Jaypee Institute of Information Technology

B.Tech. Biotechnology

Semester II

Course Descriptions

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11EC111	Semester Evo (specify Odd	en I/Even)	Semes Montl	ter: II Session 2020-21 from:January to June
Course Name	Electrical Science ·	-1			
Credits	4		Contact Hours	t	3+1

Faculty (Names)	Coordinator(s)	Ashish Gupta, Madhu Jain
	Teacher(s) (Alphabetically)	Atul Srivastava, MandeepNarula, Neetu Joshi, Nisha, Rachna Singh, Shraddha Saxena

COURSE OUTCOMES		COGNITIVE LEVELS
C113.1 Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws and different analyzing techniques to identify the different circuit parameters.		Apply Level (C3)
C113.2	Define and apply the networks theorems in the complex AC and DC circuits, networks. Demonstrate the physical model for given Sinusoidal AC signal and construct the phasor diagrams.	Applying Level (C3)
C113.3	Demonstrate the conept of resonance and operate different instrumental and measurement equipments.	Understanding Level (C2)
C113.4	Demonstrate the construction and working of single phase transformer.	Understanding Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic Concepts	Voltage, Current, Power and Energy analysis for Circuit elements (R, L, C),Independent and Dependent Sources,Kirchhoff's Laws, Voltage Divider rule, Current Divider rule	6
2.	DC Circuit Analysis	Star-Delta Transformation, Source transformation, Mesh and Supermesh Analysis, Nodal and super nodal Analysis	6
3.	Network Theorems	Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
4.	Sinusoidal Steady State Analysis	Physical Model for a Sinusoid, Average Value, Effective Value, Phasor presentation, Addition of Phasor using Complex Numbers, Concepts of impedance and admittance.	4

5.	AC Network Analysis and Theorems	Mesh and Nodal analysis, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
6.	Resonant Circuits	Series and Parallel resonance, frequency response of Series and Parallel resonance, Q-Factor, Bandwidth	4

7.	Electrical Instruments	Essentials of an Instrument, Permanent Magnet Moving Coil (PMMC) Instruments, voltmeter, ammeter, Ohmmeter, Meter Sensitivity (Ohms-Per-Volt Rating); Loading Effect; Multimeter; Cathode Ray Oscilloscope: Construction, Working and Applications. Function Generators	6
8.	Single Phase Transformer	Principle of operation, construction, e.m.f. equation, equivalent circuit, power losses, efficiency (simple numerical problems), introduction to auto transformer.	4
		Total number of Lectures	42

Rec boo	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text ks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 9 th ed, John Wiley & Sons, 2013.
2.	Charles K. Alexander (Author), Matthew N.O Sadiku, "Fundamentals of Electric Circuits", 6 th ed, Tata Mc Graw Hill, 2019.
3.	Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 11 th ed, Prentice Hall of India, 2014.
4.	D.C. Kulshreshtha, Basic Electrical Engineering, Revised 1 st ed, Tata Mc Graw Hill, 2017.

Detailed Syllabus
Lecture-wise Breakur

Lecture-wise Breakup					
Course Code	15B11PH212	Semester Even		Semester:II Session 2020-21 Month from:January to June	
Course Name	BIO-PHYSICAL TECHNIQUES				
Credits	4		Contact	Hours	4

Faculty (Names)	Coordinator(s)	Prof. S. P. Purohit
	Teacher(s) (Alphabetically)	S. P. Purohit

COURSE	E OUTCOMES	COGNITIVE LEVELS
C104.1	Select biophysical spectroscopic technique(s) for their application(s) in determining structural details and properties of molecules.	Remembering (C1)
C104.2	Explainunderlying principles of different biophysical techniques at atomic and molecular level and working principles of related spectrometers/microscopes.	Understanding (C2)
C104.3	Apply different biophysical techniques and choose appropriate technique(s) for investigating structural details and properties of a molecular sample.	Applying (C3)
C104.4	Analyse spectroscopic/microscopic data obtained from different biophysical techniques.	Analyzing (C4)
C104.5	Evaluate numerical values of different physical parameters involved in the modelling of different biophysical techniques at atomic and molecular level.	Evaluating (C5)

ModuleTitle of the ModuleTopics in the Module	No. of Lectures for the module
--	---

1.	Principles and Applications	Biophysical techniques and their applications, Quantization of energy levels in atoms and molecules, Concept of matter waves, uncertainty principle and Schrödinger wave equation, Rigid rotor, non- rigid rotor, Harmonic Oscillator, and anharmonic oscillator, Regions of the electromagnetic spectrum, Types of spectra – absorbance, Beer-Lambert's law, emission, and fluorescence Width and intensity of spectral lines, Optically allowed and forbidden transitions.	8
2.	Microwave Spectroscopy	Microwave active molecules, Rotation of molecules, Rotational spectra of di-atomic molecules, Rigid rotor and non-rigid rotor, Microwave spectroscopy technique, Example of molecular microwave spectra.	3
3.	Infrared Spectroscopy	IR active molecules, Vibration spectra of diatomic molecules, Vibration rotation spectra of diatomic	3

		molecules, FTIR, Example of molecular IR spectra.	
4.	Raman Spectroscopy	Raman effect, Molecular polarizability, Rotational and vibrational Raman Spectra, Raman spectrometry technique, example of molecular Raman spectra.	3
5.	UV Visible Spectroscopy	UV Visible spectroscopy of molecules, Electronic transitions in molecules, Frank-Condon principle, Dissociation energy, UV Visible spectroscopic technique, Example of molecular UV-Visible spectra.	3
6.	Mass Spectrometry	Working principle of mass spectrometer, Mass spectrum and the base peak, Nitrogen rule, Identifying compounds and isotopes, Determination of molecular formula, Mass spectrometer, Example of molecular mass spectra.	4
7.	NM R	Interaction between spin and magnetic field, Nuclear Magnetic Resonance (NMR), PMR and C NMR, Chemical shift, NMR technique and applications, Example of molecular NMR spectra.	5
8.	Crystallography	Bonding in solids, Types of crystals, Miller Indices, Reciprocal lattice, X-ray diffraction, Bragg's law and its application, Energy dispersive X-ray spectroscopy (EDX) Example of X-ray diffraction from molecular structure.	5

9.	Electron Microscopy	Electron Microscopy – basic principle, Scanning Electron Microscope (SEM), Example of some SEM images. Transmission Electron Microscope (TEM), Example of some TEM images, Scanning Probe Microscopy (STM and AFM)	6	
		Total number of Lectures	40	
Evaluation Criteria Components Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25 [2 Quiz (10 M), Attendance (10 M) and Cass performance (5 M)] Total 100				

Rec boo	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text ks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Text 1: Fundamentals of Molecular Spectroscopy, C. N. Banwell and E. M. McCash, Tata McGraw-Hill, 4 rd Edition 1995.
2.	Text 2: Crystallography applied to Solid State Physics, A R Verma, O N Srivastava, New Age International Publishers
3.	Text 3: Electron Microscopy and Analysis, P. J. Goodhew, J. Humphreys, R Beanland, 3 rd Edition, 2000.
4.	Reference 1. Conformation of Biological Molecules.Govil G. and Hosur R.V. (1982), Springer Verlag, Berlin, Heidelberg, New York.
5.	Reference 2. Practical Biochemistry, K. Wilson and J. Walker, Cambridge Press, 5 th edition.

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17EC171	Semester EvenSemester(specify Odd/Even)Month		Semes Month	ter:II Session 2020-21 from:January to June	
Course Name	Electrical Science-1 Lab					
Credits	2		Contact Hours		2	

Faculty (Names)	Coordinator(s)	Kaushal Nigam & Nisha Venkatesh
	Teacher(s)	Abhay Kumar, Ashish Gupta, Atul K. Srivastava, Amit Kumar Goyal, Ankit Garg, Jyoti Vyas, Kirminder Singh, Monika, Madhu Jain, Ritesh Sharma, Raghvendra Singh, SajaiVir Singh, Varun Goel, Vijay Khare.

COURSE	COGNITIVE LEVELS	
C176.1	Understand various active and passive components and instruments (Multimeter, Bread board, Regulated D.C. power supply).	Understanding (C2)
C176.2	Acquire the knowledge of electrical network and circuit such as branch, node, loop and mesh in networks and circuits.	Analyzing (C4)
C176.3	Study and verification of reduction technique using different network theorem.	Remembering (C1)
C176.4	Study and verification of series and parallel AC circuits as well as Open & Short Circuit Test in single phase transformer.	Applying (C3)

Modu le No.	Title of the Module	List of Experiments	COs
1.	Introductio n of active and passive components	Introduction to various components (Resistor, Capacitor, inductor, and IC) and instruments Multimeter, Bread board, Regulated D.C. power supply and CRO.	C176.1
2.	Analysis and verification s of Mesh and Node	Verification of KVL and KCL using a given circuit.	C176.2

3.	Analysis and verificatio n of Transform Network	Realization of Equivalent Resistance of Star to Delta and Delta to Star Transformation.	C176.2
----	---	---	--------

4.	Analysis and verificatio n of of Super Node	Verification of Super Node using Voltage Source.	C176.2
5.	Analysis and verificatio n of Divider rules for Current and Voltage	To verify the voltage divider rule (VDR) and the current divider rule (CDR).	C176.2
6.	Study and Analysis of Superpositi on Theorem	Verification of Superposition Theorem.	C176.3
7.	Analysis and verificatio n of Thevenin's/ Norton Theorem	Verification of Thevenin'sTheorm and Norton Theorm.	C176.3
8.	Analysis and verificatio n of Maximum Power Transfer Theorem	Verification of Maximum Power Transfer Theorem.	C176.3

9.	Study and Verification of AC Signal in term of RMS and PP Value	To study the Root-Mean-Square(RMS), Peak, and Peak-to-Peak Values, Measurements with Oscilloscope.	C176.4	
10.	Study and Analysis of Resonance Circuit	To study the behavior of Series-Parallel RLC Circuit at Resonance.	C176.4	
11.	Study of open Circuit Test	Open Circuit Test in Single Phase Transformer using Vlab.	C176.4	
12.	Study of Short Circuit test	Short Circuit Test in Single Phase Transformer using Vlab.	C176.4	
Evaluation Criteria Components Maximum Marks Viva1 20 Viva2 20 Report file, Attendance, and D2D 60 (15+15+30)				

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
Nilsson Riedel, Electric Circuits," Pearson, 11 th Edition, 2019				
Abhijit Chakrabarti, "Circuit Theory Analysis and Synthesis," Dhanpat Rai & Co.; 7th Edition , 2018				
U. S. Bkashi A.U. Bakshi S. Ilaiyaraja,, "Circuit Theory Technical Publications; 3 rd Edition, 2019				

4.	Roman Malaric, "Instrumention and Measurement in Electrical Engineering, "Universal Publisher, 3 rd Edition, 2011.
5.	DP Kothar and I J Nagrath, "Electric Machine," TMH; 4 th Edition, 2010

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B11CI121	Semester E	emester Even Semester II Session 2020- 2021 Month from January to June		ter II Session 2020- Month from January to
Course Name	Fundamental of Co	nental of Computer Programming II			
Credits	4		Contact Hours Contact Hours		Contact Hours

Faculty (Names)	Coordinator(s)	Somya Jain
	Teacher(s)	Somya Jain

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Define basics of C programming language like its data types, operators, control flow and loop control.	Remember (C3)
CO2	Develop C programs using Controls flows like while, do while, for loops, if else, switch case, etc.	Apply (C3)
CO3	Experiment with single and multi-dimensional arrays, structure and functions in C programming Language.	Apply (C3)
CO4	Explain basic features of object-oriented design such as encapsulation, polymorphism, inheritance, and abstraction and compare it with function oriented programming.	Understand(C2)

CO5	Develop a simple web application with client and server side scripting using JavaScript and PHP and connect with a	Apply (C3)
	given relational database	

Modu le No.	Title of the Module	List of Experiments	COs
1	C Program min g	Syntax and semantics, data types and variables, expressions and assignments, array and struct, simple I/O, conditional and iterative control structures Programs on unit conversion, approximating the square root of a number, finding the greatest common divisor, average, sum, min, max of a list of numbers, common operations on vector, matrix, polynomial, strings, programs for pattern generation	16

2	Functions in C Program min g	Functions and parameter passing (numbers, ,characters, array, structure), recursion, e.g. factorial, Fibonacci, Scope of variable	10
3	functions oriented program min g Vs object oriented program min g	comparison between FOP and OOP, OOPs Concepts	7

4	HTML forms, Introducti on to client and servers side scripting, introducti on to PHP	HTML forms, creating dynamic web pages with database connectivity using Mysql	9		
		Total Number of lectures	42		
Evalua Compo T1 20 T2 20 End Sen TA 25(<i>A</i> ssignr	Evaluation Criteria Components Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25(Attendance = 07, Class Test, Quizzes, etc = 07, Internal Assessment = 05, Assignments in PBL mode = 06) Total 100				

Text Rea	ading material:			
1	Deitel, Paul; Deitel, Harvey, C: How to Program (8 Edition.). Pearson. ISBN 978-0133976892, 2015.			
2	Perry, Greg; Miller, Dean, C Programming: Absolute Beginner's Guide (3 ed.). Que. ISBN 978-0789751980, 2013.			
3	C Programming: The Definitive Beginner's Reference, Harry H. Chaudhary, First MIT Createspace-Inc, 2014.			
4	Programming in ANSI C, E Balagurusamy, 8th Edition, Mc Graw Hill 2019,			
5	Stroustrup, Bjarne, The C++ Programming Language (Fourth ed.). Addison-Wesley. ISBN 978-0-321-56384-2, 2013.			

6	Nixon, Robin. Learning PHP, MySQL & JavaScript: With jQuery, CSS & HTML5. " O'Reilly Media, Inc.", 2014.
7	David Griffiths, and Dawn Griffiths "Head First C 1/e Edition", O'Reilly Publication, 2012.
8	D. S. Malik, "C++ Programming: From Problem Analysis to Program Design, 6th Edition, Course Technology, Cengage Learning, 2012
Recomm	ended Reading material: (Reference Books)
1	B W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Prentice-HallIndia, New Delhi, 2002.
2	H. Schildt, "C: The Complete Reference", Tata McGraw-Hill Education, 4 th Edition, TMH 2000.
3	Y. Kanethkar, "Let Us C", BPB Publication, 16th Edition, 2018.

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15BT111	Semester Even (specify Odd/Even)Semester: II Session 2020-21Month from: January to June		ter:II Session 2020-21 from:January to June
Course Name	Basic Bioscience Lab			
Credits	1	Contact Hours 2 hours		2 hours

Faculty (Names)	Coordinator(s)	Ekta Bhatt
	Teacher(s) (Alphabetically)	Dr. Indira P. Sarethy Dr.Priyadarshini Ms. Ekta Bhatt

COURSE OUTCOMES	COGNITIVE LEVELS

C177.1	Demonstrate good laboratory practices and documentation.	Understand Level (C2)
C177.2	Show working of equipments& instruments.	Understand Level (C2)
C177.3	Apply knowledge of essential concepts related to biomolecules.	Apply Level(C3)
C177.4	Analyze experimental data and drawing valid conclusion.	Analyze Level(C4)

Modu le No.	Title of the Module	List of Experiments	СО
1.	Laboratory safety guidelines	Good and bad laboratory practices. Safety handling of instruments, equipments and documentation.	Understand Level (C2)
2.	Concept of ph and pKa	Basic principle of ph and pka. Preparation of stock buffers	Apply Level (C3)

3.	Essential concept of biomolecules	Qualitative and quantitative estimation of Carbohydrates and Proteins.	Apply Level (C3)		
4.	Analyze experimental data	Analyze experimental data and drawing valid conclusion.	Analyze Level (C4)		
		Total No. of Labs-12			
Evaluat	Evaluation Criteria Evaluation Criteria				
Compose Mid-Ser End-Ser Day to I (Learnir Equipmo	Components Maximum Marks Mid-Semester lab-viva/ test 20 End-Semester lab-viva/ test 20 Day to Day performance 45 (Learning laboratory Skills and handling Laboratory Equipments, attendance)				
Laboratory record 15					

Rec boo	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Introductory practical book of Biochemistry by S.K.Sawhney, Randhirsingh (Narosa Publishing House)			
2.	Rex M. Heyworth, Procedural and conceptual knowledge of expert and novice students for the solving of a basic problem in chemistry, <i>International Journal of Science Education</i> , 21 , 2, (195), (1999).			
3.	Boyer R.F. Modern Experimental Biochemistry. Massachusetts: Addison-Wesley Publishing Co., 1986			
4.	Strong, F. C. (1952) Theoretical basis of the Bouguer-Beer law of radia-tion absorption. Anal. Chem. 24, 338–342			
5.	Ninfa, A. J., Ballou, D. P., and Parsons, M. B. (2010) Fundamental Labo-ratory Approaches for Biochemistry and Biotechnology, Alexander J.Ninfa, David P. Ballou, Marilee Benore, Eds., Wiley, Hoboken, NJ			

Detailed Syllabus

Course Code	18B15CI121	Semester Eve (specify Odd/	en /Even)	Semes Month	ter Second Session 2020 -2021 from Jan to June
Course Name	Computer Programming lab II				
Credits	1		Contact	Hours	2

Faculty (Names) Coordinator(s)		Alka Singhal		
	Teacher(s) (Alphabetically)	Alka Singhal, Dharmveer Singh Rajpoot, Parmeet Kaur, Prakash Kumar, Vivek Kumar Singh		

COURSE OUTCOMES		COGNITIVE LEVELS
CO1	Demonstrate basic programs of different data types and operators in C.	Understand (C2)

CO2	Develop C programs using Controls flows like while, do while, for loops, if else, switch case, etc.	Apply (C3)
CO3	Make use of single and multi-dimensional arrays, structure, and functions in C programming language.	Apply (C3)
CO4	Demonstrate basic features of object-oriented programming such as objects and classes in C++.	Understand (C2)
CO5	Develop a simple web application with client and server- side scripting using JavaScript and PHP and connect with a given relational database	Apply (C3)

Module No.	Title of the Module	List of Experiments	СО
1.	<mark>Basic</mark> <mark>Programming</mark> In C	Data types, Declaring Variables, Initializing Variables, Type Conversion	CO1
2.	<mark>Operators and</mark> Expressions and Input Output In C	Conditional operators, Arithmetic, Relational, Assignment, Logical and Bitwise operators, Formatted Functions, Flags, Widths and Precision with Format String, Unformatted Functions	CO1

3.	<mark>Decision</mark> Statements	If statement, IF- else, If-else-if, break, continue, go to, switch case	CO2
4.	Loop Control	The for loops, nested for loop, the while loop, do while loop	CO2
5.	Data Structure: Array and structure	Array, 2 D array, Matrix operations, structure and functions	CO3
6.	C++ programming	Programs based on class and objects	CO4

7.	PHP, Java Script, and HTML Forms	Develop a simple web application with client and server-side scripting using JavaScript and PHP and connect with a given relational database	CO5		
Fyaluati	on Criteria				
Compon	n churia ante Mavimum Marke				
Evoluctio					
Evaluatio	n I 15				
Lab Test	1 20				
Evaluatio	Evaluation 2 15				
Lab Test	Lab Test 2 20				
TA 30 (A	TA 30 (Attendance (15), Mini project (15))				
Total 100					
The students in group of 3-4 will come up with some real-world problem and will develop a Mini project in C to solve it. The project can be an application, game or any software utility which is designed and developed to solve a real-world problem statement using C Programming. This will make them acquaint to handle real world problems with programming solutions.					

Rec boo	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	H. Cooper and H. Mullish, Jaico Publishing House. "Spirit of C", 4th Edition, Jaico Publishing House,2006			
2.	Herbert Schildt. "The Complete Reference C ", 4th Edition, TMH, 2000			
3.	Brian W. Kernighan and Dennis M. Ritchie ,"The C Programming Language", 2nd Edition, Prentice- Hall India, New Delhi, 2002			
4.	User manuals supplied by department for C, PHP, html and sql			

Detailed Syllabus

Lab-wise Breakup					
Course Code	18B15GE111	SemesterEven (specify Odd/Even)		Semester: II Session 2020-21 Month fromJanuary to June	
Course Name	Engineering Drawin	ng and Design			
Credits 1.5 C		Contact	Hours	3	

Faculty (Names) Coordinator(s)		MadhuJhariya,Deepak Kumar	
	Teacher(s) (Alphabetically)	Chandan Kumar, Nitesh Kumar, Rahul Kumar, Vimal Saini	

COURSE	EOUTCOMES	COGNITIVE LEVELS
C178.1	Recall the use of different instruments used in Engineering Drawing and Importance of BIS and ISO codes.	Remembering (Level I)
C178.2	Illustrate various types of mathematical curves and scale.	Understanding (Level II)
C178.3	Classify different types of projection and Construct Orthographic projection of Point, Line, Plane and Solid.	Applying (Level III)
C178.4	Construct Isometric Projection and Conversion of Orthographic view to Isometric view and vice-versa.	Applying (Level III)
C178.5	Construct Engineering model in Drawing software (AutoCAD) and Compare it with conventional drawing.	Analyzing (Level IV)

Modu	Title of the	List of Experiments	СО
No.	Module		

1.	Introduction to Engineering Drawing	 Principles of engineering graphics and their significance, usage of drawing instruments. Technical vertical capital letters which includes English alphabets and numeric. 	C178.1
2.	Engineering Curves	 Constructing a pentagon and hexagon; engineering curves: Parabola, Ellipse, Hyperbola, Cycloids and Involutes. 	C178.2
3.	Orthographic Projections	 Projection of points: Point on VP, HP, in space. Projection of straight lines: Lines inclined or parallel to any one of the planes; lines inclined to both HP and VP with traces. Projection of planes: Plane on VP, HP, inclined to any one of the planes; plane inclined to both HP and VP. 	C178.3

4.	Projections of Regular Solids	• Projections of solids in simple position, inclined to one/both the planes.	C178.3
5.	Sections and Sectional Views of Right Angular Solids	• Sections of solids: Section of standard solids and true shape section of standard machine elements for the section planes perpendicular to one plane and parallel or inclined to other plane.	C178.3
6.	Isometric Projections	• Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa.	C178.4
7.	7.Overview of Computer Graphics• Demonstrating knowledge of the theory of CAD software; Dialog boxes and windows; Shortcut menus; the Command Line; the Status Bar; Isometric Views of lines, Planes, Simple and compound Solids.		C178.5
8.	 8. Customization & CAD Drawing along with customization tools, & CAD Drawing CAD Drawing & other functions. Orthographic Projections; Model Viewing; Co-ordinate Systems; Multi view Projection; Surface Modeling; Solid Modeling. 		C178.5

9.	Demonstration of a simple team design project	• Technical 2D/3D orthographic and Isometric projections; Demonstration of a simple team design project.	C178.5
Evaluat Mid-Ter End-Ter (Attend Total 10	ion Criteria Compo m 20 m 20 ance + D2D) 60 (10	+50)	

Rec boo	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Bhatt N.D., Panchal V.M. & Ingle P.R., Engineering Drawing, Charotar Publishing House, 2014.			
2.	Shah, M.B. & Rana B.C., Engineering Drawing and Computer Graphics, Pearson Education, 2008.			
3.	Agrawal B. & Agrawal C. M., Engineering Graphics, TMH Publication, 2012.			
4.	Narayana, K.L. & P Kannaiah, Text book on Engineering Drawing, Scitech Publishers, 2008			

Software Development Lab - II

Detailed Syllabus

Course Code	15B11CI271	Semester: Even (specify Odd/Even)		S N	Semester: II Session: 2020-21 Month from: Jan to June
Course Name	Software Developm	nent Lab -	П		
Credits 1			Contact Hours	s	2 hrs

Faculty (Names) Coordinator(s)	Anita Sahoo, Niyati Aggrawal, Himani Bansal (J128)
--------------------------------	--

Teacher(s) (Alphabetically)	(J62) Adwitiya Sinha, Anita Sahoo, Ankita Verma, Arpita Yadav, Bhawna Saxena, Chetna Dabas, Deepti, Hema N., K Vimal Kumar, K.Rajalakshmi, Manju, Megha Rathi, Mradula Sharma, Neetu Sardana, Niyati Aggrawal, Prantik Biswas, Shardha Porwal
	(J128) Ambalika Sarkar, Anubhuti Mohindra, Arti Jain, Avinash Pandey, Devpriya Soni, Himani Bansal, Kritika Rani, Mukesh Saraswat, Nitin Shukla, Rashmi Kushwah, Shailesh Kumar, Shariq Murtuza, Shilpa Budhkar, Swati Gupta.

COUR	SE OUTCOMES	COGNITIVE LEVELS
C173. 1	Write programs in C++ to implement OOPs concepts related to objects, classes, constructor, destructor, and friend function.	Apply Level (Level 3)
C173. 2	Write programs in C++ using OOPs concept like encapsulation, inheritance, polymorphism and abstraction.	Apply Level (Level 3)
C173. 3	Write programs in C++ using Standard Template Library.	Apply Level (Level 3)
C173. 4	Perform exception handling in C++ programs.	Apply Level (Level 3)
C173. 5	Write MySQL queries to perform operations like ADD, DELETE, UPDATE, SELECT on relational databases.	Apply Level (Level 3)

Modu le No.	Title of the Module	List of Experiments	No. of Labs for the module
1.	OO Concepts using C++	Write output based C++ programs to implement the concepts of Objects, Classes, Internal representations of Objects, encapsulation, Constructors, Destructors, Function and Operator Overloading, Static and Friend Functions.	3
2.	Inheritance using C++	Write programs in C++ to implement concepts of Base Class, Derived class, Method Overriding, Private and Public Inheritance, Multiple Inheritance.	2

3.	Polymorphism using C++	Write programs in C++ using Virtual Functions, Pure Virtual Functions, Abstract Classes, Dynamic Dispatch, Internal representations of method tables, RTTI, operator overriding.	2
4.	UML/Relationsh ip Implementation in C++	Write programs in C++ using based on Class diagram, Relationships of Association, Aggregation, Composition, and Inheritance	1
5.	Exceptions, Templates, and STL in C++	Write programs in C++ using Exceptions, Try, Catch and Throw, Re-throwing exceptions, Exception and Inheritance, Function Templates, Overloading Functions Template, Class Templates, Collection classes and iteration protocols (STL)	2
6.	Introduction to Database	Design simple SQL queries using MYSQL to apply various operations on single table like create, insert, delete, update, alter, etc., Queries on single table using select statement with or without where/ group by clause, etc.	2
		Total number of Labs	12

Evaluation Crit	eria
Components Ma	aximum Marks
Evaluation 1 15	
Lab Test1 20	
Evaluation 2 15	
Lab Test 2 20	
Mini Project 15	
Attendance 15	

Total 100

Project based leaning: Groups of 3-4 students will choose a project topic. They will use the concepts of OOP and/or database to execute their project. In a team, they will learn how to apply the concepts for problem solving in a meaningful way.

Rec	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text
boo	oks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1	Herbert Schildt, C++: The Complete Reference, McGraw-Hill Osborne Media, 4th Edition, 2017

2	Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Pearson, 7 th Edition, 2016
3	Stroustrup B., The C++ Programming Language, Addison Wesley, 4 th Edition, 2013
4	Avi Silberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6th edition, McGraw Hill, 2010.
5	Robert Lafore, Object Oriented Programming in C++, SAMS, 4th Edition, 2002
6	John Hubbard, Schaum's Outline of Programming with C++, McGraw-Hill, 2 nd Edition, 2000

Basic Mathematics-2 (15B11MA212)

Course Description						
Course Code		15B11MA212	Semeste	e r Even	Sen Moi	nester II Session 2020-21 nth from Jan - Jun 2021
Course Name		Basic Mathem	natics- 2			
Credits		4		Conta Hours	ct	3-1-0
Facul ty (Nam es)		Coordinat or(s)				
		Teacher(s) (Alphabeti cal ly)				

Course Description

	UTCOMES		COGNITIVE LEVELS	
After pu able to:	rsuing the above mentioned course, the stu	dents will be		
C108.1	explain the basic concepts of convergence Fourier series.	e of series and	Understanding Level(C2)	
C108.2	explain the concepts of two dimensional coordinate geometry. Understanding Level(C2)			
C108.3	explain the basic concepts of vectors and geometry.	Understanding Level(C2)		
C108.4	apply differentiation in scalar and vector	valued functions.	Applying level(C3)	

C108.5 classify and solve the ordinary differential equations with constant

coefficients. Applying level(C3)

C108.6	apply basic interpolation	numerical methods for finding roots, n and integration.	Applying Level(C3)
Modul e No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Sequence and Series	Convergence and divergence. Simple tests for convergence. Absolute convergence. Fourier series.	06

2.	Two dimension al coordinate Geometry	Cartesian coordinate system. Distance between two points. Equation of line in different forms. Equations of circle, ellipse and parabola. Equation of a tangent to a curve. Area of a triangle.	07
3.	Vectors and Coordinat e Geometry (3D)	Vectors and their algebra. Simple applications to geometry and mechanics. Unit vectors, vectors i , j and k . Components of a vector. Position vector. Direction cosines and direction ratios. Dot and cross products. Projection of a vector on another. Distance between two points. Equations of a line, plane and sphere.	08
4.	Calculus of two or more variables	Partial differentiation. Taylor's series. Differentiation of a vector. Tangent to a curve. Gradient of a scalar.	09
5.	Elementa ryDefinitions of order, degree, linear, non homogeneousDifferenti alSolutionofEquationsComplementaryfunctionfunctionsintegral. Initial and boundary value prob Linear differentialequationscoefficients.		07

6. Numerical Methodsequations - Bisection method, NewtonSolution of algebraic and transcendental Raphson method. Linear and quadratic05interpolation. Trapezoidal and
Simpson's rule.

Total number of Lectures	42

Evaluation Criteria	
Components Maximum Marks	
T1	20
T2	20
End Semester Examination 35	
TA 25 (Quiz, Assignments, PBL, Tutorials etc.) Total 100	
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)	
1.	Thomas, G. B. & Finney, R. L., Calculus and analytical geometry, 9 th Ed., Pearson Education Asia (Adisson Wesley), New Delhi, 2000.
2.	NCERT. Mathematics Textbook for class XI and XII, 2009.
3.	Sharma, R.D., Mathematics, Dhanpat Rai Publications, New Delhi, 2011.
4.	Kreyszig, E., Advanced Engineering Mathematics, 10 th Ed., John Wiley, 2015.