Proposal for the conduct of Course

1.Detailed Syllabus (Lecture-wise Breakup)

Course Code	15B11EC411	Semester Odd		Semeste	er 3 rd	Session	2020 -2021
		(specify Odd/Even)		Month 1	from A	ugust to D	ecember
Course Name	ANALOGUE ELECTRONICS						
Credits	4		Contact I	Hours		6-2	2-0

Faculty (Names)	Coordinator(s)	Dr. Archana Pandey, Dr. Hemant Kumar
	Teacher(s) (Alphabetically)	Dr. Archana Pandey, Dr. Garima Kapur, Dr. Hemant Kumar, Dr. Kirmender Singh, Mr. Shivaji Tyagi, Mr. Varun Goel

COURSE	OUTCOMES	COGNITIVE LEVELS
C213.1	Classify the different modes of operation of a transistor and stability analysis of a transistor.	Understanding Level (C2)
C213.2	Explain and analyze the various BJT and MOS amplifier circuits for different frequency ranges.	Analyzing Level (C4)
C213.3	List and explain the building blocks of an Op-Amp and its characteristics.	Understanding Level (C2)
C213.4	Explain the effect of feedback on amplifier characteristics and design of various types of oscillators.	Evaluating Level (C5)
C213.5	Apply basic understanding of Op-Amp to design various electronics circuits for specified gain and waveform.	Applying Level (C3)

Module No.	Title of the Module	Topics in the Module (yellow highlighted part shows the content covered in PBL CO3, CO4, CO5)	No. of Lectures for the module
1.	BJT Amplifier	Single stage (CE, CB, CC), Small-Signal Model, Multistage: CE-CE, Cascode, Darlington-pair and Frequency Response of CE Amplifier	9
2.	Introduction of MOSFET and analysis of MOS amplifier	Introduction of MOSFET, characteristics and basing (voltage and current), small signal models: common source, common gate and common Drain, Frequency Response of CS amplifier	9
3.	Building Blocks of Op-Amp	Basic building block of Op-Amp, Differential amplifiers, Analysis of Differential Amplifiers, Current Mirrors	8
4.	Feedback	Four basic feedback topologies: series-shunt, series-series, shunt-shunt, shunt-series, Introduction and Criterion for oscillations	5
5.	Measurement of Op-Amp Parameters	Output Offset Voltage, Input offset voltage, Input Bias Current, Input Offset current, CMRR, Slew rate, Open loop and closed loop gain, PSRR.	3
6.	Application of Op- Amp	Comparators, Zero Crossing Detector, Peak Detector, Schmitt trigger, Waveform generator (square wave, triangular wave), Instrumentation amplifier.	4

	Total number of Lectures	38
Evaluation Criteria		
Components	Maximum Marks	
T1	20 (JIIT 128), Course coverage-Lecture 1 to Lecture 12	
T2	20 (JIIT 128), Course coverage-Lecture 13 to Lecture 24	
End Semester Examination	35 (JIIT 62)- Whole syllabus	
TA	25 (Attendance 10 marks,	
	Assignment 1 (JIIT 128) 10 marks, to be assigned on 18 th submitted by 26 th june	^h june,
	Assignment 2/PBL (JIIT 62) 5 marks, to be assigned on submitted by 17 th july	10 th july,
Total	100	

Project Based Learning: Students will learn about the building blocks of an Op-Amp and its characteristics, the effect of feedback on amplifier characteristics, design of various types of oscillators, and use of Op-Amp to design various electronics circuits for specified gain and waveform. Students will be given an analytical and simulation based problem/project, which will help them to develop circuit analysis skills and expertise of circuit simulation tools.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. A.S .Sedra & K.C.Smith, Microelectronic CIRCUITS Theory and Application, 6th Edition, Oxford University Press, 2011
- 2. J.Milman & Halkias: Integrated Electronics, 2nd Edition, Tata McGraw Hill, 1991.
- **3.** R.A. Gayakwad: Op Amp and Linear Integrated Circuit Technology, 3rd Edition, Prentice-Hall India, 1999.

Course Code	15B17EC471	Semester : ODD (specify Odd/Even)		Semeste Month		Session 2020-21 Aug to Dec
Course Name	Analogue Electronics Lab					
Credits	1	Contact H		Hours		0-0-2

Faculty (Names)	Coordinator(s)	Shivaji Tyagi, Dr. Bharatendu Chaturvedi
	Teacher(s) (Alphabetically)	

COURSE	DESCRIPTION	COGNITIVE LEVELS
OUTCOMES		
C275.1	Plot the transient, frequency response of second-order RC circuit	Applying Level
	using SPICE/MULTISIM and utilize the plot to compare 3-dB	(C3)
	cut-off frequency with theoretical calculation.	
C275.2	Analyze the bias point and plot frequency response of single-	Analyzing Level
	stage amplifiers and they will be able to build an amplifier of	(C4)
	given specifications.	
C275.3	Build a common-source amplifier for a specified gain using N-	Applying Level
	channel MOSFET.	(C3)
C275.4	Analyze BJT based simple constant current biasing circuit and	Analyzing Level
	subsequently improves its specification by using modified	(C4)
	current mirror.	
C275.5	Determine differential gain, common mode gain and CMRR of	Applying Level
	BJT based differential amplifier.	(C3)
C275.6	Simulate an operational amplifier and use it in different	Analyzing Level
	applications.	(C4)

Module No.	Title of the Module	List of Experiments	СО
1.	Introduction and demonstration of Simulation tool with suitable example	Installation of PSPICE Light version on GPL with operating instructions. Simulate transient and frequency response of first-order RC circuit for input of sine and square waveform.	C275.1
2.	Study and Analyzing Biasing Techniques	Use PSPICE to simulate dependence of β_{dc} on collector bias current for discrete BJT transistor (BC547B/ 2N2222A/3904).	C275.2
3	Study and Analyzing Biasing Techniques	Use PSPICE to compare the biasing techniques such as voltage divider, collector to base bias and fixed bias for DC "Q- point" stability of a BJT (BC547B/2N2222A/3904) on PSPICE	C275.2
4.	Large signal and small signal analysis of CE amplifier	Use PSPICE to determine instantaneous node voltages and branch currents of single stage CE amplifier for triangular input $V_i = 1.6V$ (p-p) using discrete transistor (BC547B/2N2222A/3904). Also determine the maximum amplitude of V_i which is allowed to be used in the amplifier.	C275.2
5.	Design of BJT based amplifier	Use PSPICE to design a single stage BJT amplifier for given specifications.	C275.2

6.	Frequency Response of Amplifier	Use PSPICE to simulate frequency response of the Common source amplifier using N- channel MOSFET BS170. Determine a) Upper, lower 3-dB frequency b) Bandwidth	C275.3
7.	Current Mirror	Use PSPICE to design a basic BJT current mirror using discrete transistor (BC547B/2N2222A/3904) for reference current of 1mA. Determine the output resistance, current gain error.	C275.4
8.	Current Mirror	Use PSPICE to design Wilson current mirror of 1mA and determine the output resistance, current gain error.	C275.4
9.*	Differential Amplifier	Use PSPICE to simulate the single stage differential amplifier and determine the following: a) Frequency response of differential gain A_d . b) Frequency response of common mode gain A_{CM} . c) Common Mode Rejection Ratio (CMRR).	C275.5
10.*	Applications of OP- AMP	Use PSPICE to simulate the closed-loop non inverting amplifier, inverting amplifier, adder, subtractor for given specifications and determine: a) Transient Response b) Its 3-dB bandwidth c) Input resistance R _i	C275.6
Evaluation	Criteria		,
Componen Mid Viva End Viva Day to Day		Maximum Marks 20 20 60	
Total		100	

^{*} These are advanced level experiments.

Students are advised to register and download the student version of PSPICE software from the following link: https://www.orcad.com/orcad-academic-program.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. A.S. Sedra & K.C.Smith, Microelectronic Circuits Theory and Application, 6th Edition, Oxford University Press, 2015(Text Book)

2. Marc Thompson, Intuitive Analog Circuit Design, 2nd Edition, Elsevier Publication, 2013

Course Code	18B11EC214	Semester Odd (specify Odd/Even)		Semester IIIrd Session 2020 -2021 Month from August to December		
Course Name	Signals and Systems					
Credits	4		Contact I	Hours	3+1	

Faculty (Names)	Coordinator(s)	Ajay Kumar, PriyankaKwatra
	Teacher(s) (Alphabetically)	Ajay Kumar, JyotiVyas,PriyankaKwatra,SajaiVir Singh, SaurabhChaturvedi,

COURSE	OUTCOMES	COGNITIVE LEVELS
C210.1	Understand the mathematical representation, classification, applications and analyze both continuous and discrete time signals and systems.	Understanding (Level II)
C210.2	Analyze and interpret the response of continuous and discrete time LTI system in time domain	Evaluating (Level V)
C210.3	Choose and demonstrate the use of different frequency domain transforms to examine and explain the spectral representation of the CT and DT signals and systems.	Evaluating (Level V)
C210.4	Apply Laplace and Z transform to analyze and examine the response and behavior of the CT and DT system.	Analyzing (Level IV)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Signals and their classifications	Signal:- definition, Classifications of Signals (Continuous- time & Discrete-time, Analog & Digital, Energy & Power, Deterministic & Random, Periodic & Aperiodic, Even and Odd etc.)	4
2.	System and their classifications	Classifications of Systems Classifications of Systems (Linear & Nonlinear, Time invariant & Time varying, Causal & Non- causal, Memory & Memory less, Stable & unstable system), LTI Systems (continuous-time and discrete time).	5
3.	Response of LTI system	Impulse response of a system, Response of LTI system, Convolution (Integral and Sum).	5
4.	Fourier analysis of Continuous time signal and system	Continuous Transforms Fourier series, Convergence of Fourier series, Continuous-time Fourier Transform, properties of Fourier series and Transform, Frequency domain analysis of continuous time LTI system	7
5.	Fourier analysis of Discrete time signal and system	Discrete Transforms Fourier series, Convergence of Fourier series, Discrete-time Fourier Transform, properties of Discrete-time Fourier series and Transform, Frequency domain analysis of discrete-time LTI system	7
6.	Laplace Transform	Laplace Transform, Concept of ROC and Transfer function, pole-Zero plot, properties Laplace Transform, solution of	,

Total		100			
TA		25 ()			
End Seme	ster Examination	35			
T2		20			
T1		20			
Compone	ents	Maximum Marks			
Evaluatio	on Criteria				
		Total number of Lectures	42		
8. Introduction to Digital Filters: FIR & IIR		Digital filters:- definition and frequency response of basic filtering function like BP, HP, LP, BR, AP Definition and representation of IIR and FIR digital filter	1		
7. Z-transform		function, Laplace approach to analysis the LTI system, stability analysis Z- Transform, Concept of ROC, properties Z- Transform, of solution of difference equations using Z- Transform, System function, pole-Zero plot, Z- Transform approach to analysis the Discrete-time LTI system, stability analysis of Discrete-time LTI system			
		differential equations using Laplace Transform, System			

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	A.V. Oppenheim, A.S. Willsky& S.H. Nawab, Signals & Systems, 2nd edition ,PHI ,2004			
2.	H.P. Hsu, Schaum's outlines of theory and problems of signals and systems. McGraw Hill; 1995.			
3.	S. Haykin& B. Van Veen, Signals and Systems, 2nd edition, John Wiley & sons, 2004.			
4.	M. Mandal, Amir Asif, Continuous and Discrete Time Signals and Systems, Cambridge, 2007			
5.	M. J. Roberts, Signals and Systems, Tata Mcraw-Hill, 2003			
6.	TarunRawat, Signals and Systems, Oxford University Press, 2010			
7.	J. G. Proakis& D. G. Manolakis, Digital Signal Processing, Principles, Algorithmsand Applications, Fourth edition, PHI, 2007.			

Detailed Syllabus Signals and Systems Lab (18B15EC214) Lab-wise Breakup

Course Code	(18B15EC214)	Semester Odd (specify Odd/Even)		Semeste Month-	r-:III, Session 2020 -2021 : January-May
Course Name	Signal and System	tems Lab			
Credits	1	Contact H		Hours	2

Faculty (Names)	Coordinator(s)	Kuldeep Baderia, Rahul Kaushik
	Teacher(s) (Alphabetically)	Jyoti Vyas, Kuldeep Baderia, Madhu Jain, Rahul Kaushik

COURSE	OUTCOMES	COGNITIVE LEVELS
C270.1	Understanding of MATLAB and its various applications, Classification of continuous time signals and discrete time signals.	Understanding (Level II)
C270.2	Apply the coding skills of MATLAB for Convolution of continuous time signals and discrete time signals, for DFT and IDFT.	Applying (Level III)
C270.3	Analyze different LTI systems with Frequency domain representation of continuous time and discrete time periodic and aperiodic signals.	Analyzing (Level IV)
C270.4	Determine Laplace Transform of continuous time signals and Z- Transform of discrete time signals. Introduction to SIMULINK and to realize systems described by differential and difference equations	Evaluating (Level V)

Module No.	Title of the Module	List of Experiments	
1.	Understanding of MATLAB and its use in signals and discrete time signals.	Introduction to MATLAB and its various applications.	C270.1
2.	Study and Classification of continuous time signals	Introduction to continuous time signals.	C270.1
3.	Study and Classification of Discrete time signals	Introduction to Discrete time signals	C270.1
4.	Study of parts of signals	Introduction to even and odd parts of signal.	C270.1
5.	Study of plotting of different signals using MATLAB	Write MATLAB Codes for generating and plotting various combinations of the two signals and perform time scaling, time shifting, time reversal and multiple transformations.	C270.1
6.	Study and calculation of	Write MATLAB codes for finding the Signal Energy or power of signals.	C270.1

	Power and energy of		
	signals using MATLAB		
7.	Apply the concepts of MATLAB in finding the Convolution sum of signals	To calculate the convolution sum of two discrete time signals.	C270.2
8.	Apply the concepts of MATLAB in finding the Convolution sum of signals	To calculate the convolution integral of two continuous - time signals.	C270.2
9.	Analyze different LTI systems with Frequency domain representation	Realization of LTI system and verify it.	C270.3
10.	Analyze Frequency domain representation of continuous time and discrete time periodic signals.	Determine frequency domain representation of CT and DT periodic signals.	C270.3
11.	Analyze different LTI systems with Frequency domain representation of continuous time and aperiodic signals.	Determine frequency domain representation of CT and DT aperiodic signals.	C270.3
12.	Analyze and realize Discrete Fourier Transform and Inverse Discrete Fourier Transform	Write your own MATLAB function to compute DFT (Discrete Fourier Transform) and IDFT (Inverse Discrete Fourier Transform) for the spectral analysis of signals.	C270.3
13.	DetermineLaplace Transform of continuous time signals	Find out output y (t) of the system where input is x (t) and impulse response is h (t) using Laplace Transform. Also, find the ROC of the transform.	C270.4
14.	Determine Z- Transform of discrete time signals.	Find out output y [n] of the system where input is x[n] and impulse response is h[n] using Z-Transform. Also, find the ROC of the transform. Verify answer using MATLAB commands "ztrans" and "iztrans". Check stability of the system using MATLAB	C270.4
15.	Introduction to SIMULINK	Introduction to SIMULINK and to realize systems described by differential and difference equations.	C270.4
16.	Understanding of MATLAB and its use in signals	Virtual Lab: 1. Signals and its properties	C270.1
17.	Understanding of MATLAB and its use in systems	Virtual Lab: 2. System and their properties	C270.2
18.	Understanding of MATLAB and its use in Frequency Domain Representation of signals	Virtual Lab: 3. Fourier analysis of signals	C270.3

Evaluation Criteria		
Components	Maximum Marks	
Viva 1(Mid Sem Viva)	20	
Viva 2(End Sem Viva)	20	
Assessment Components 20		
Attendance	15	
Lab Record	15	
Virtual Lab Exps.	10	
Total	100	

Project Based Learning: Every Student will learn analyzing different LTI systems with frequency domain representation of continuous time and discrete time periodic and aperiodic signals. Moreover, small groups of students are required to develop one Simulink model to realize systems described by differential and difference equations.

#Due to Pandemic situation of COVID-19, All the MATLAB programs will be performed using open source SCILAB and OCTAVE, due to unavailability of licensed MATLAB software to the students.

II II	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	1. J.G.Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, Third Edition, PrenticeHall, 1999.			
2.	A.V.Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, Second Edition, Prentice Hall, 1999.			
3.	Sanjit K. Mitra, Digital Signal Processing: With DSP Laboratory Using MATLAB: A Computer-Based Approach, Second Revised Edition, TMH, 2001.			

Detailed Syllabus

Lecture-wise Breakup

Course Code	15B11EC211	Semester Odd (specify Odd/Ever		ter 3rd Session 2020 -2021 from August to December	
Course Name	Electrical Science-2	!			
Credits	4	Contact Hours		3+1	

Faculty	Coordinator(s)	Dr.SatyendraKumar, Dr.Kirmender Singh
(Names)	Teacher(s) (Alphabetically)	Dr.Akanksha Bansal, Mr.Ankur Bhardwaj, Dr.Archana Pandey, Dr.AtulKumar,Dr.BhagirathSahu,Dr.BhartenduChaturvedi,Mr.Chandan Singh,Mr.Deepak Kumar, Dr.GarimaKapur, Dr.Hemant Kumar,Dr.Jitendra Mohan, Dr.Kaushal Nigam, Ms. MadhuJharia, Mr.MandeepNarula, Mr.Nitesh Kumar, Dr.Pankaj Kumar Yadav, Mr. Prabhakar, Dr.Rachna Singh, Mr.RahulKumar,Dr.RubiBeniwal, Mr.ShivajiTyagi, Ms.ShradhaSaxena, Dr.Vimal Kumar Mishra, Mr.Vimal Saini, Dr.Yogesh Kumar

COURSE OU	JTCOMES	COGNITIVE LEVELS
C203.1	Study and analyze the complete response of the first order and second order circuits with energy storage and/or non-storage elements.	Analysing Level (C4)
C203.2	Understand two-port network parameters and study operational amplifier, first-order&second-orderfilters.	Understanding Level (C2)
C203.3	Study the properties of different types of semiconductors, PN junction diode, zener diode and analyze diode applications.	Analyzing Level (C4)
C203.4	Study the characteristics, operation of bipolar junction transistor (BJT) and its biasing, stability aspects.	UnderstandingLevel (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Transient Analysis	First-order network analysis, sequential switching, Differential equation approach for DC and Non constant source, second order network analysis using differential	10

		equation approach for DC and non-constant source				
2.	Two Port Network Parameters	Definition of Z, Y, h and Transmission parameters and their conversions.	5			
Introduction to Operational Amplifier and Filters		Introduction to Operational Amplifier and its applications, First-order and Second-order (Low Pass, High Pass, Band pass and Band Stop) RLC Filters.	5			
Introduction to Semiconductor		Semiconductor Physics-Energy Band Model, Carrier Statistics, Intrinsic Semiconductors, Extrinsic Semiconductors, Fermi Level, Charge densities in a semiconductor, Carrier Mobility and Drift Current, Hall Effect, Recombination of charges, diffusion and conductivity equation.	6			
Diodes &Applications		P-N Junction diode, Biasing the PN Junction diode, Current–Voltage Characteristics of a P-N Junction, Half Wave Rectifier &Full Wave Rectifier, Clipper&Clamping Circuits, Zener Diode and its application as voltage reference, Line and Load Regulations of reference circuits.	8			
6.	Bipolar Junction Transistor	Transistor Construction and Basic Transistor Operation, Transistor Characteristics (CE,CB,CC). Transistor Biasing & Stability.	8			
		Total number of Lectures	42			
Evaluati	ion Criteria					
Compos T1	nents Ma	aximum Marks ()				
T2	2	0				
End Sen TA	mester Examination 3					
Total		00				
	O	rial: Author(s), Title, Edition, Publisher, Year of Publournals, Reports, Websites etc. in the IEEE format)	ication etc. (
1.	R.C.Dorfand James A. Svoboda, "Introduction to Electric Circuits",9 th ed, John Wiley & Sons, 2013.					
2.	Charles K. Alexander, Matthew N.O. Sadiku, "Fundamentals of Electric Circuits", 6th Edition, Tata McGraw Hill, 2019.					
3.	AbhijitChakrabarti,CircuitTheoryAnalysisand Synthesis,7 th ed,DhanpatRai&Co.2018.					
4.	RobertL.Boylestad,LouisNashelsky, "Electronic DevicesandCircuitTheory",11 th ed,PrenticeHall of India, 2014.					
5.	JacobMillman,Millman'sElectronicDevicesandCircuits (SIE),4thed,McGrawHillEducation,2015.					

Course Description

Course Code	15B17EC271	Semester -: Odd		Semeste	er-: III, Session 2020 -2021
		(specify Odd/E	Even)	Month-	: July - December
Course Name	Electrical Science-2 Lab				
Credits	2		Contact I	Hours	2

Faculty (Names)	Coordinator(s)	Mr. Ankur Bhardwaj, Dr. Yogesh Kumar, Dr. Abhishek Kashyap
	Teacher(s)	Shamim Akhter, Jasmine Saini, Ruby Beniwal, Nisha Venkatesh, Ankur Bhardwaj, Rachna Singh, Atul Kumar, Alok Joshi, B. Suresh, Kuldeep Baderia, Vinay Tikkiwal, Vishal Narain Saxena, Vimal Mishra, Priyanka Gandhi, Abhay Kumar, Monika, Yogesh Kumar, Abhishek Kashyap

COURSE O	UTCOMES	COGNITIVE LEVELS
C204.1	Understand Transient analysis and steady state response of series RC circuit.	Understanding (Level II)
C204.2	Acquire the knowledge of circuits like Adder, Subtractor, Integrator, differentiator; inverting and non inverting amplifier circuits realized using Op-amp IC-741.	Analyzing (Level IV)
C204.3	Study and Implementation of the different logic gates.	Remembering (Level I)
C204.4	Construct Adder, Subtractor and Multiplexer circuits using logic gates.	Applying (Level III)

Module No.	Title of the Module	List of Experiments	COs
1.	Study of Transient Analysis in the Network Circuit	Transient analysis of a series RC circuit for a given time constant.	C204.1
2.	Study and Analysis of Parallel Resonance Circuits	Analysis of Parallel Resonance circuits	C204.1
3.	Study and Analysis of Series Resonance Circuits	Analysis of Series Resonance circuits.	C204.1
4.	Study and Analysis of Inverting and	To realize inverting and non inverting amplifier configuration using Op-Amp IC-	C204.2

	Non-inverting by Op-Amp	741.	
5.	Study and Analysis of Adder and Substractor by Op-Amp	To realize adder and substractor circuits using Op-Amp IC-741	C204.2
6.	Study and Analysis of Differentiator and Integrator by Op-Amp	To realize differentiator and integrator circuits using Op-Amp IC-741.	C204.2
7.	Study of Logic Gates and Verification of Boolean Laws	Verification of the truth tables of logic gates using ICs	C204.3
8.	Study and Implement of Basics Logics Gates using Universal Logic Gates	To implement basic logic gates AND, OR, NOT using NAND and NOR gates.	C204.3
9.	Perform the Boolean Expression using Universal Gates	To implement the Boolean expressions using NAND gates only: $(i)X = \overline{A} + \overline{B}$ $(ii)Y = \overline{AB} + C\overline{D}$ $(iii)Z = \overline{(A + \overline{B})(C + \overline{A})}$	C204.3
10.	Design and Implementation of Adders	To realize a Half Adder, Full Adder using logic gates.	C204.4
11.	Design and Implementation of Subtractors	To realize a Half Subtractor, Full Subtractor using logic gates.	C204.4
12.	Design and Implementation of Multiplexer	To realize 4:1 Multiplexer using NAND gates.	C204.4
13.	Study and Implement of Voltage Comparator using Op-Amp	To implement a Voltage Comparator circuit using Op-Amp	C204.2
14.	Study of Square Waveform using Op-Amp	To generate a Square Waveform using Op- Amp	C204.2
15.	Study and Analysis of	To design a First Order Low Pass Filter	C204.2

	Filter in Op- Amp	
Evaluation Criteria		
Components		Maximum Marks
Viva1		20
Viva2		20
Report file, Attendance, and D2D		60 (15+15+30)
Total		100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 Richard C. Dorf, James A. Svoboda, "Introduction to Electric Circuits," Wiley; 7 Edition, 2006
 M. Morris Mano, "Digital Design," 3rd Edition, PHI, 2002
 A. A. Kumar, "Fundamentals of Digital Circuits," 3rd Edition, PHI Learning Pvt. Limited, 2014
 D. Roy Choudhary and Shail B. Jain, "Linear Integrated Circuit," 2nd Edition, NAILP, 20 03

Course Code	15B11CI312	Semester : Od	ld		er: Odd Session: 2020-2021 from July'20 to Dec'20
Course Name	Database Systems & Web				
Credits	4		Contact I	Hours	4(3+1)

Faculty (Names)	Coordinator(s)	Neetu Sardana
	Teacher(s) (Alphabetically)	Aditi, Ankit Vidyarthi, Mahendra Kumar Gurve

COURSE	OUTCOMES	COGNITIVE LEVELS
C212.1	Explain the basic concepts of Database systems and Web components.	Understand Level (Level II)
C212.2	Model the real world systems using Entity Relationship Diagrams and convert the ER model into a relational logical schema using various mapping algorithms	Apply Level (Level III)
C212.3	Develop a simple web application with client and server side scripting using Javascript and PHP and connect with a given relational database	Create Level (Level VI)
C212.4	Make use of SQL commands and relational algebraic expressions for query processing.	Apply Level (Level III)
C212.5	Simplify databases using normalization process based on identified keys and functional dependencies	Analyse Level (Level IV)
C212.6	Solve the atomicity, consistency, isolation, durability, transaction, and concurrency related issues of databases	Apply Level (Level III)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Databases	Introduction to Databases, Physical Level of Data Storage, Structure of relational databases, Review of SQL Create, Insert, Update, Delete and Select Statements, Overview of NoSQL databases	4
2.	Web Architecture & Introduction	Motivation, characteristics and complexities of web applications, Basics, of Web Server and Application server, differences between web application and conventional software, architecture layers.	2
3.	Client Side Web Technology	SGML, HTML 5, DHTML, CSS, Java script	3
4.	Server Side Web Technology	PHP, Database Connectivity with PHP	4
5.	Database Design and ER Model	Entity type, Attributes, Relation types, Notations, Constraints, Extended ER Features	4
6.	Relational Model and Structured	SQL: Data Definition and Data Manipulation, Relational Algebra	9

Evalua	ation Criteria	Total number of Lectures	42
9.	Transaction Management	Transactions, Concurrency, Recovery, Security	7
8.	Normalisation	Data Dependencies, 2NF, 3NF, BCNF, building normalised databases	5
7.	Procedural Language	PL/SQL: Stored Procedures, Functions, Cursors, Triggers	4
	Query Language		

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	15
Attendance	10
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. Henry F Korth, Abraham Silberschatz, S. Sudurshan, Database system concepts, 5th Edition, McGraw-Hill, 2006
- **2.** Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, 4th Edition, Pearson Education, 2006.
- Ramakrishnan, Gehrke, Database Management Systems, Mcgraw-Hill, 3rd Edition, Addison-Wesley,2006.
- **4.** Thomas Connolly, Carolyn Begg, Database Systems-A Practical Approach to design, Implementation and Management, 3rd Edition, Addison-Wesley,2002.
- 5. "PHP and MYSQL Manual" by Simon Stobart and Mike Vassileiou
- 6. "PHP and MYSQL Web Development" by Luke Welling and Laura Thomson(Pearson Education)
- 7. "An introduction to database systems" by Bipin C. Desai, West Publishing Company, College & School Division, 1990 Computers 820 pages
- 8. Christopher J. Date, Database Design and Relational Theory: Normal Forms and All That Jazz, 2012.
- 9. Rajiv Chopra, Database Management System (DBMS): A Practical Approach, 5th Edition, 2016, 682 pages.

Detailed Syllabus

Lab-wise Breakup

Course Code	G		er III Session 2020 from June'21 to July'21		
Course Name	Database System &	: Web Lab			
Credits	0-0-1		Contact	Hours	2

Faculty	Coordinator(s)	Payal Khurana Batra, Prantik Biswas
(Names)	Teacher(s) (Alphabetically)	Dr. Anita Sahoo, Dr. Neetu Sardana , Prantik Biswas

COURSE	COURSE OUTCOMES			
CI271.1	Explain the basic concepts of Database systems and Web components.	Understand (Level II)		
CI271.2	Develop web page using HTML, CSS with client side scripting using javascript.	Apply (Level III)		
CI271.3	Develop a simple web application with client and server side scripting using Javascript and PHP and connect to a given relational database.	Apply (Level III)		
CI271.4	Programming PL/SQL including stored procedures, stored functions, cursors, Triggers.	Apply (Level III)		
CI271.5	Design and implement a database schema for a given problem-domain and normalize a database.	Creating (Level VI)		
CI271.6	Design a Project based on database management	Create (Level VI)		

Module No.	Title of the Module	List of Experiments	СО
1.	Introduction to MySQL commands.	1. MySQL Create, Insert, Update, Delete and Select Statements.	CI271.1
2.	Client Side Web Technology	1. Design web page using SGML, HTML 5, DHTML, CSS, Java script.	CI271.2
3.	Server Side Web Technology	Develop a web application with client and server side scripting using Javascript.	CI271.3, CI271.5
		2. Develop a web application with client and server side scripting using PHP.	
		3. Design web application with databased connectivity.	
		4. Design web application with entering user data into	

		database. 5. Desig web application for user - databse interaction through PHP.				
4.	SQL	Simple Queries, Sorting Results (ORDER BY Clause), SQL Aggregate Functions, Grouping Results (GROUP BY Clause), Subqueries, ANY and ALL, Multi-Table Queries, EXISTS and NOT EXISTS, Combining Result Tables (UNION, INTERSECT, EXCEPT), Database Updates	CI271.4			
5.	Procedural Language	 Write PL/SQL program for storing data using procedures. Write PL/SQL program for storing data using stored functions. Write PL/SQL program for storing data using cursors and Triggers. 	CI271.4			
6.	Project	Students are expected to designed web application based on Php or JavaScript and connect with databased to execute insert, update, retrieve and delete data queries.	CI271.5, CI271.6			
Evaluation	Evaluation Criteria					
Components		Maximum Marks				
Lab Test-1		20				
Lab Test-2 Day-to-Day		20 60				
	ab Assessment, Attend	~~				
Total		100				

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. Henry F Korth, Abraham Silberschatz, S. Sudurshan, Database system concepts, 5th Edition, McGraw-Hill,2006
- **2.** Ramez Elmasri , Shamkant B. Navathe , Fundamentals of Database Systems, 4th Edition, Pearson Education, 2006.
- Ramakrishnan, Gehrke, Database Management Systems, Mcgraw-Hill, 3rd Edition, Addison-Wesley,2006.
- 4. Thomas Connolly, Carolyn Begg, Database Systems-A Practical Approach to design, Implementation and Management, 3rd Edition, Addison-Wesley,2002.
- 5. "PHP and MYSQL Manual" by Simon Stobart and Mike Vassileiou

Course Code	15B11HS211	Semester : OI (specify Odd/I			er : III Session 2020-21 rom: Aug-December
Course Name	e Name Economics				
Credits 03 Contact Ho		Hours	2-1-0		

Faculty (Names) Coordinator(s)		Manas Ranjan Behera, Dr. Anshu Banwari
	Teacher(s) (Alphabetically)	Dr. Akarsh Arora, Dr. Amandeep Kaur, Dr. Ansu Banwari, Dr. Kanupriya Misra Bakhru, Manas Ranjan Behera, Dr. Mukta Mani Dr. Sakshi Varshney, Dr. Shirin Alavi

COURSE	COGNITIVE LEVELS	
C206.1	Explain the basic micro and macro economics concepts.	Understanding (Level 2)
C206.2	Analyze the theories of demand, supply, elasticity and consumer choice in the market.	Analyzing (Level 4)
C206.3	Analyze the theories of production, cost, profit and break even analysis	Analyzing (Level 4)
C206.4	<i>Evaluate</i> the different market structures and their implications for the behavior of the firm.	Evaluating (Level 5)
C206.5	Examine the various business forecasting methods.	Analyzing (Level 4)
C206.6	<i>Apply</i> the basics of national income accounting and business cycles to Indian economy.	Applying (Level 3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Economics Definition, Basic economic problems, Resource constraints and welfare maximization. Micro and Macro economics. Production Possibility Curve. Circular flow of economic activities.	2
2.	Basics of Demand, Supply and Equilibrium	Demand side and supply side of the market. Factors affecting demand & supply. Elasticity of demand & supply – price, income and cross-price elasticity. Market equilibrium price.	3
3.	Theory of Consumer Choice	Theory of Utility and consumer's equilibrium. Indifference Curve analysis, Budget Constraints, Consumer Equilibrium.	2
4.	Demand forecasting	Regression Technique, Time-series Smoothing Techniques: Exponential, Moving Averages Method	6
5.	Production theory and analysis	Production function. Isoquants, Isocostlines, Optimal combination of inputs. Stages of production, Law of returns, Return to scale.	3
6.	Cost Theory and Analysis	Nature and types of cost. Cost functions- short run and long run Economies and diseconomies of scale	3
7.	Market Structure	Market structure and degree of competition Perfect competition, Monopoly, Monopolistic competition,	5

		Oligopoly			
8	National Income Accounting	Overview of Macroeconomics, Basic concepts of National Income Accounting,	3		
9	Macro Economics Issues	Introduction to Business Cycle, Inflation-causes, consequences and remedies: Monetary and Fiscal policy.	3		
		Total number of Lectures	30		
Evalua	ation Criteria				
Compo	Components Maximum Marks				
T1		20			
T2		20			
End Se	emester Examination	35			
TA		25 (Project+Class Test+Attendance and Discipline)			
Total		100			

II	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	H.C. Petersen, W.C. Lewis, <i>Managerial Economics</i> , 4th ed., Pearson Education 2001.					
2.	D. Salvatore, Managerial Economics in a Global Economy, 8 th ed., Thomson Asia, 2015.					
3.	S. Damodaran, Managerial Economics, 2 nd ed., Oxford University Press, 2010.					
4.	M. Hirschey, Managerial Economics, 15 th ed., Thomson Asia, 2019.					
5.	P.A. Samuelson, W.D. Nordhaus, Economics, 19 th ed., Tata Mc-Graw Hill, 2010.					
6.	S.K. Misra & V. K. Puri, Indian Economy, 37 th ed., Himalaya Publishing House, 2019.					

Subject Code	19B13BT211	Semester: ODD	Semester: III Session: 2020-2021 Month from: July to December
Subject Name	Environmental Stu	ıdies	
Credits	0	Contact Hours	3

Faculty	Coordinator(s)	1. Dr. Krishna Sundari S
(Names)	Teacher(s)	1. Dr. Krishna Sundari S
	(Alphabetically)	2. Manisha Singh
		3. Dr. Rachana
		4. Ms. Ekta Bhat

COURSE O	COGNITIVE LEVELS	
CO205.1	Explain diversity of environment, ecosystem resources and conservation.	Understand Level (C2)
CO205.2	Identify hazards related to environmental pollution and safe management practices	Apply Level(C3)
CO205.3	Apply modern techniques for sustainable Urban planning and Disaster management	Apply Level(C3)
CO205.4	Recall Government regulations, Environmental Policies, Laws & ethics	Understand Level (C2)
CO205.5	Survey ground situation on specific environmental aspects, examine risks involved, make a field report and present the findings	Analyzing Level(C4)

Modul e No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	The Multidisciplinary nature of environment, Biodiversity	Definition, scope and importance, Need for public awareness, Types of Ecosystems, World Biomes, Ecosystem functioning, Diversity of flora and fauna, species and wild life diversity, Biodiversity hotspots, threats to biodiversity, Case studies.	6
2.	Natural resources, Energy consumption & conservation	Water, Land, Energy (Renewable, non-renewable, wind, solar, hydro, Biomass), Mineral, Forest, & Food resources, Global Conventions on Energy, Kyoto protocol, Case studies.	10

3.	Pollution, hazardous waste management	Air, Water & Land, chemical, noise pollution, sources & causes, effects, Electronic waste, nuclear hazards, Case studies.	8	
4.	Urban planning, human communities, Disaster management	Sustainable building, Disaster Management and Contingency Planning, human population, resettlement, rehabilitation environmental movements, environmental ethics, Critical issues concerning Global environment Urbanization, population growth, global warming, climate change, acid rain, ozone depletion etc Case studies.	8	
5.	Environmental Policies, Laws, Regulations & ethics	Regulation of technology and innovation, Policy and laws, Different Acts such as: Environmental Protection Act, Air and Water Acts, Wildlife and Forest Acts), US-EPA, National Environmental Policy; Function of pollution control boards (SPCB and CPCB), their roles and responsibilities, Case studies.	4	
6	Field Work/	Explore the current environment related occurrences at national and international level, Study of successful sustainable measures, a know-how of industries in local region and their possible effects, measure of water, air and land quality, Visit to a local polluted site-Urban/Rural /Industrial / Agricultural, Study of simple ecosystems.	6	
Total number of Lectures				

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	1. Benny Joseph, Environmental Studies Simplified, 3 rd Edition, McGraw Hill Education, India, Published 2 nd August, 2017				
2.	Erach Bharucha, Textbook of Environmental Studies for UG Courses, 3 rd Edition, Orient Black Swan, Published 1 st Jan 2013				
3.	Issues of the Journal: Down to Earth, Published by Centre for Science and Environment (CSE), Delhi				

EVALUATION:

Mid Semester Examination - 30 marks (To be held along with T-2 Exam)

End Semester Examination - 40 marks

Teachers Assessment (TA) - 30 marks

Structure of Grading Academic Performance: Mandatory to Pass, grade will be awarded

Probability and Random Processes (15B11MA301)

Course Description

Course Code		15B11M	A301	Semester Odd	Semester III Session		
	т	D 1 1'1'	Month from Aug 2020 - Probability and Random Processes				
Course Name Credits		Probabilit					
Faculty			oton(a)	Dr. Amit Srivastava an			
(Names)		Coordin Teacher(Dr. Amit Srivastava al		Vogesh Gunta	
(1 tanies)		(Alphabe	. ,	Dr. Himanshu Agarw			
		Приих	orcury)	Kaur, Dr. Amita Bhaga		, Dr. Zamrveer	
COURSI	E OUT	COMES:				COGNITIVE LEVELS	
After purs	suing th	ne above m	entioned	course, the students wil	l be able to:		
C201.1	-	in the basic theorem	concept	s of probability, conditi	ional probability and	Understanding Level (C2)	
C201.2		•		and two dimensional rand statistical averages	ndom variables along	Applying Level (C3)	
C201.3		some problem	•	distributions to va	rious discrete and	Applying Level (C3)	
C201.4	solve	the proble	ms related	d to the component and	system reliabilities.	Applying Level (C3) Applying	
C201.5		identify the random processes and compute their averages.					
C201.6		solve the problems on Ergodic process, Poisson process and Markov chain.				Applying Level (C3)	
Module		of the	Topics	in the Module		No. of	
No.	Modu	ıle				Lectures for the module	
1.	Probability Three basic approaches to probability, conditional				5		
1,	11004	probability, total probability theorem, Bayes' theorem.					
2.	Rando	om		mensional random vari	iables (discrete and	8	
	Varia	bles		ous), distribution of			
				function and cdf). MC			
				n of a random varial e random variable, j			
			condition	onal distributions,	covariance and		
	correlation.						
3.	Probability Distributions Bernoulli, binomial, Poisson, negative binomial, geometric distributions. Uniform, exponential, normal, gamma, Earlang and Weibull distributions.				8		
4.	Reliability Concept of reliability, reliability function, hazard rate function, mean time to failure (MTTF). Reliability of series, parallel, series-parallel, parallel-series systems.			6			
5.	Random Processes I Introduction, Statistical description of random processes, Markov processes, processes with independent increments. Average values of random				7		

			processes. Strict sense and wide sense stationary				
			processes, their averages. Random walk, Wiener				
			process. Semi-random telegraph signal and random				
			telegraph signal process. Properties of				
			autocorrelation function.				
6	5.	Random	Ergodic processes. Power spectral density function	8			
		Processes II	and its properties. Poisson processes. Markov				
			chains and their transition probability matrix				
			(TPM).				
Tota	al nun	nber of Lectures		42			
Eva	luatio	n Criteria					
Con	npone	ents	Maximum Marks				
	1						
T1			20				
T2							
End Semester Examination 35							
TA	TA 25 (Quiz, Assignments, Tutorials)						
Tota	al		100				
Rec	omme	ended Reading n	naterial: Author(s), Title, Edition, Publisher, Year of	Publication etc.			
	(Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
	Veer	arajan, T., Prob	pability, Statistics and Random Processes, 3 rd Ed. Tat	a McGraw-Hill,			
1.	2008		•	ŕ			
	Papoulis, A. & Pillai, S.U., Probability, Random Variables and Stochastic Processes, Tata						
2.	McGraw-Hill, 2002.						
	Ross	Ross, S. M., Introduction to Probability and Statistics for Engineers and Scientists, 4th Ed.,					
3.		Elsevier, 2004.					

Palaniammal, S., Probability and Random Processes, PHI Learning Private Limited, 2012. **Prabha, B. and Sujata, R.,** Statistics, Random Processes and Queuing Theory, 3rd Ed.,

Scitech, 2009.