Detailed Syllabus

Lecture-wise Breakup

6	.1.	401404511444	•	C		C 1 -		.•	
Course Co	de	19M21PH111		Semester: Odd		Semester: I Session			
					Month from: July to December				
Course Na	me	Classical Med	ssical Mechanics						
Credits			4		Contact H	lours		3+1	
Faculty (Na	ames)	Coordinator		Anuraj Panwar					
		Teacher		Anuraj Panwar					
COURSE O	итсомі	ES						COGNITIVE LEVELS	
CO1	Relate	terminology a	and con	cepts of Newtor	nian Mecha	nics, Lagr	angian	Remember Level	
		•	•	, Central field, ry of relativity.	Rotationa	l motion,	small	(Level 1)	
CO2	1 '			chanism, models, derivations, and approaches			oaches	Understand Level	
	associa	ated with class	ical med	chanics.				(Level 2)	
CO3	Solve r	numerical prob	lems fo	r various situatio	ns in classi	cal mecha	nics.	Apply Level	
								(Level 3)	
CO4	1		obtained	d for various ph	ysical prob	lems of c	lassical	Analyze Level	
	mecha	nics.						(Level 4)	
Module	Title o	f the Module	Topics	in the Module				No. of Lectures for	
No.								the module	
1.	Introd	luction		on's Laws, Dyr iis, Phase-space	_	stems, S	tability	2	
2.	Lagran	gian	Genera	alised coordi	nates, H	olonomic	and	8	
	Dynamics		nonholonomic systems.			eronomic	and		
			rheono	• •		•	inciple, n for		
				Lagrange's equations, Energy equation for conservative fields, Cyclic (ignorable) coordinates					
				alised potential	_				
			Princip	ole of Least Actio	n.				
	1								

3.	Hamiltonian formulations:	Legendre transformations, Hamilton equations, cyclic coordinates and conservation theorems, principle of least action, canonical transformations, Poisson brackets, Hamilton-Jacobi theory, Action-angle variables.	10
4.	Two Body Central Force Problem	Equivalent one body problem and effective potential; classification of orbits; differential equation for orbits, Virial Theorem , Inverse Square Law of Force : Bound state problem : Kepler problem; Kepler's laws and planetary motion; Kepler's equation; Laplace - Lenz vector. Scattering Problem: elastic scattering, scattering cross section, centre of mass and laboratory frames, Rutherford scattering.	5
5.	Rigid Body Dynamics	Kinematics: degrees of freedom; space-fixed and body-fixed set of axes and orthogonal transformations from one set to another; Euler's angles; Euler's theorem on the motion of a rigid body; infinitesimal rotations; moments of inertia, inertia tensor and principal axes transformations; Euler's equations of motion. Force free motion of a rigid body; symmetrical top, Larmor precession; gyroscope asymmetrical top.	6
6.	Small Oscillations	Formulation of the problem; eigenvalue equations; frequencies of free vibrations and normal coordinates; forced vibrations and the effect of dissipative forces; simple examples.	4
7.	Special relativity	Internal frames, Principle and postulate of relativity, Lorentz transformations, Length contraction, time dilation and the Doppler effect, Velocity addition formula, Four- vector notation, Energy-momentum four-vector for a particle. Relativistic invariance of physical laws, Minkowski space.	5
		Total number of Lectures	40
Evaluat	ion Criteria		

Com	ponents	Maximum Marks				
T1		20				
T2		20				
End S	Semester Examination	35				
TA		25 [Attendance (07 M), Class Test, Quizzes, etc (07 M),				
		Assignments in PBL mode (06 M), and Internal assessment				
		(05 M)]				
Total	I	100				
	_	erial: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, eports, Websites etc. in the IEEE format)				
1.	Goldstein, Classical Me	chanics -Narosa				
2.	Landau and Lifshitz, Me	echanics - Pergamon				
3.	Rana and Joag, Classica	l Mechanics - Tata McGraw Hill				
4.	4. Whittaker, Analytical Dynamics of Particles and Rigid Bodies - Cambridge					
5.	5. Raychaudhuri, Classical Mechanics – Oxford					
6.	Sankara Rao, Classical N	Mechanics, Prentice hall of India				

Project based Learning (PBL): Students groups may be asked to submit reports on various physical problems on Newtonian mechanics, Lagrangian and Hamiltonian dynamics, central field problems, rotational motion, small oscillations and special theory of relativity. Students may be asked to make presentations on recently published articles on classical mechanics. Students may be asked to solve classical mechanics problems by using their expertise in computer language.

<u>Detailed Syllabus</u> Lecture-wise Breakup

				Lecture-wi	ise Breaku	p				
Course C	ode	19M21PH112	2	Semester: Od	d	Semeste	er: I	Session: 202	21-2022	
			Month from: July to			July to Dec	ember			
Course N	ame	Mathematical	Physics							
Credits			4		Contact 1	Hours		3+	-1	
Faculty (Names)	Coordinator	r	Manoj Kumar						
	Teacher			Manoj Kumar						
COURSE	OUTC	OMES						COGNIT	IVE LEVELS	
CO1		Recall basics of matrices, complex analysis, differential equations, special functions, Fourier and Laplace transformations etc						Remembe	pering (C1)	
CO2	Explai	n elements of l	inear ve	ctor space, compons of various ty	olex analys		thods	Understan	ding (C2)	
CO3	Apply	concepts of ma r and Laplace t	atrices, c	complex analysis	s, differenti	•		Applying	(C3)	
CO4	analys			cal problems ons, Fourier and	•	-	•	Evaluating	g (C5)	
Module No.	Title o		Topics	s in the Module					No. of Lectures for the module	
1.	Vector Matric Tensor	,	theorer transfo diagon summa tensor, symme	ormation, Eige alization of a ation convention contravariant etric and antisyn	er coordi en values matrix, co n, classifica n covariar nmetric tens	nates a and coordinate at and and sors, contributes and sort an	eigen transi ensors, mixed	coordinate vectors, formation, rank of a tensors,	8	
2.	Compl	metric tensor. Curvilinear coordinates Complex Analysis Algebra of complex numbers, continuity and differentiability of complex functions, Cauchy-Riemann equations, Analyticity and singularity points, complex integration, Cauchy integral theorem, evaluation of residues and definite integrals, Taylor and Lorentz Series.				-Riemann complex	12			
3.	Differential Differential operators, second order linear ordinary differential equations, Power series solution of differential equations Bessel's equation and solutions, Bessel's functions, recurrence formula, orthogonality of Bessel functions, General solutions to: Legendre, Laguere, Hermite, Beta and gamma functions and their properties and inter relationships. Green's Function and its applications.				8					
4.	Fourie Laplac	r and ce Transforms	theorem Transfe different transfo	r series, Diric m, Fourier sin forms of Dirac ntial equation form: Conditions and Second shi	e and co Delta fun , Integral for L.T., S	sine tran ction, sol l Transf Simple pr	sforms ution orms,	s, Fourier of partial Laplace s of L.T.,	8	

		solution of ordinary differential equation by L.T.						
5.	Group theory	Groups, Subgroups, Normal Subgroups, Quotient Groups,	4					
		Isomorphism Theorems, Simple Groups, Jordan Holder						
		Theorems, Sylow Probability Theory, Random variable,						
		Binomial, Poisson, and normal distribution, and central						
		limit theorem.						
		Total number of Lectures	40					
Eval	uation Criteria							
Com	ponents	Maximum Marks						
T1		20						
T2		20						
End	Semester Examination	35						
TA		25 [Attendance (07 M), Class Test/Quizzes, etc (07 M),						
		Assignments in PBL mode (06 M), and Internal assessment						
Tota	1	(05 M)] 100						
		rial: Author(s), Title, Edition, Publisher, Year of Publication etc.	(Text books					
	U	orts, Websites etc. in the IEEE format)	(Text books,					
1.		r Physicists, by G. Arfken, Academic Press.						
2.		ical Physics, by Charlie Harper, Phi Learning.						
3.	Advanced Engineering Mathematics by Creyszig							
4.	Advanced Engineering Mathematics by R K Jain and S R K Iyengar							
5.	Mathematical Physics, by	H.K. Dass.						
6.	Mathematical Methods in	Classical and Quantum Physics by Tulsi Das and S K Sharma						

Project Based Learning: Students will be given small projects in groups to enhance their understanding and interest in the course by corelating topics taught and their applications in solving different physical problems of real worlds. Students will be asked to submit the report of given project and give presentations of the same.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	19M21PH113	Semester: ODD		Semester: I Session: 2021 -2022 Month from: July to December		
Course Name	Quantum Mechanics					
Credits	4		Contact Hours		3+1	

Faculty (Names)	Coordinator(s)	Dr Ashish Bhatnagar
	Teacher(s) (Alphabetically)	Dr Ashish Bhatnagar

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Recall basic requirement of Quantum Mechanics such as inadequacy of classical physics in black body radiation, photoelectric effect etc.	Remembering (C1)
CO2	Demonstrate the general structure of Quantum Mechanics such as vector space, Dirac's bra-ket notation, operator algebra, angular momentum algebra, uncertainty relation etc.	Understanding (C2)
СОЗ	Schrödinger equation and its applications as potential well cases, harmonic oscillator, hydrogen atom and in hydrogen like systems etc.	Applying (C3)
CO4	Analyzing the applicability of different Approximation Techniques such as WKB approximations, perturbation theory, variational methods for Anharmonic oscillator, Helium atom, Stark effect etc.	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Inadequacy of classical Physics and advent of quantum physics (with specific attention to Planck's law, photoelectric effect, Compton effect, Specific heat, wave nature of mater, Davisson-Germer experiment, Stern-Gerlach, and Franck-Hertz experiment). Brief discussion on Schrodinger equation and solution of some simple problems.	3
2.	General structure of Quantum Mechanics	Basic ideas of linear algebra: vector space, inner product, Hilbert-space, Dirac's bra-ket notation for state vectors, bases and linear independence, eigen values and eigen vectors (with their physical meaning). Hermitian, normal, unitary and positive operators, Postulates of quantum mechanics, matrix representation of an operator, change of basis, unitary transformation. Eigen values and eigen functions of simple harmonic oscillator by operator method. Commutators and Heisenberg's uncertainty principle.	10
3.	Schrödinger equation and its applications	Schrodinger wave equation (time-dependent and time-independent) and probability interpretation, Simple potential problems—wells, tunneling through a barrier and harmonic oscillator (One and three dimensional). Wavefunction in coordinate and momentum representations.	10

4.	Angular Momentum Algebra	Spherically Symmetric potentials: The hydrogen atom and hydrogen like systems (e.g., Hydrogen molecular ion). A brief idea of open quantum systems. The angular momentum operator and their representation in spherical polar coordinates, eigen values and eigen functions of L² and Lz operators, ladder operators L+ and L-, Pauli's theory of spins (Pauli's matrices), angular momentum as a generator of infinitesimal rotations, matrix representation of J in ljm> basis. Addition of angular momenta, Computation of Clebsch-Gordon coefficients in simple cases (J1=1/2, J2=1/2) Central forces with an	7		
		example of hydrogen atom.			
5.	Approximation Techniques	Time-independent perturbation theory for non-degenerate and degenerate states. Applications: Anharmonic oscillator, Helium atom, Stark effect in hydrogen atom, Variational methods: Helium atom. WKB approximations and their applications to 2 electron systems.	10		
		Total number of Lectures	40		
Evaluation	on Criteria				
Components		Maximum Marks			
T1		20			
T2		20			
II .	ester Examination	35			
TA Total		25 [2 Quiz (7M), Attendance (7M), project (6M), Class performance (5 M)] 100			

II .	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	1. Quantum Mechanics, L. I. Schiff, McGraw-Hill Book Co.					
2.	Quantum Mechanics, E Merzbacher. John Wiley and Sons.					
3.	Quantum Mechanics, A. Ghatak and S. Lokanathan, Macmillan					
4.	Quantum Physics: Berkeley Physics Course, Vol. 4, E H Wichman, Tata McGrawhill,					
5.	Feynman Lectures on Physics, Vol-3, Narosa					
6.	Quantum Mechanics Concepts and Applications, Nouredine Zettili. John Wiley and Sons.					

Project based Learning (PBL): Students will make some individual projects on selected Topics of Quantum Mechanics like some approximation techniques depending on its applicability for specific simulation like solving different molecular systems with the help of Hartree fock, Density functional Methods etc. Example: For drug designing different quantum mechanical approximation techniques are used. Each project work will describe the detail about the specific approximation technique. Students will take help from available internet sources, current research papers, Text books for preparing the project. Throughout the preparation of the whole project and by presenting the project work students will gather deep learning about the applicability of different approximation techniques for the requirement of current Industry. The overall knowledge will help them to prepare themself as an efficient Physicist according to the requirements of current Industry.

<u>Detailed Syllabus</u> Lecture-wise Breakup

		1		ture-wise Brea		1			
Course Co	de	19M21F	PH114	Semester: Eve	en	Semester: I Session Month from: July to December			
						Month	from:	July to Dec	ember
Course Na	me	Electron			T = -	_			
Credits	<u> </u>		4	· · · ·	Contact I			3+	-1
Faculty (N	ames)	Coordi		Dr. Bhubesh C					
		Teacher		Dr. Bhubesh C	Chander Josh	ni			
COURSE									IVE LEVELS
C305-6.1			•	f electronics de		-		Remer	nbering (C1)
		ET, MOS	SFET, oscilla	tors, OP-AMPS	, digital GA	ATES, and	d Flip		
	flops.								
C305-6.2	_			al parameters in	nvolved in	designing	g and	Unders	standing (C2)
			ronic devices						1 : (02)
C305-6.3				ed problems. De	evelop desig	gn compe	tence	App	olying (C3)
- CO			igital electron			1 .	• .		
C305-6.4		-		to analyze elect	tronics netw	orks, circ	uits	Anal	lyzing (C4)
M 1 1		mponents		1 34 1 1					NT O
Module	Title o		Topics in t	he Module					No. of
No.	Modu	le							Lectures for
4	D .		NT . 1 .	1 1	. 1	1 .	<u> </u>	1 .	the module
1.	Basic	•	Network theorems and network analysis; Semiconductors,					-	10
	electro	onics		intrinsic and extrinsic semiconductors, Diode theory, forward and reverse-biased junctions, reverse-bias breakdown, load line					
				•					
				analysis, diode applications - Limiters, clippers, clampers,					
			voltage multipliers, half wave & full wave rectification, Zener						
			diode, Varactor diode. Transistor fundamentals, transistor						
			configurations, DC operating point, BJT characteristics &						
			parameters, fixed bias, emitter bias with and without emitter						
			resistance, analysis of above circuits and their design, variation of operating point and its stability.						
2	Amnli	fi.u.	Small Signal BJT amplifiers: AC equivalent circuit, hybrid, re					10	
2.	Ampli Feedb			their use in am				•	10
	Oscilla				-	-	_	_	
	Circui		1 .	frequency response of basic & compound configuration, Power amplifiers: Class A, B, AB, C and D stages, IC output stages.					
			_	positive and r		_	_	_	
				& their proper	-				
			1	Sinusodial O	•	-			
			Multivibrat		2011141015	(, <u>L</u> C	und	21 j 3ta1 j,	
3.	Opera	tional		Basics, practical	Op-Amn	circuits	differe	ential and	6
	Ampli								Ŭ
	P.11	·== ~		common mode operation, Inverting &Non-Inverting Amplifier, differential and cascade amplifier, Op-Amp applications.					
4.	Field-	Effect		ent-voltage cha					2
•	Trans			ency and high-sp					_
	(FET)			, -8 op			- ~ -		
5.	Digita		Decimal,	binary, octal,	hexadecim	al numb	er sv	stem and	12
	Electr		1	, binary weight			•		
	1		l	. , ,	, -				

		complement codes, Binary arithmetic, Positive and negative	
		logic designations, OR gate, AND gate, NOT gate, NAND gate,	
		NOR gate, XOR gate, Introduction of digital logic families:	
		Logic levels, propagation delay time, power dissipation fan-out	
		and fan-in, noise margin, logic families (RTL, DTL, TTL	
		etc).Circuits and Boolean identities associated with gates,	
		Boolean algebra- De-Morgans Laws, Sum of products and	
		product of sums expressions, Karnaugh maps, two, three and	
		four variable Karnaugh maps, simplification of expressions,	
		Minterm, Maxterm, deriving SOP and POS expressions from	
		truth tables.	
6.	Combination	Binary adders, half adders, full adders, decoders, multiplexer,	10
	al and	demultiplexer, encoders, ROM and applications, Digital	
	Sequential	comparator, Parity checker and generator, Flip-Flops- RS, JK,	
	Logic	master slave JK, T-type and D-type flip flops, Shift-register and	
		applications, Asynchronous counters and applications. A/D and	
		D/A converters.	
		Total number of Lectures	40
Eval	uation Criteria		
Com	ponents	Maximum Marks	
T1		20	
T2		20	
	Semester Examination	35	
TA		25 [Attendance (07 M), Class Test, Quizzes, etc (07 M),	
		Assignments in PBL mode (06 M), and Internal assessment	
Tota	1	(05 M)] 100	
		aterial: Author(s), Title, Edition, Publisher, Year of Publication etc.	(Taythooks
	Ü	Reports, Websites etc. in the IEEE format)	(Textbooks,
1.		Louis Nashelsky, Electronic Devices & Circuit Theory.	
2.	· ·	nic Principles, Tata Mcgraw Hill Publications	
3.	William Kleitz, Digital Electronics, Prentice Hall International Inc.		
	Digital Principles and Applications – 5th Edition, Albert Paul Malvino Donald P.Lcach, Tana Mc-Graw-		
4.		any Ltd., New Delhi, 1994	
5.	M. S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley & Sons Inc.		
6.	Michael Shur, Introduction to Electronic Devices, John Wiley & Sons Inc., 2000.		
7.	Jacob Millman, and C.C. Halkias, "Electronic devices and circuits", TMH Publications.		
8	Ben G. Streetman, SolidState Electronic Devices, PHI, 5th Ed, 2001.		
9	Digital Design – 4th edition, M.Morris Mano, Prentice Hall, 2006.		
10	Basic Electronics, B.L. Theraja, S. Chand & Co. Ltd., 2008		

Project Based Learning: Students will have to submit a working project based on p-n diodes, Zener diodes, LEDs, BJT, FET, MOSFET, oscillators, OP-AMPS, digital GATES, and Flip flops. At the end of the semester, students will be asked to submit and present their projects on the basis of which PBL marks will be awarded.

Detailed Syllabus Lab-wise Breakup

Course Code	19M25PH111	Semester: ODD		Semester: 1st Session: 2021 -2022 Month from: July to December	
Course Name	Laboratory-1				
Credits	4	Contact 1		Hours	8

Faculty (Names)	Coordinator(s)	Navneet Kumar Sharma
	Teacher(s) (Alphabetically)	Anirban Pathak, Navendu Goswami, Navneet Kumar Sharma, Papia Chowdhury

COURSE OUTCOMES COGNITIVE LEVELS

C170.1	Recall optics, solid state physics and modern physics principles behind the experiments.	Remembering (C1)
C170.2	Explain the experimental setup and the principles involved behind the experiments performed.	Understanding (C2)
C170.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C170.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C170.5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	СО
110.	Module		
1.	Optics	1. Wavelength measurement of Na-source using Michelson	1-5
		interferometer.	
		2. Determination of coherence & width of spectral lines using	
		Michelson interferometer	
		3.To determine the wavelengths of Balmer series in the visible region from hydrogen emission and to determine the Rydberg constant	
2.	Modern Physics	4. Measurement of critical potential using Franck-Hertz tube.	1-5
		5. To observe the Zeeman spitting of the green mercury line using Fabry-Perot etalon for normal transverse and	
		longitudinal configuration.	
3.	Solid State	6. Determination of band gap of semiconductor from	1-5
	Physics	temperature dependence of Resistivity using Four Probe	

	Method 7. To study P. H. loop for a given sample by CPO				
	7. To study B-H loop for a given sample by CRO8. Study of Dielectric constant and determination of Curie temperature of ferroelectric ceramics				
	9. Study of Hall Effect and determination of allied coefficients				
	10. Study of magneto resistance of given semiconductor material				
	11. Study of Magnetostriction using Michelson Interferometer				
	12. Study of electron spin resonance and determination of line width, electron spin, magnetic moment of an electron and electron g factor.				
Evaluation Criteria					
Components Mid Term Viva (V1) End Term Viva (V2) D2D	Maximum Marks 20 20 60				

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

100

1. Experiment hand-outs.

Total