.4		the propertiens theorems.	es in proving	Applying Level (C3)				
C113.5		use of the ogical spaces.	n in various	Applying Level (C3)				
Module No.	Title Modu		Topic	s in the Mod	ule			No. of Lectures for the module
1.	Metri	c Space	Metric	e space, open	sets, closed	sets		2
2.	Metri	c Space	Conve space	ergence, com	pleteness,	continuit	ty in metric	3
3.	Metri	c Space	Canto	r intersection	theorem			1
4.	Topol space	ogical	Topolo topolo	ogical space,	elementary	concept	t, basis for a	2
5.	Topol space	ogical	Open and closed sets, interior and closure of sets, neighbourhood of a point, limit points, boundary of a set				3	
6.	Topol space	ogical	Subsp	ubspace topology, weak topology				2
7.	Topol space	ogical	Produ	ct topology, q	uotient topo	ology		2

8.	Compactness and Connectedness	Continuous maps, continuity theorems for open and closed sets, homeomorphism	4			
9.	Compactness and Connectedness					
10.	Compactness and Connectedness	Compact space, limit point compact, sequentially compact space, local compactness	4			
11.	Compactness and Connectedness	Continuity and compactness, Tychonoff theorem	3			
12.	Countability and Separation	First and second countable spaces, T ₁ spaces, Hausdorff spaces	3			
13.	Countability and Separation	Regular spaces, normal spaces, completely normal space, completely regular space	5			
14.	Countability and Separation	Tietz extension theorem, Metrizability, Uryshon lemma, Uryshonmetrization theorem	4			
_		Total number of lectures	42			

Evaluation Criteria

imum Marks

T1 20 T2 20 End Semester Examination 35

TA 25 (Quiz, Assignments, Tutorials)

Total 100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. G. F. Simmons, Introduction to Topology and Modern Analysis, Tata Mc-Graw Hill Education, New Delhi, 2016.
- 2. J. R. Munkres, Topology: A First Course, 2nd Ed., PHI, 2010.
- 3. Y. Min, Introduction to Topology: Theory & Applications, Higher Education Press, 2010.
- 4. S. Lipschutz, General Topology, Schaum's Outline Series, Mc-Graw-Hill, 1985.
- **5. C. A. R. Franzosa,** Introduction to Topology, Narosa Publishers, New Delhi, 2007.
- **6. K. D. Joshi**, Introduction to General Topology, New Age Publishers, New Delhi, 1983.

Mathematical Methods (19M21MA115)

Course C	irse Code 19M21MA1		121MA115 Semester Odd Semester I Sess Month from Aug 2		ion 2020-21 2020-Dec 2020			
Course N	ame	Mathemati	cal Me	thods				
Credits		4			Contact	Hours	3-1-0	
Faculty (Names)		Coordinate	or(s)	Dr. Neha Ah	nlawat			
		Teacher(s) (Alphabetic	cally)	Dr. Neha Ah	nlawat			
COURSE	OUT	COMES						COGNITIVE LEVELS
After purs	suing th	e above ment	ioned c	ourse, the stud	ents will b	e able to	:	
C114.1	expla probl		als and	d their varia	tions to	optimiz	e various	Understanding Level(C2)
C114.2	apply probl		rms of	Euler's equa	tion on di	fferent v	variational	Applying Level (C3)
C114.3	_	in and solve value proble	and their	Applying Level (C3)				
C114.4	solve	olve boundary value problems and singular integral equations.						Applying Level (C3)
C114.5		different line al equations.	ar integ	gral transforms	in solving	different	tial and	Applying Level (C3)
Module No.	Title o		Topic	s in the Modu	le			No. of Lectures for the module
1.		Functional and its properties, comparison between the notion of extrema of a function and a functional, construction of functional, problem of brachistochrone, geodesics and isoperimetric problem.				6		
2.	Probl fixed movin		variat integr of the highe Euler	system of mental leminons, example rals, special carriables, fur derivatives Poisson ion, moving e	ma of es, function asses contractionals of the dejugation,	the cal mals in t taining depend dependent Ost	he form of only some ing on the variables, crogradsky	10

			method, Galerkin's method and Kantorovich					
			method of solving differential equations.					
3	3. Integral equations		Integral equations of Fredholm and Volterra type, Conversion from IVP and BVP. Solution by successive substitution and successive approximation, integral equations with degenerate kernels. Fredholm's theorems, integral equations with symmetric kernel, eigenvalues and eigenfunctions of integral equations and their simple properties.	10				
4	4. Applications of integral equations		Longitudinal vibrations of the rod, deformation of a rod, Green's function, influence function, construction of Green's function when the boundary value problem contains a parameter, Abel integral equation, weakly singular kernel, iteration of the singular equation.	8				
5	•	Integral transform methods	Introduction, Laplace transform, properties of the Laplace transform, application to Volterra integral equation, Fourier transform, application of Fourier transform, introduction to Hankel and Mellin transform, Fox's integral equation.	8				
			Total number of lectures	42				
Eval	luatio	on Criteria						
T1 T2 End TA Tota	ComponentsMaximum MarksT120T220End Semester Examination35							
(Tex			, Journals, Reports, Websites etc. in the IEEE format))				
1.			of Variation, Dover Publications, 2010.					
2.								
	3. R. P. Kenwal, Linear Integral Equation; Theory and Techniques, Academic Press, 1971.							
	4. F. B. Hildebrand, Methods of Applied Mathematics, Dover Publications, 1992. 5. Pol and S. C. Rhunia, Engineering Mathematics, Oxford University Press, 2015.							
6.	 5. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press, 2015. 6. I. G. Petrovsky, Lectures on the Theory of Integral Equations, Mir Publishers, Moscow, 1971. 							
7.		Debnath and D. I // CRC, 2006.	Bhatta, Integral Transforms and Their Application	ions, Chapman and				