				cture-wise Brea	-				
Course Co	ode	19M21PH11:	5	Semester: EV	EN			Session 2	
			Month from: Jan to Jun				Jan to Jun	e	
Course Na	ame	Classical Ele	ctrodynamics						
Credits			4	•			3+1		
Faculty (N	Names)	Coordinato	r	Anirban Patha	k				
	Teacher			Anirban Patha	k				
COUDEE	OUTO			1				COGNIT	IVE
COURSE	OUTCO	JMES						LEVELS	
CO1	Recall	basics of elect	rostatics	, magnetorstatic	s and electr	odynamic	s	Remembe	ring (C1)
CO3	Explai	n various phys	ical phe	nomena and wor	king of dev	rices which	h	Understan	ding (C2)
CO2	-		-	f electrostatics a	-				
<u> </u>	Apply	the laws of ele	ctrostati	cs and Maxwell	's equation	to solve		Applying	(C3)
CO3	bound	ary value probl	ems and	l problems relate	ed to comm	unication.			
<u> </u>	Analyz	ze complex phy	sical pr	oblem of relativ	istic and no	nrelativist	ic	Analyzing	; (C4)
CO4	electro	dynamics	-					-	
Module	Title o	of the	Topics	s in the Module			I		No. of
No.	Modu	le							Lecture
									s for the
									module
1.	Electr	ostatics and	Coulor	nb's law, Ga	uss's law,	Laplace	e and	Poisson	9
	boundary value		equations, Method of Images, Boundary value problems (in						
	problems in		spherical and cylindrical coordinates), multipole expansion						
	electro	ostatics	and Dielectrics (energy and forces in dielectric systems),						
			minimum energy theorem, applications of electrostatic						
			fields (e.g., electrostatics particle precipitators, photo						
			duplication or Xerography and electrostatic lenses).						
2.		etostatics,	Biot-Savart law, differential equation of magnetostatics and					6	
		ay's law and	-	e's law, Faraday			-		
	quasi-	static fields	potential, multipole expansion of the vector potential and						
_				tic field in matte		-			
3.	Electr	odynamics		varying field		-	-		12
			•	ons, Pointing the	-	-			
			invariance, Electromagnetic waves in free space, dielectrics				inelectrics		
4	D "	4		nductors, Fresne	<u>^</u>			C. 1.1. 1	10
4.	Radia			ed potentials, Li					13
	-	l theory of	to a Point charge moving with constant velocity, Fields due to accelerated point charge, Recollection of the ideas of						
	relativ	ity		-	-				
			special theory of relativity, Four-vector and Lorentz transformation in four dimensional space; Lorentz						
							1 /		
	invariants of electromagnetic fields; Transformation of electric and magnetic field vectors.								
			ciectill	and magnetic I			hor of	Lectures	40
Evaluatio	n Critar	ia			1	otal num	Der Of	Lectures	40
Compone			Mavim	um Marks					
T1	1115		20	um iviaiks					
11			20						

T2		20			
End Semester Examination		35			
ТА		25 [Attendance (05 M), Class Test, Quizzes, etc (07 M),			
		Assignments in PBL mode (10 M), and Internal assessment			
		(03 M)]			
Tota	1	100			
Reco	ommended Reading materi	al: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text			
book	s, Reference Books, Journal	s, Reports, Websites etc. in the IEEE format)			
1.	J D Jackson, Classical Electrodynamics, Wiley, New Delhi 2017				
2.	D. J. Griffiths, Introduction to electrodynamics, Pearson (Prentice Hall), New Delhi 2008				
3.	T L Chow, Introduction	to Electromagnetic Theory: A modern perspective, Jones and Bartlett			
5.	Learning, New Delhi, 2014	L			

Project Based Learning: Small projects related to the course will be assigned to the students with an aim to increase their interest in the subject by establishing a connection between the topics taught in class and the devices used in house-hold and industry that uses electrostatic force, and the ideas of electrodynamics. Further, projects related to the optimal designs of air purifier, printer, etc., will be assigned to enhance entrepreneurial skill and employability.

Course Code	19M21PH116	Semester: Even		Semester: II Session 2021 -2022 Month from: January to June		
Course Name	Atomic, Molecular and Laser Physics					
Credits	its 4 Contact Ho		Iours	3+1		

Faculty (Names)	Coordinator	Prof. Papia Chowdhury
	Teacher	Prof. Papia Chowdhury

COURSE	OUTCOMES	COGNITIVE LEVELS
C121.1	Recall basics of one, two and many electron systems. Normal & anomalous Zeeman, Paschen-Back and Stark effects; L-S and J-J coupling schemes. Hartree-Fock approximation	Remembering (C1)
C121.2	Explain Born-Oppenheimer approximation. States for hydrogen molecule and molecular ion (H_2, H_2+) . Term symbol for simple molecules	Understanding (C2)
C121.3	Apply concepts of rotational spectra, vibrational spectra, electronic spectra of diatomic molecules; Franck-Condon principle. Raman spectra. Electron Spin Resonance. Nuclear Magnetic Resonance	Applying (C3)
C121.4	Analyze spontaneous and stimulated emissions in laser; optical pumping population inversion, rate equations. Different laser systems like Ruby, He-Ne, CO ₂ and Nd:YAG lasers	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Atomic Physics	Hydrogen atom and other one electron systems, two electron systems, many electron systems, spin-orbit term, intensity of fine structure lines. Effect of magnetic and electric fields: Normal and anomalous Zeeman, Paschen-Back and Stark effects. Interaction energy in L-S and J-J coupling schemes, Lande interval rule. Hartree-Fock approximation.	10
2.	Molecular Structure	Molecular electronic states, Born-Oppenheimer approximation. States for hydrogen molecule and molecular ion (H ₂ , H ₂ +). Spectroscopic terms, term symbol for simple molecules.	8
3.	Molecular Spectra	Rotational spectra of diatomic molecules-rigid and non-rigid rotors, isotope effect, Vibrational spectra of diatomic molecules- harmonic and anharmonic vibrators, Intensity of spectral lines, dissociation energy, vibration-rotation spectra, Electronic spectra of diatomic molecules-vibrational structure of electronic transitions. Rotational structure of electronic bands (Fine structure)-P,Q,R branches, Fortrat diagram. Intensities in electronic bands-The Franck-Condon principle. Raman spectra, X-ray emission spectra. Electron Spin Resonance. Nuclear Magnetic Resonance.	14
4.	Lasers	Introduction to Laser and Maser, spontaneous and stimulated emissions, Einstein A & B coefficients, optical pumping, population inversion, rate equations, modes of resonators and coherence length, Ruby, He-Ne, CO ₂ and Nd:YAG lasers.	8
		Total number of Lectures	40
Evaluatio	n Criteria		

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25 [2 Quiz (10 M), Attendance (10 M) and Cass performance (5 M)]
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	Physics of Atoms and Molecules by B. H. Bransden and C. J. Jochain (2 nd Ed., Pearson Education, 2003)						
2.	Atomic Spectra and Atomic Structure by G. Herzberg (Dover Publications, 2003)						
3.	Atoms, Molecules and Photons by W. Demtroder (Springer, 2006)						
4.	Fundamentals of Molecular Spectroscopy by C. N. Banwell (McGraw Hill, 1983)						
5.	Basic atomic & Molecular Spectrocopy by J. M. Hollas(Royal Society of Chemistry, 2002)						
6.	Principles of Lasers by O. Svelto (5 th Ed., Springer, 2010)						

Project based Learning (PBL): Core competency development in basics of application of Schrodinger equation on atoms and molecules. The course also deals with the working of different Lasers depending on their applicability in Industry. Students will make some individual projects on selected Topics of application of Quantum Mechanics on atoms, molecules like some approximation techniques. Students will also do some project work on LASER applications. Example: For drug designing different quantum mechanical approximation techniques are used, Lasers are used for the making of optical sensors, cutters, viewers which are applied in defence purpose and in medical science. Each project work will describe the detail about the specific applied field. Students will take help from available internet sources, current research papers, Text books for preparing the project. Throughout the preparation of the whole project and by presenting the project work students will gather deep learning about the applicability of atoms , molecules or Lasers for the requirement of current Industry. The overall knowledge will help them to prepare themself as an efficient Physicist according to the requirements of current Industry.

Course Code	19M21PH117	Semester: Even		Semester: 2021-2022 Session Month from: January to June		
Course Name	Statistical Mechanics					
Credits	3-1-0		Contact Hours		4	

Faculty (Names)	Coordinator	Prof. Navendu Goswami
	Teacher	Prof. Navendu Goswami

COURSE	OUTCOMES	COGNITIVE LEVELS
C122.1	Define the basic laws and parameters related to Thermodynamics and Statistical Mechanics.	Remember Level (C1)
C122.2	Explain the concepts of different Thermodynamic and Statistical Systems and Ensembles.	Understand Level (C2)
C122.3	Apply the concepts of Thermodynamics and Statistical ensembles to conclude its properties.	Apply Level (C3)
C122.4	Evaluating the behavior of equilibrium, non-equilibrium or a random process on the basis of suitable thermodynamic parameters, distribution functions and phase transition.	Evaluate Level (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Evaluation of Energy States	Micro- and Macro-states, Degenerate and Non-degenerate states, Two State Systems, Harmonic Oscillators, Einstein's Model of Crystalline Solid, Density of States, Particle in a box.	6
2.	Classical Statistical Mechanics	Classical Phase space, Number of Microstates, Ideal gas, Entropy: Gibbs' Paradox, Liouville's Theorem in Classical Statistical Mechanics,	5
3.	Ensembles and Distribution Functions	Micro-canonical, canonical and grand-canonical ensembles and partition functions; Free energy and its connection with thermodynamic quantities; Classical and quantum statistics. Boltzmann Limit, Sackur-Tetrode equation.	10
4.	Applications of Distribution Functions	Degenerate Fermi gas; Ideal Bose and Fermi gases; Principle of detailed balance. Blackbody radiation and Planck's distribution law; Bose-Einstein condensation, Diamagnetism, paramagnetism, and ferromagnetism, White Dwarf Stars, Saha-Ionsization Equation.	10
5.	Phase Transition and Stochastic Processes	First- and second-order phase transitions. phase equilibria, critical point. Introduction to nonequilibrium processes, Ising model. Diffusion equation. Random walk and Brownian motion.	9
		Total number of Lectures	40
Evaluatio	n Criteria		
Compone T1	nts	Maximum Marks 20	

T2	20
End Semester Examination	35
ТА	25 [Attendance (07 M), Class Test, Quizzes, etc (07 M), Assignments in PBL
	mode (06 M), and Internal assessment (05 M)]]
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Frederick Reif , Fundamentals of Statistical and Thermal Physics, Waveland Pr Inc, 2008.
Kerson Huang , Statistical Mechanics, Wiley, 2nd Ed., 1987.

3. R K Pathria, Paul D. Beale, *Statistical Mechanics*, Academic Press, 3rd Ed., 2011.

4. Statistical Mechanics, Richard P. Feynman, Westview Press, USA, 2008

5. Statistical Mechanics: An Elementary Outline (Rev.Ed.), Avijit Lahiri, Universities Press, 2015

Project based learning: Students would work on a project of their choice in the field of materials science processing, property determination and application. In such projects students can not only apply the basic concepts to recognise the appropriate ensemble and distribution function but also should be able to analyze the type and behaviour of Phase transitions; analysis of an equilibrium or nonequilibrium system to determine the properties, predict its time-evolved behaviour employing Ising model, diffusion equation, Random walk etc. The learning obtained through this project would not only provide deeper understanding of the pertinent concepts of this course but also develop the skills of applying the statistical mechanics to solve the related problems in condensed matter physics, material science etc. and hence paves the way for employability prospects in all such fields where research and development usually require the analysis of systems with thermodynamic limit.

	PH118	Semester: Even		Semest	er: II Session: 2021-2022
				Month	from: January-June
Course Name Conder	Condensed Matter Physics				
Credits	04		Contact H	Iours	04

Faculty (Names)	Coordinator	Prof. R.K. Dwivedi
	Teacher	Prof. R.K. Dwivedi

COURSE	OUTCOMES	COGNITIVE LEVELS
C123.1	To recall the basic concept of space lattice, lattice type and crystal structure, Bonding, band diagrams, heat capacity, thermal expansion, thermal and electronic conduction in solids like metals, semiconductors, dielectrics, magnetics and superconductors	Remembering (C1)
C123.2	To Illustrate the Lattice vibrations, Debye and Einstein's model, Understand Croning-Penny model and various physical phenomena with interpretation based on the mathematical expressions involved.	
C123.3	Apply the concepts/principles to solve the problems related to Solid State Physics.	Applying (C3)
C123.4	Analyze and examine the crystal structure of solids, thermal, electrical and electronic properties and establish a correlation between structure and properties	Analyze level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Crystal Physics Concept of space lattice, basis and primitive cell, bravais lattices, Crystal Symmetry, intercepts of plane and miller indices, lattice type, packing efficiency, reciprocal lattice, structure factor, crystal structures (NaCl, CsCl, Diamond and cubic ZnS) and Brag's law and X-ray diffraction methods. Bonding in solids, ionic bonding, Cohesive energy and Madelung Constant in ionic crystals.		12
2.	Thermal Properties	Phonon heat capacity, specific heat, Density of states in one dimension, Density of states in three dimension, Debye's model for density of space, Debye T ³ Law, Einstein model density of states, Thermal conductivity, A brief introduction to Imperfections.	10
3.	Band theory of solids	Free electron model, Origin of energy gap, Bloch theorem, Croning-Penney model, Wave function of electron in a periodic potential, Energy band formation in solids, Classification of solids into metals, semiconductors and insulators.	8
4.	Electrical properties in solids	Electrical conduction in metals and semiconductors, Intrinsic and Extrinsic semiconductors, mobility, Intrinsic carrier concentration, impurity diffusion, Carrier	5

		concentration of n-type and p-type semiconductors.	
5. Superconductivity		Occurrence of superconductivity, Meissner effect, Type –I and Type-II superconductor, Heat capacity, Energy gap, Isotope effect. Microwave and Infrared properties. London equations and BCS theory.	5
		Total number of Lectures	40
Evalua	ntion Criteria		
Compo	onents	Maximum Marks	
T1		20	
T2		20	
End Se	mester Examination	35	
TA		25 [Attendance (07 M), Class Test, Quizzes, etc (07 M), Assig mode (06 M), and Internal assessment (05 M)]]	gnments in PBL
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Solid State Physics by A. J. Dekker			
2.	Solid State Physics by Charles Kittel, Wiley Publication, Eight Edition (2017)			
3.	3. Solid State Physics by N. W. Ashcroft & N. D. Mermin			
4.	4. Solid State Physics by S.O. Pillai, New Age Publications (Revised sixth Ed. (2007)			

Project based learning: Students would work on a project of their choice in the field of Condensed Matter Physics. In such projects, students can not only learn the basic concepts but also realize how to analyses data of its electrical and magnetic behaviors. The learning obtained through the project would not only provide deeper understanding of the pertinent concepts of this course but also develop the skills to use the material properties for the desired industry. In this subject, PBL may explore the employability aspects in research and development field of material design and its applications.

Course Code	19M25PH112	Semester: EVEN		Semester: 2 nd Session: 2021 -2022 Month from: Jan to June	
Course Name	Laboratory-2				
Credits	4		Contact H	Iours	8

Faculty (Names)	Coordinator(s)	Dr. Ravi Gupta
	1 Caulici (5)	B. C. Joshi Dinesh Tripathi Ravi Gupta

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Recall components of electronic circuits used in the experiments.	Remembering (C1)
CO2	Explain key applications of electronic circuits and devices used in the experiments.	Understanding (C2)
CO3	Model the circuits using electronic components and perform the experiments.	Applying (C3)
CO4	Analyze the data obtained and calculate the error.	Analyzing (C4)
CO5	Interpret and justify the results.	Evaluating (C5)

	small signal amplification.
	9. To use the operational amplifier as filers of different
	frequency range.
	10.Design and study of regulated power supply.
	11.FET and MOSFET characteristics and its applications as
	amplifier.
	Besides above experiments, students will be trained in
	mechanical workshop. (Training on lathe and grinding, drilling
	and threading etc.)
Evaluation Criteria	
Components	Maximum Marks
Mid Term Viva (V1)	20
End Term Viva (V2)	20
D2D	60
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Experiment hand-outs.