Detailed Syllabus

Lecture-wise Breakup

Subject Code	17	7M12EC123	Semester Odd		Semester 10th Session 2021-22
					Month from Jul 21 to Dec 21
Subject Name	In	formation and Codin	g Theory		
Credits	4		Contact Hours		3+1
Faculty		Coordinator(s)	Dr. Juhi Gupta	l	
(Names)		Teacher(s) (Alphabetically)	Dr. Juhi Gupta		

COURSE	OUTCOMES	COCNITIVE LEVELS
Upon com	pletion of course, the students will be able to:	COGIVITIVE LEVELS
C140.1	Understand the concept of probability, its relation with	Applying Level (C3)
	information, entropy, and their application in communication	
	systems.	
C140.2	Identify theoretical and practical requirements for implementing	Analysing Level (C4)
	and designing compression algorithms.	
C140.3	Analyze the need for channel coding in digital communication	Analysing Level (C4)
	systems	
C140.4	Analyze the channel capacity of wireless communication	Applying Level (C4)
	channels and coding for secured communication in wireless	
	systems	

Module No.		Title of the Module	Topics in the module		No. of Lectures for the module
1.	Introduction to Information Theory		Random variables, Distributions, Functions of random variables, Statistical Averages, Introduction to Information Theory, Uncertainty and Information, Average Mutual Information, Entropy, Information measures for Continuous random variables, Relative Entropy		8
2.	Sc	ource Coding	Fixe Sou Fan Dis Ent Cor	ed and Variable length codes, Kraft Inequality, rce Coding Theorem, Huffman Coding, Shannon- o-Elias Coding, Run Length Coding, Rate tortion Function, Optimum Quantizer Design, ropy Rate, JPEG Standard for Lossy and Lossless npression	10
3.	Cl	nannel Capacity	Cha Cha Info and Alg MIN	annel Models, Discrete Memoryless Channels, annel Capacity, Noisy Channel Coding Theorem, ormation Capacity Theorem, Capacity of Series Parallel Gaussian Channels, Water-filling orithm, Shannon Limit, Channel Capacity for MO Systems	12
4.	Sŗ	pace Time Codes	Intr Gai MIN Ala	oduction to Space Time Block Codes, Coding n, Diversity Order, Channel Transition Matrix of MO Channel, General Space Time Encoder, mouti Scheme	7

5.	Coding for Secured Communication	Shannon's Notion of Security, The Gaussian Wiretap model, Secrecy Capacity in Wireless Channel, Outage Probability	6		
	43				
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	R. BOSE: Information	R. BOSE: Information theory, Coding and Cryptography, Mc Graw Hill 2008.			
2.	R.B. ASH: Informatio	R.B. ASH: Information Theory, Dover, 1990.			
4.	S. LIN & D.J. COSTE	S. LIN & D.J. COSTELLO: Error Control Coding, 2 nd Edn, Pearson, 2004.			
5.	T.K. MOON: Error C	T.K. MOON: Error Correction Coding, Wiley, 2006.			

Course Description

Course Code		17M17EC218	Semester Odd		Semeste	er 10th	Session 2021-2022	
			(specify Odd/Even) Month from Ju		uly to December			
Course Na	Course Name Seminar & Term Paper							
Credits		4		Contact I	Hours			
Faculty (N	ames)	Coordinator(s)	Saurabh Chatu	rvedi				
		Teacher(s) (Alphabetically)	Saurabh Chaturvedi					
S. N.	S. N. COURSE OUTCOMES: At the completion of the course, students COGNITIVE I will be able to						COGNITIVE LEVELS	
C212.1	Under relatin	stand relevant theo g to the seminar topi	ories, methods c selected by a	and res student.	earch de	esign	Understanding Level (C2)	
C212.2	Analy the fie	ze the work of other ld of knowledge with	authors/resear the cooperation	chers and on of the s	contribu upervisor	ite to r.	Analyzing Level (C4)	
C212.3	Evalua conclu	ate the previously prisions.	te the previously published research works, findings and Evaluating Level (C5) sions.					
C212.4	Devel	lop and refine the master's dissertation topic and proposal.					Creating Level (C6)	
	Devel	op the effective te	chnical writin	g, commi	inication	and		
	presentation skills.							
Evaluatior	Evaluation Criteria							
Components Maximum Marks								
Mid semester viva		20						
End semester viva		20 40						
Term paper/Report 20								
Total			100					

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	18M12EC115	Semester O (specify Od	DD d/Even)	Semes Month	ter 10th Session 2021 -2022 from July - December
Course Name	Advanced Optical Communication Systems				
Credits	3		Contact	Hours	3
Faculty	Coordinator(c)	Dr. Rahul Kau	shik		

Faculty	Coordinator(s)	Dr. Rahul Kaushik
(Names)	Teacher(s) (Alphabetically)	Dr. Rahul Kaushik

COURSE	OUTCOMES	COGNITIVE LEVELS
C117.1	Develop an understanding of optical fiber, its structure, types, propagation, transmission and non-linear properties.	Remembering(C1)
C117.2	Identify and examine the different kinds of losses and signal distortion along with their compensation techniques in optical Fibers.	Analyzing(C4)
C117.3	Classify the Optical sources and detectors and their principle of operation and analyze different coupling techniques.	Understanding (C2)
C117.4	Design short haul and long haul Analog/ Digital optical communication system with an insight into advanced optical systems.	Evaluating(C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Overview of Optical fiber Communications	Introduction to fiber optics, Physics of light. Principles of fiber optics: Introduction, light propagation, Skew rays. TIR condition, FTIR, Goos-hanchen shift. Effective index method to determine propagation constant, Fibers Modes, V Number analysis for optical fiber, Significance of V-b diagram, Mode Coupling, Step Index fibers, Graded Index fibers. Single mode fibers- Cut off wavelength, line width, propagation velocities. Non-linear effects in optical fiber	7

2.	Signal Degradation in Optical fibers	Signal distortion in optical fibers- Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses. Information capacity, Group delay, Types of Dispersion - Material dispersion, Wave-guide dispersion, Intermodal dispersion, Fiber Birefringence, Polarization Mode Dispersion. Introduction to Dispersion compensation techniques, Advanced chromatic dispersion compensation, Advanced PMD compensation (both optical and electrical).	7
3.	Optical Sources	Light emitting diode (LEDs)- structures designing and performance analysis, Quantum efficiency, Power, Modulation, Laser Diodes -Modes & threshold conditions, resonant frequencies, structures, characteristics single mode lasers, Modulation of laser diodes, external quantum efficiency, laser diode rate equations. Source to fiber power launching: - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Various fiber to light coupling techniques, Laser diode to fiber coupling, LED coupling to single mode fiber.	8
4.	Photodetectors& Receivers	Optical detectors- principles of PIN and APD, Detector response time, Temperature effect on Avalanche gain, Optical receiver: Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of error, Quantum limit, Analog receivers.	8
5.	Optical system design	Optical Amplification, Doped fiber amplifier, semiconductor optical amplifier, Analog and digital systems. Coherent optical fiber communication systems. Modulation and line coding. Bandwidth and rise time budgets, Power budget, and dynamic range. Power penalty, Channel capacity measurement.	6
6.	Advanced Optical Systems and Networks	Wavelength Division Multiplexing. Long haul and metro WDM system, WDM system analysis, design and performance evaluation, Introduction to Photonic crystal technology, Photonic crystal fibers, Introduction to Optical Networks, Local area network, Metropolitan-Area N/W,SONET/SDH, Introduction to Free Space optical Communication.	8
		Total number of Lectures	44
Project Commu commu given a	Based Learning: The me inications students. The cour nication system including sou thorough knowledge about v	entioned course is an advanced course for E rese focuses on developing understanding to des arces, detector and signal guiding mechanism. The arious signal degradation mechanism along with	lectronics and ign an optical ne students are their overcome

techniques. Thus, it enables students to effectively analyze and realize an optical point link by their own.

Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
ТА	25	
Total	100	

Rec (Te	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. xt books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition, 2000.
2.	John M. Senior, Optical Fiber Communications, 2nd Edition, PHI, 2002.
3.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.
4.	Govind P. Agarwal, Fiber Optic Communication Systems, 3rd Edition, John Wiley, 2004.
5.	Joseph C. Palais, Fiber Optic Communications, 4th Edition, Pearson Education, 2004
6.	Journal articles i.e. IEEE, Springer, IOPscience, Elsevier and Video lectures from nanohub, NPTEL, MIT video lectures

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Course Code	19M12HS211	Semester: Odd (specify Odd/Even)		Semester: 10th Session: 2021 -2022 Month from: July-December	
Course Name	Cost Accounting for Engineering Projects				
Credits	03		Contact H	lours	3-0-0

Faculty (Names)	Coordinator(s)	Dr. Praveen Kumar Sharma
	Teacher(s) (Alphabetically)	Dr. Praveen Kumar Sharma

COURSE	OUTCOMES	COGNITIVE LEVELS
C201.1	Understand basic concepts of Cost Accounting	Understand (C2)
C201.2	Apply concepts of cost in project management	Apply (C3)
C201.3	Analyze cost behaviour for decision making	Analyze (C4)
C201.4	Construct different budgets for controlling the cost	Create (C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Introduction & Overview of Strategic Cost Management Process	2
2.	Cost Concepts	Relevant Cost, Differential Cost, Incremental Cost, Opportunity Cost, Objectives of a costing system, Inventory Valuation, Provision of data for decision making	4
3.	Project execution	Meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities.	5
4.	Project Execution & Quantitative	Pre project execution main clearances and documents Project team: Role of each member. Importance Project site	7

	techniques for	Data required with significance, Project contracts, Types			
	cost management	charts. Project commissioning. Linear Programming.			
		PERT/CPM. Transportation problems. Assignment			
		problems, Simulation, Learning Curve Theory			
5.	Cost Behavior	Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems.	6		
6.	Profit Planning Marginal Costing	Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach,	6		
7.	Material Planning	Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card& value chain analysis.	6		
8.	Budgetary Control	Flexible budgets, Performance budgets, zero based budgets, Measurements of divisional profitability pricing decisions including transfer pricing.	6		
Total number of Lectures			42		
Evaluatio	n Criteria				
Components		Maximum Marks			
T1		20			
T2		20			
End Seme	ster Examination	35			
ТА		25 (Quiz+project)			
Total		100			

Project based learning: student will form the group of four to five students. To make subject application based, student will apply various concepts such as Cost management and various types of Costing, project execution & quantitative technique for cost management, cost behaviour and profit planning. Student will apply these concept on organization, or in any ongoing project or interdisciplinary base research project or any innovative idea in any particular industry along with feasibility.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. S. M. Datar and M. Rajan, *Horngren'sCost Accounting: A Managerial Emphasis. 16th ed.* Pearson Education, 2018.

2.	B. M. L. Nigam and I. C. Jain, <i>Cost Accounting: Principles And Practice</i> , PHI Learning Pvt. Ltd. PHI Learning Pvt. Ltd., 2010.
3.	R. S. Kaplan and A. A. Atkinson, Advanced management accounting. PHI Learning, 2015.
4.	A. K. Bhattacharyya, <i>Principles and practice of cost accounting</i> . PHI Learning Pvt. Ltd., 2004.
5.	N. D. Vohra, <i>Quantitative Techniques in Management, 3e</i> . Tata McGraw-Hill Education, 2006.
6.	C. Drury, Management and Cost Accounting ,10th edition, Cengage Learning. 2017.
7.	P. Chandra, Projects-Planning Analysis, Selection, Implementation & Review 9e, Tata McGraw Hill, New Delhi. 2019.

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Course Code	19M13HS211	Semester: Od	d	Semeste Month	er:X Session: 2021 -2022 from: August-December 2021
Course Name	Constitution of India				
Credits	2		Contact I	Hours	2-0-0

COURSE	COUTCOMES	COGNITIVE LEVELS
C202.1	Demonstrate an understanding of the historical inheritances and institutional legacies of Indian Constitution	Understand (C2)
C202.2	Assess the nature of the Indian constitution and its applicability in the study of politics in India.	Evaluate (C5)
C202.3	Assess the devolution of powers and authority of governance of the Union government and the local government	Evaluate (C5)
C202.4	Demonstrate an understanding of the powers and functions of the Indian executive, legislature and judiciary	Understand (C2)

Module No.	Title of Module	the	Topics in the Module	No. of Lectures for the module
1.	History Making of Indian Constitution	of the	HistoryDrafting Committee-Composition & Working	2

2.	Philosophy of the India Constitution	 Preamble Salient Features Federalism	2
3.	Fundamental Rights and Directive Principles	 Right to Equality Right to Freedom Right against Exploitation Right to Freedom of Religion Cultural and Educational Rights Right to Constitutional Remedies Directive Principles of State Policy Conflict between DPSP and FR Fundamental Duties 	5
4.	Organs of Governance	 Parliament-Composition, Qualifications & and Disqualification, Powers and Functions Executive- President, Governor Council of Ministers Judiciary-Appointment and Transfer of Judges, Qualifications, Power and Functions 	8
5.	Local Administration	 District's Administration head: Role and Importance Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation Panchayati raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role Block level: Organizational Hierarchy(Different departments) Village level: Role of Elected and Appointed officials Importance of Grass root democracy 	8
6.	Election Commission	Election Commission: Role and Functioning	3
Total nun	28		

Evaluation Criteria	
Components	Maximum Marks
Mid Term: 30	
End Semester Examination	40
ТА	30 (Attendance, Quiz, Project)
Total 100	

Reco book	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Austin, G. (1996). <i>The Indian Constitution: Corner Stone of a Nation</i> . Oxford: Oxford University Press			
2.	Bakshi, P.M.(2015). The Constitution of India. Delhi: Universal Law Pub. Co. Pvt. Ltd			
3.	Bhuyan, D. (2016). Constitutional Government and Democracy in India. Cuttack:Kitab Mahal			
4.	Busi, S.N. (2016). Dr. B. R. Ambedkar framing of Indian Constitution. Hyderabad: Ava Publishers			
5.	Basu, D.D. (2018). Introduction to the Constitution of India. Nagpur: Lexis Nexis			
6.	Jayal, N.G. & Mehta, P.B. (eds.)(2010). <i>The Oxford Companion to Politics inIndia</i> . New Delhi: Oxford University Press.			
7.	Constitution series by Rajya Sabha Television and discussion on Indian Constitution by Rajya Sabha Television			

Detailed Syllabus

Subject	20M11EC112	Semester: ODD	Semester: 10th Session:2021-2022
Code			Month from July to December
SubjectPhotonics Materials & Devices for CompName		& Devices for Comm	unications
Credits	3 Contact Hours		3-0-0
Faculty	Coordinator(s) Teacher(s) (Alphabetically)		Dr. Amit Kumar Goyal
(Names)			Dr. Amit Kumar Goyal

COURSE OU	COGNITIVE LEVELS	
CO1	Develop an understanding of photonic components and optical fiber technology.	Understanding (Level II)
CO2	Design and analyze different types of Photonic/Nano-photonic devices and components.	Applying (Level III)
CO3	Classify the material system/technologiesalong with their fabrication processes to design efficient photonic devices for communication.	Analyzing (Level IV)
CO4	Analytically evaluate the various photonic devices.	Evaluating (Level V)

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Basics of Photonics, and Optical fibers	Photonics, integrated photonics and their brief history, Basic photonic technologies and components, Brief introduction to Maxwell's equations, wave equation, Electromagnetic waves at different dielectric intserfaces.	10
		Overview of Optical fibers, types (step-index and graded index), single-mode and multi- mode along with their condition, birefringent fiber, numerical aperture,Optical fiber communications, Dispersion and scattering	

		losses in fiber, budget analysis.	
2.	Optical waveguides and Photonic Devices	Optical waveguides classification, Guided modes in optical waveguides, Dispersion of guided modes, Single-mode 3-D optical waveguides. Basic integrated-optic devices: Optical power splitter, Directional coupler, thermo-optic switches, Mach-Zehnder interferometer, Arrayed Waveguide Grating (AWG)-based MUX/DEMUX, Add-drop multiplexer, Design of photonic devices: Beam Propagation Method and Marcatili's Method.	10
3.	Fundamental of Nano-Photonic Devices and Components	Nano-photonics: Photonic crystal (PhC) technology, PhC waveguide, PhC resonator, PhC MUX/DEMUX, PhC Filters, PhC fibers, Nano-wires, Packaging of photonic devices. Recent studies on PhC based devices for communication applications.	6
4.	Photonic Materials and Fabrication Technologies	Photonic materials, selection of materials like silicon, silica, Lithium Niobate, Compound Semiconductor and Polymers. Fabrication and process techniques like Lithography, Deposition, and Diffusion etc. Parameter measurement and techniques, recent studies on photonic materials.	10
5.	Coupled-mode Theory and Devices	Basic concepts of coupled mode theory, Mode coupling: co-directional and contra- directional, Mode coupling in corrugated waveguides, Short-period and long-period gratings in optical fibers and optical waveguides, Properties of short-period and long-period gratings, Application of gratings in communication, and Recent trends.	8
	Л	Total number of Lectures	44
Evaluation	n Criteria		
Compone T1 T2 End Semes TA Total	nts Ma 2 2 2 ster Examination 3 2 100	aximum Marks 0 0 5 5(Attendance, Performance. Assignment/Quiz)	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition, 2000.		
2.	John M. Senior, Optical Fiber Communications, 2nd Edition, PHI, 2002.		
3.	H Nishihara, M Haruna and T Suhara, Optical integrated Circuits, McGraw-hill, 1989.		
4.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.		
5.	C. R. Pollock and M. Lip Son, Integrated Photonics, Kluwer Pub., 2003.		
6.	T. Tamir, (ed), Guided-wave optoelectronics, (2nd edition), Springer-Verlag, 1990.		
7.	Clifford Pollock, Fundamentals of Optoelectronics, Richard Irwin Inc., Chicago, 1995.		
8.	Journal articles i.e. IEEE, Springer, IOPscience, Elsevier and Video lectures from nanohub, NPTEL, MIT video lectures		
9.	https://nptel.ac.in/courses/117/108/117108142/		

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	17M15EC113	Semester: Odd 2020 (specify Odd/Even)		Semeste Month f	er 10th Session 2021 -2022 from July to December
Course Name	ECE Design and Simulation Lab -I				
Credits ³			Contact H	Iours	6
	• •	1			

Faculty (Names) Coordinator(s)		Juhi Gupta
	Teacher(s) (Alphabetically)	Ashish Goel, Juhi Gupta

COURSE	OUTCOMES	COGNITIVE LEVELS
C171.1	At the end of the module the student will be able to explain relative merits and demerits of wireless communication technologies.	Remember Level (I)
C171.2	At the end of the lab the students will be able to simulate the radio propagation model	Understand Level (II)
C171.3	Plan a communications system for a given environment in which it is to be deployed.	Apply Level (III)
C171.4	Select a wireless technology or a combination of technologies to suit a given application.	Analyze Level (IV)
C171.5	Use of MIMO technology in 5G communication	Evaluate Level (V)
C171.6	Perform measurements with commercial equipment and understand the effects of radio channel on the OFDM signal as well as strategies to compensate them	Create Level (VI)

Module No.	Title of the Module	List of Experiments	
1.	Exp.1	Introduction to MATLAB and its various applications.	C171.1
2.	Exp.2	To study and simulate Rayleigh and Rician distribution using two signals that follow normal distribution	C171.2
3.	Exp.3	To study and simulate Propagation Path loss Models: Free Space Propagation, log distance and log normal.	C171.2
4.	Exp.4	To study atmospheric turbulence models in Free Space Optical Communication system and implement them using MATLAB	C171.3
5.	Exp.5	To determine the channel capacity for AWGN and faded wireless channels	C171.3
6.	Exp.6	To study Pulse code modulation and demodulation using Matlab	C171.4
7.	Exp.7	Write Matlab program to perform Delta modulation and Adaptive Delta modulation for a sinusoidal signal. Also study the effect of step size and sampling rate on delta modulated signal.	C171.4
8.	Exp.8	To study and simulate the following systems using BPSK modulation: a) wired or AWGN (Additive White Gaussian Noise); b) wireless or faded channel system.	C171.4
9.	Exp.9	Write Matlab program to evaluate the SER of 16-QAM modulated signal over AWGN channel and also verify it with the theoretical results.	C171.4

10.	Exp.10	To simulate the channel capacity for MIMO system	C171.5
11.	Exp.11	To analyze the performance of MIMO systems by using space time code technique.	C171.5
12.	Exp. 12	OFDM systems implementation using MATLAB	C171.6
13.	Exp. 13	To obtain the PAPR analysis of multi-carrier signal and the performance of PAPR & BER with clipping and filtering Scheme for PAPR reduction technique	C171.6
Evaluation	Criteria		
Component	S	Maximum Marks	
Viva -1	20		
Viva -2	20		
D2D	60		
Total	100		

Project based learning: Here, students will learn latest communication technologies, starting from the basics process of modulation, demodulation and its impairment. These schemes are of utmost importance to understand the concepts of current and future generations of communication system and to design the same. Student will be able to design the physical layer of 4G communication and to analyze its implementations issues. Students can perform the some simulation on Matlab to analyze the same. Understating of these techniques will further help to work in any core communication industry.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Aditya K Jagannatham, Principles of Modern Wireless Communication Systems Theory and Practice, TMH, 2/e, 2017

2. Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung-Gu Kang, MIMO-OFDM Wireless Communications with MATLAB, Wiley, 2013

Detailed Syllabus

Subject Code	17M17EC129	Semester :Odd	Semester 9th Session 2021-22				
			Month from Aug 21 to Dec 21				
Subject Name	Project Based Learning	- II					
Credits	2	Contact Hours	2				
		•					
Faculty (Name	s) Coordinator(s)	Dr. Vivek Dwivedi					
	Teacher(s) (Alphabetically)	NA					

COURSE	OUTCOMES	COGNITIVE LEVELS
C171.1	Summarize the contemporary scholarly literature, activities, and explored tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Embedded Systems, Signal Processing, VLSI, Communication, Artificial Intelligence	Understanding (Level II)
C171.2	Analyze/ Design the skill for obtaining the optimum solution to the formulated problem with in stipulated time and maintain technical correctness with effective presentation.	Analysing (Level IV)
C171.3	Use latest techniques and software tools for achieving the defined objectives.	Evaluating (Level V)
C171.4	Evaluate /Validate sound conclusions based on analysis and effectively document it in correct language and proper format.	Evaluating (Level V)

Project Based Learning Component: Every student will be assigned a project supervisor. The project supervisor will assign 4 different tasks to the student. These tasks will be evaluated by a panel of examiners in the mid and end semester. The students will explore various tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Embedded Systems, Signal Processing, VLSI, Communication, Artificial Intelligence and Machine Learning/Deep Learning etc.

Evaluation Criteria	~
Components	Maximum Marks
Mid Sem Evaluation 40	
Final Evaluation 40	
Report	20
Total	100