<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11EC111	Semester Even (specify Odd/Even)		Semester 2 nd Session 2020 -2021 Month from Jan-June		
Course Name	Electrical Science -1					
Credits	4	Contact		Hours	3+1	

Faculty (Names)	Coordinator(s)	Vimal Kumar Mishra, Neetu Joshi
	Teacher(s) (Alphabetically)	Archana Pandey, Bhagirath Sahu, Jyoti Vyas, Mandeep Narula, Megha Agarwal, Nisha, Rachna Singh, Sajaivir Singh, Shraddha Saxena.

COURSE	OUTCOMES	COGNITIVE LEVELS
C113.1	Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws and different analyzing techniques to identify the different circuit parameters.	Apply Level (C3)
C113.2	Define and apply the networks theorems in the complex AC and DC circuits, networks. Demonstrate the physical model for given Sinusoidal AC signal and construct the phasor diagrams.	Applying Level (C3)
C113.3	Demonstrate the concept of resonance and operate different instrumental and measurement equipments.	Understanding Level (C2)
C113.4	Demonstrate the construction and working of single phase transformer.	Understanding Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic Concepts	Voltage, Current, Power and Energy analysis for Circuit elements (R, L, C), Independent and Dependent Sources, Kirchhoff's Laws, Voltage Divider rule, Current Divider rule	6
2.	DC Circuit Analysis	Star-Delta Transformation, Source transformation, Mesh and Supermesh Analysis, Nodal and super nodal Analysis	6
3.	Network Theorems	Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
4.	Sinusoidal Steady State Analysis	Physical Model for a Sinusoid, Average Value, Effective Value, Phasor presentation, Addition of Phasor using Complex Numbers, Concepts of impedance and admittance.	4
5.	AC Network Analysis and Theorems	Mesh and Nodal analysis, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
6.	Resonant Circuits	Series and Parallel resonance, frequency response of Series and Parallel resonance, Q-Factor, Bandwidth	4
7.	Electrical Instruments	Essentials of an Instrument, Permanent Magnet Moving Coil (PMMC) Instruments, voltmeter, ammeter, Ohmmeter, Meter Sensitivity (Ohms-Per-Volt Rating); Loading Effect; Multimeter; Cathode Ray Oscilloscope: Construction,	6

		Working and Applications. Function Generators			
8.	Single Phase Principle of operation, construction, e.m.f. equation, equivalent circuit, power losses, efficiency (simple numerical problems), introduction to auto transformer.				
		Total number of Lectures	42		
Evalua	ation Criteria				
Compo	onents	Maximum Marks			
T1		20			
T2		20			
End Semester Examination 35					
TA	TA 25 (Assignment, quiz, attendance)				
Total		100			

Project based learning component: Students will learn fundamental concepts, working and applications of Permanent Magnet Moving Coil (PMMC) Instruments, voltmeter, ammeter, Ohmmeter, Cathode Ray Oscilloscope and Function Generators that develop aptitude among students to design minor and major projects. They will also develop knowledge about step-up and step-down transformer which can be further used to design advanced circuits in communication and robotics. It will also help develop concepts about instrumentation in electrical/electronics/biotech/communication based industries.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 9th ed, John Wiley & Sons, 2013.
- 2. Charles K. Alexander (Author), Matthew N.O Sadiku, "Fundamentals of Electric Circuits", 6th ed, Tata Mc Graw Hill, 2019.
- 3. Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 11th ed, Prentice Hall of India, 2014.
- 4. D.C. Kulshreshtha, Basic Electrical Engineering, Revised 1st ed, Tata Mc Graw Hill, 2017.

Course Description

Course Code	15B17EC171	Semester -: H	Even	Semester II Session: 2020 -21		
		(specify Odd/Even)		Month-	onth-: January - May	
Course Name	Electrical Science Lab-1					
Credits	1	Contact I		Hours	2	

Faculty (Names)	Coordinator(s)	Bhagirath Sahu & Shradha Saxena			
	Teacher(s)	Archana Pandey, Ashish Gupta, Atul kumar Srivastav, Bhagirath Sahu, Garima Kapur, Gaurav Verma, Juhi Gupta, Kaushal Nigam, Kirmender Singh, Mandeep Singh Narula, Neetu Singh, Pankaj Kumar Yadav, Parul Arora, Raghvenda Kumar Singh, Sajai Vir Singh, Shivaji Tyagi, Shradha Saxena, Vijay Khare, Vivek kumar Dwivedi			

COURSE O	UTCOMES	COGNITIVE LEVELS
C176.1	Understand various active and passive components and instruments (Multimeter, Bread board, Regulated D.C. power supply).	Understanding (Level II)
C176.2	Acquire the knowledge of electrical network and circuit such as branch, node, loop and mesh in networks and circuits.	Analyzing (Level IV)
C176.3	Study and verification of reduction technique using different network theorem.	Remembering (Level I)
C176.4	Study and verification of series and parallel AC circuits as well as Open & Short Circuit Test in single phase transformer.	Applying (Level III)

Module No.	Title of the Module	List of Experiments	COs
1.	Introduction of active and passive components	Introduction to various components (Resistor, Capacitor, inductor, and IC) and instruments Multimeter, Bread board, Regulated D.C. power supply and CRO.	C176.1
2.	Analysis and verifications of Mesh and Node	Verification of KVL and KCL using a given circuit.	C176.2
3.	Analysis and verification of Transform Network	Realization of Equivalent Resistance of Star to Delta and Delta to Star Transformation.	C176.2
4.	Analysis and verification of of Super Node	Verification of Super Node using Voltage Source.	C176.2
5.	Analysis and verification of Divider rules for Current and	To verify the voltage divider rule (VDR) and the current divider rule (CDR).	C176.2

	Voltage		
6.	Study and Analysis of Superposition Theorem	Verification of Superposition Theorem.	C176.3
7.	Analysis and verification of Thevenin's/ Norton Theorem	Verification of Thevenin's Theorm and Norton Theorm.	C176.3
8.	Analysis and verification of Maximum Power Transfer Theorem	Verification of Maximum Power Transfer Theorem.	C176.3
9.	Study and Verification of AC Signal in term of RMS and PP Value	To study the Root-Mean-Square(RMS), Peak, and Peak-to-Peak Values, Measurements with Oscilloscope.	C176.4
10.	Study and Analysis of Resonance Circuit	To study the behavior of Series-Parallel RLC Circuit at Resonance.	C176.4
11.	Study of open Circuit Test	Open Circuit Test in Single Phase Transformer using Vlab.	C176.4
12.	Study of Short Circuit test	Short Circuit Test in Single Phase Transformer using Vlab.	C176.4
Evaluat	ion Criteria	JL.	•
Compor Viva1 Viva2	nents	Ma	aximum Marks 20 20
	ile, Attendance, and	d D2D 6	60 (15+15+30)
75 . 1		400	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) Nilsson Riedel, Electric Circuits," Pearson, 11th Edition, 2019 Abhijit Chakrabarti, "Circuit Theory Analysis and Synthesis," Dhanpat Rai & Co.; 7th Edition, 2018

100

U. S. Bkashi A.U. Bakshi S. Ilaiyaraja,, "Circuit Theory Technical Publications; 3rd Edition, 2019 3. "Instrumention and Measurement in Electrical Engineering, "Universal Publisher, 3rd Roman Malaric, 4. Edition, 2011.

DP Kothar and I J Nagrath, "Electric Machine," TMH; 4 th Edition, 2010 5.

Total

2.

Software Development Fundamentals – II

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Course Code	15B11CI211	Semester:Even (specify Odd/Even)			Semester: II Session: 2020-21 Month from: Jan to June	
Course Name	Software Developme	ent Fundamentals – II N		NB.	BA Code: C110	
Credits	4	Contact Hours		rs	4 (3 Hrs. Theory, 1 Hr. Tutorial)	
Faculty (Names)	Coordinator(s)	Mukesh Saraswat, Manish Kumar Thakur, Ashish Mishra				
	Teacher(s) (Alphabetically)	Anuradha Gupta, Arti Jain (T), Avinash Pandey, Himani Bansal, Kritika Rani, Shailesh Kumar, Swati (T)				

COURS	E OUTCOMES	COGNITIVE LEVELS
C110.1	Explain various object-oriented concepts like class and objects, friend	Understand Level(Level 2)
	function, function and operator overloading, etc.	
C110.2	Apply and implement the relationships of association, aggregation,	Apply Level (Level 3)
	composition, and inheritance	
C110.3	Analyze the output of the source code and able to debug the errors	Analyze Level (Level 4)
C110.4	Design the class diagram for real life problems and implement it using	Create Level (Level 6)
	virtual functions, abstract classes, templates, and exception handling	
C110.5	Apply SQL commands to create tables and perform various operations	Apply Level (Level 3)
	like insert, delete, select, etc.	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Object Oriented Programming	Comparison of Procedural and Object-Oriented Approach, Characteristics of Object-Oriented Languages, Separation of behavior and implementation	2
2.	OO Concepts using C++	Objects, Classes, Internal representations of Objects, Constructors, Destructors Functionand Operator Overloading, Static and Friend Functions	8
3.	Inheritance using C++	Base Class, Derived class, Method Overriding, Private and Public Inheritance, Multiple Inheritance.	3
4.	Polymorphism using C++	Virtual Functions, Pure Virtual Functions, Abstract Classes, Dynamic Dispatch, Internal representations of method tables, RTTI	3
5.	UML/Relationship Implementation in C++	Models, Views and Model Elements, Class Diagram, Relationships of Association, Aggregation, Composition, and Inheritance, <i>etc.</i> and their implementing	8
6.	Exceptions, Templates, and	Exceptions, Try, Catch and Throw, Re-throwing exceptions, Exception and Inheritance, Function Templates, Overloading	8

	STL in C++	Functions Template, Class Templates, Collection classes and iteration protocols (STL)		
7.	Introduction to Database	Fundamentals of Database and Database Management System, Introduction to Relational Database, Table, Attributes, Records, Introduction to SQL, Data types in SQL, Various operations on single table like create, insert, delete, update, alter, etc. using SQL, SQL queries on single table using select statement with or without where/ group by clause, etc.	10	
Total number of Lectures				

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Mini Project (10), Attendance (10), Tutorial Assignments (5))
Total	100

Project based learning: Each student in a group of 3-4 will have to develop a mini project based on Object Oriented Programming and database. The students can opt any real-world application where these concepts can be applied. The students have to implement the mini project using C++ language. Project development and its presentation will enhance the knowledge and employability of the students in IT sector.

II .	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1	Herbert Schildt, C++: The Complete Reference, McGraw-Hill Osborne Media, 4th Edition, 2017			
2	Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Pearson, 7 th Edition, 2016			
3	Stroustrup B., The C++ Programming Language, Addison Wesley, 4 th Edition, 2013			
4	Avi Silberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6th edition, McGraw-Hill, 2010.			
5	Robert Lafore, Object Oriented Programming in C++, SAMS, 4 th Edition, 2002			
6	John Hubbard, Schaum's Outline of Programming with C++, McGraw-Hill, 2 nd Edition, 2000			

Software Development Lab - II

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17CI271	Semeste (specify	er: Even Odd/Even)		emester: II Session: 2020-21 Ionth from: Jan to June
Course Name	Software Developme	nt Lab - l	Π		
Credits 1			Contact Hours		2 hrs

Faculty (Names)	Coordinator(s)	Anita Sahoo, Niyati Aggrawal, Himani Bansal (J128)
	Teacher(s) (Alphabetically)	(J62) Adwitiya Sinha, Anita Sahoo, Ankita Verma, Arpita Yadav, Bhawna Saxena, Chetna Dabas, Deepti, Hema N., K Vimal Kumar, K.Rajalakshmi, Manju, Megha Rathi, Mradula Sharma, Neetu Sardana, Niyati Aggrawal, Prantik Biswas, Shardha Porwal (J128) Ambalika Sarkar, Anubhuti Mohindra, Arti Jain, Avinash Pandey, Devpriya Soni, Himani Bansal, Kritika Rani, Mukesh
		Saraswat, Nitin Shukla, Rashmi Kushwah, Shailesh Kumar, Shariq Murtuza, Shilpa Budhkar, Swati Gupta.

COURS	SE OUTCOMES	COGNITIVE LEVELS	
C173.1	Write programs in C++ to implement OOPs concepts related to objects, classes, constructor, destructor, and friend function.	Apply Level (Level 3)	
C173.2	Write programs in C++ using OOPs concept like encapsulation, inheritance, polymorphism and abstraction.	Apply Level (Level 3)	
C173.3	Write programs in C++ using Standard Template Library.	Apply Level (Level 3)	
C173.4	Perform exception handling in C++ programs.	Apply Level (Level 3)	
C173.5	Write MySQL queries to perform operations like ADD, DELETE, UPDATE, SELECT on relational databases.	Apply Level (Level 3)	

Module No.	Title of the Module	List of Experiments	No. of Labs for the module
1.	OO Concepts using C++	Write output based C++ programs to implement the concepts of Objects, Classes, Internal representations of Objects, encapsulation, Constructors, Destructors, Function and Operator Overloading, Static and Friend Functions.	3
2.	Inheritance using C++	Write programs in C++ to implement concepts of Base Class, Derived class, Method Overriding, Private and Public Inheritance, Multiple Inheritance.	2
3.	Polymorphism using C++	Write programs in C++ using Virtual Functions, Pure Virtual Functions, Abstract Classes, Dynamic Dispatch, Internal representations of method tables, RTTI, operator overriding.	2

4.	UML/Relationship Implementation in C++	Write programs in C++ using based on Class diagram, Relationships of Association, Aggregation, Composition, and Inheritance	1
5.	Exceptions, Templates, and STL in C++	Write programs in C++ using Exceptions, Try, Catch and Throw, Re-throwing exceptions, Exception and Inheritance, Function Templates, Overloading Functions Template, Class Templates, Collection classes and iteration protocols (STL)	2
6.	Introduction to Database	Design simple SQL queries using MYSQL to apply various operations on single table like create, insert, delete, update, alter, etc., Queries on single table using select statement with or without where/ group by clause, etc.	2
		Total number of Labs	12

Evaluation Criteria	
Components	Maximum Marks
Evaluation 1	15
Lab Test1	20
Evaluation 2	15
Lab Test 2	20
Mini Project	15
Attendance	15
Total	100

Project based leaning: Groups of 3-4 students will choose a project topic. They will use the concepts of OOP and/or database to execute their project. In a team, they will learn how to apply the concepts for problem solving in a meaningful way.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 Herbert Schildt, C++: The Complete Reference, McGraw-Hill Osborne Media, 4th Edition, 2017
 Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Pearson, 7th Edition, 2016
 Stroustrup B., The C++ Programming Language, Addison Wesley, 4th Edition, 2013
 Avi Silberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6th edition, McGraw-Hill, 2010.
 Robert Lafore, Object Oriented Programming in C++, SAMS, 4th Edition, 2002
 John Hubbard, Schaum's Outline of Programming with C++, McGraw-Hill, 2nd Edition, 2000

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11PH211	Semester: Even		Semester: II Session 2020-21 Month from: January to June		
Course Name PHYSICS-2						
Credits	4		Contact I	Hours	4	

Faculty (Names)	Coordinator(s)	Prof. R.K. Dwivedi& Dr.Suneet Kumar Awasthi
	Teacher(s)	Alok Pratap Singh Chauhan (ALC)
	(Alphabetically)	Anshu D. Varshney (ADV)
		Anuj Kumar (AK)
		Ashish Bhatnagar (ABH)
		Dinesh Tripathi (DT)
		Himanshu Pandey (HP)
		Manoj Kumar (MKC)
		Navendu Goswami (NG)
		R. K. Dwivedi (RKD)
		S C Katyal (SCK)
		Suneet Kumar Awasthi (SKA)
		Vikas Malik (VM)

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Recall the basic concepts relating to electromagnetic theory, statistical physics, lasers, fiber optics and solid state physics.	Remembering (C1)
CO2	Illustrate the various physical phenomena with interpretation based on the mathematical expressions involved.	Understanding (C2)
CO3	Apply the basic principles in solving variety of problems related to lasers, electromagnet theory, fiber and solid state physics.	Applying (C3)
CO4	Analyze and examine the solution of the problems using physical and mathematical concepts involved in the course.	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Electromagnetisma nd Optical Fiber	Coulomb's law, Gauss law and its applications, Treatment of electrostatic problems by solution of Laplace and Poisson's equations, Biot-Savartlaw, Ampere's law, Maxwell's equations in freespace and dielectric media. Electromagnetic waves, Derivations of expressions for energydensity and energy flux (Poynting vector) in an electromagnetic field, Radiation pressure. Propagation of EM waves through boundary-Reflection, Refraction, Absorption and Total Internal Reflection. Light propagation in fibersand Graded Index fibers, Numerical Aperture and Attenuation, Single and Multimode.	18
2.	Statistical Distributions and Lasers	Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac distributions and their applications. Principle and working of laser, Einstein A and Bcoefficients, Ruby Laser.	08

3.	Solid State Physics	Basic ideas of bonding in solids, Crystalstructure, Bragg's law X-ray diffraction, Bandtheory of solids, Distinction between metals, semiconductors and insulators. Electronic conduction in metals, Intrinsic and extrinsic (nandp-type) semiconductors and their electrical conductivity. p-njunction and Hall effect insemiconductors.	14
		Total number of Lectures	40
Evaluation	ı Criteria		
Componer	nts	Maximum Marks	
T1		20	
T2		20	
End Semes	ter Examination	35	
TA	25		
(a) Quizes	/class tests (07M),		
(b) Atter	ndance (07M)		
(c) Internal	Assessment (05)		
(d) Assig	gnments in PBL mode	e (06M)	
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	D. J. Griffiths, Introduction to electrodynamics, Pearson India.				
2.	G. Keiser, Optical Fiber Communications, Tata Mc Graw Hill Education.				
3.	A. Beiser, Concepts of Modern Physics, Mc Graw Hill International.				
4.	S. O. Pillai, Solid State physics, New Age International (P) Limited.				
5.	B. G. Streetman & S. Banerjee, Solid State Electronic Devices, Prentice-Hall India.				

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17PH271	Semester:Even		Semester:II Session 2020 -2021 Month: from January -July		
Course Name	Physics Lab-2					
Credits	1		Contact H	lours	2	

Faculty (Names)	Coordinator(s)	Prof. Navendu Goswamiand Dr. Vikas Malik.
	1 Cachel (8)	Ashish Bhatnagar, B.C. Joshi, Dinesh Tripathi, Manoj Kumar, Manoj Tripathi, Navendu Goswami, Sandeep Chhoker, Suneet Kumar Awasthi, Vikas Malik,

COURSE	OUTCOMES	COGNITIVE LEVELS
C171.1	Recall laser, fibre optics, semiconductor and solid state physics principles behind the experiments.	Remembering (C1)
C171.2	Explainthe experimental setup and the principles involved behind the experiments performed.	Understanding (C2)
C171.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C171.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C171.5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	CO
1.	Semiconductor Physics	 1(a). To determine the band gap in a semiconductor using its p-n junction diode. 1(b). To draw the I-V characteristic of Solar cell and find maximum power and fill factor. 2(a). To measure resistivity of semiconductor at different temperatures by Four Probe Method. 2(b). To determine Band Gap of the semiconductor. 3. To study the Hall effect in semiconductor and to determine its allied coefficients. 	1-5
2.	Solid State Physics	 4. To study the Magnetostriction in metallic rod with the help of Michelson interferometer arrangement. 5. To find the susceptibility of a paramagnetic substance (FeCl₃) in the form of liquid or a solution. 6.Study of dielectric (constant) behavior and determination of Curie's temperature of ferroelectric ceramics. 	1-5
3.	Modern Physics	 7.To study the magneto resistance of given semiconductor material. 8(a). To determine the value of specific charge (e/m) of an electron by Magnetron method. 8(b). To determine the velocity of ultrasonic wave in the medium of liquid using ultrasonic interferometer and to determine the compressibility of the given liquid. 9(a). To determine Planck"s Constant using LEDs of known wavelength. 9(b). To study the photovoltaic cell and hence verify the inverse 	1-5

		square law.				
4.	Optical Fiber	 10(a). To determine the numerical aperture of a given multimode optical fiber. 10(b). To measure the power loss at a splice between two multimode fibers and tostudy the variation of splice loss with Longitudinal and Transverse misalignments of thegiven fibers. 	1-5			
Evaluation	Criteria					
Components	S Max	ximum Marks				
Mid Term V	Mid Term Viva (V1)20					
End Term Vi	End Term Viva (V2)20					
D2D 60)					
Total	100					

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Dey and Dutta, Practical Physics

2. Lab Manuals

Mathematics-2 (15B11MA211)

Course Description

Course C	ode	15B11MA2	11	Semester Ev	ven	Semester Month fr		2020-2021 21- June 2021
Course Name		Mathematic	s 2				011 Van 2 02	2021
Credits		4			Con Hou		3-1-0	
Faculty		Coordinate	or(s)	Prof. Lokeno	dra K	umar, Dr. 1	DCS Bisht	
(Names)		Teacher(s) (Alphabetic	cally)	Tripathi, Dr	. Anu Dr. 7	ıj Bhardwa Frapti Neei	nj, Dr. Yoge r, Dr Pankaj	sht, Prof. Alka sh Gupta, Prof. Srivastava, Dr.
COURSE	OUI	TCOMES						COGNITIVE LEVELS
After purs				d course, the				
C106.1		y different nations of second		s for solving o ler.	ordina	ary differen	ntial	Applying Level (C3)
C106.2	expl serie		tests/n	nethods of co	nverg	gence for in	finite	Understanding Level (C2)
C106.3		the series solution of differential equations and use it to struct Legendre's polynomials and Bessel's functions. Applying Level (C3)						
C106.4		* * * * * * * * * * * * * * * * * * * *						Applying Level (C3)
C106.5		ain Taylor's lues and tran		rent's series e ations.	expan	ision, singu	ılarities,	Understanding Level (C2)
C106.6		•		mplex variab		-	problems	Applying Level (C3)
Module No.	Title Mod	e of the lule	of the Topics in the Module					No. of Lectures for the module
1.	Line Diffe	cond Order lear Cond Order lear Conder with constant coefficients and with variable coefficients, Change of Variable, Variation of Parameters.					5	
2.	of Se	Novergence Convergence of series, Tests of convergence, Alternating Series, Absolute & Conditional Convergence, Uniform Convergence.					7	
3.	and	es Solution Special ctions	pecial Recurrence Relations and Orthogonality.					
4.	and l	rier Series Partial erential	PDE,	er Series. Cla Equation of e dimensional	vibr	ating string	g, Solution	5

		Equations					
	5. Complex Variables		Limit, Continuity and Differentiability of Functions of Complex Variables, Analytic Functions, Cauchy's Riemann Equations.				
	6.	Complex Integration	Cauchy Integral Theorem, Cauchy Integral Formula and Applications.	4			
,	7.	Series Expansion	Taylor and Laurent Series Expansion, Poles and Singularities.	4			
	8.	Contour Integration	Residues, Cauchy's residue theorem and its applications.	5			
9	9.	Conformal Mapping	Bilinear transformation	2			
Tot	al num	ber of Lectures		42			
Eva	luation	n Criteria	•				
	nponei	nts	Maximum Marks				
T1			20				
T2			20				
	Semes	ster Examination	35 25 (Q : A : T : 1)				
TA	_1		25 (Quiz, Assignments, Tutorials)				
Tot		nded Deeding m	100				
Rec		nded Reading m	S. R. K., Advanced Engineering Mathematics, 5	th Ed Names			
1.		shing House, Nev		Ed., Narosa			
2.	Brow		chill, R.V., Complex Variables and Applications	, 6th Ed.,			
3.	Prasad, C., (a) Mathematics for Engineers (b) Advanced Mathematics for Engineers, Prasad Mudranalaya, 1982.						
4.	Kreysizg, E., Advanced Engineering Mathematics, 10th Edition, John Willey & Sons, Inc., 2015.						
5.	Simmons, G. F., Differential Equations with Applications and Historical Notes, 2nd Ed. McGraw Hill, 1991.						
6.	Spiegel, M.R., Complex Variables, Schaum's outline series, Mac Graw-Hill, 2009.						
7.		r al, B.S., "Higher Delhi, 2018.	Engineering Mathematics" 44 th Edition, Khanna	Publisher,			

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15GE111	Semester : Even (specify Odd/Even)			er: II nd Session 2020-2021 from: Jan to June
Course Name	Engineering Drawing	neering Drawing and Design			
Credits	1.5		Contact 1		3

Faculty (Names)	es) Coordinator(s) Mr. Chandan Kumar, Mr. Rahul Kumar	
	` '	Mr. DeepakKumar, Mrs. MadhuJhariya, Mr. Nitesh Kumar, Dr. PrabhakarJha, Mr. VimalSaini

COURSE OUTCOMES		COGNITIVE LEVELS
C178.1	Recall the use of different instruments used in Engineering Drawing and Importance of BIS and ISO codes.	Remembering (Level I)
C178.2	Illustrate various types of mathematical curves and scale.	Understanding (Level II)
C178.3	Classify different types of projection and Construct Orthographic projection of Point, Line, Plane and Solid.	Applying (Level III)
C178.4	Construct Isometric Projection and Conversion of Orthographic view to Isometric view and vice-versa.	Applying (Level III)
C178.5	Construct Engineering model in Drawing software (AutoCAD) and Compare it with conventional drawing.	Analyzing (Level IV)

Module No.	Title of the Module	List of Experiments	СО
1.	Introduction to Engineering Drawing	 Principles of engineering graphics and their significance, usage of drawing instruments. Technical vertical capital letters which includes English alphabets and numeric. 	C178.1
2.	Engineering Curves	Constructing a pentagon and hexagon; engineering curves: Parabola, Ellipse, Hyperbola, Cycloids and Involutes.	C178.2
3.	Orthographic Projections	 Projection of points: Point on VP, HP, in space. Projection of straight lines: Lines inclined or parallel to any one of the planes; lines inclined to both HP and VP with traces. Projection of planes: Plane on VP, HP, inclined to any one of the planes; plane inclined to both HP and VP. 	C178.3
4.	Projections of Regular Solids	Projections of solids in simple position inclined to one/both the planes.	C178.3
5.	Sections and Sectional Views of Right Angular Solids	• Sections of solids: Section of standard solids and true shape section of standard machine elements for the section planes perpendicular to one plane and parallel or inclined to other plane.	C178.3

6.	Isometric Projections	Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa.	C178.4	
7.	Overview of Computer Graphics	Demonstrating knowledge of the theory of CAD software; Dialog boxes and windows; Shortcut menus; the Command Line; the Status Bar; Isometric Views of lines, Planes, Simple and compound Solids.	C178.5	
8.	Customization & CAD Drawing	CAD Drawing along with customization tools, Annotations, layering & other functions. Orthographic Projections; Model Viewing; Co-ordinate Systems; Multi-view Projection; Surface Modeling; Solid Modeling.	C178.5	
9.	Demonstration of a simple team design project	Technical 2D/3D orthographic and Isometric projections; Demonstration of a simple team design project.	C178.5	
Evaluation CriteriaComponents Maximum Marks				
Mid Viva 20 End Viva 20 TA 60				
Total 100				

Project based learning: AutoCAD is a computer-aided software used for creating blueprints for bridges, buildings, interior & exterior designs etc. The software is widely used by designers and drafters for creating 2D and 3D computer drawings. Each student will opt an Automobile or Manufacturing Industry of India and learn more about their projects and latest designs.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	1. Bhatt N.D., Panchal V.M. & Ingle P.R., Engineering Drawing, Charotar Publishing House, 2014.		
2.	2. Shah, M.B. &Rana B.C., Engineering Drawing and Computer Graphics, Pearson Education, 2008.		
3.	3. Agrawal B. & Agrawal C. M., Engineering Graphics, TMH Publication, 2012.		
4.	Narayana, K.L. & P Kannaiah , Text book on Engineering Drawing, Scitech Publishers, 2008		