Detailed Syllabus Lab-wise Breakup

	Lab-wise Breakup						
Course Co	ourse Code 16B1NEC832 Semester Odd Semester 7th (specify Odd/Even) Month from July			ssion 2021 -2022 · Dec			
Course Na	me	MIMO-OFDM APPL	LICATION TO V	VIRELESS C	COMMUN	IICATION	
Credits		3		Contact I	t Hours 3		3
Faculty (N	ames)	Coordinator(s)	Pankaj Yadav				
		Teacher(s) (Alphabetically)	Pankaj Yadav				
COURSE At the cor		DMES: of the course, studen	ts will be able t	0:			COGNITIVE LEVELS
C310. 1	Understand concepts of MIMO diversity, OFDM and various generation Understanding Understand concepts of MIMO diversity, OFDM and various generation Level (C2)						U
C310.2	C310.2 Analyze effect of frequency offset, channels and its importance in real life communication systems.					Applying Level (C4)	
C310.3						Applying Level (C4)	
C310.4	Analyze the different Systems of future communication Analyzing Lev (C4)					Analyzing Level (C4)	

Module No.	Subtitle of the Module	Topics in Module	No. of Lectures
1.	Introduction	Introduction to wireless networks, basic principles of orthogonality, Single vs multi carrier systems, orthogonal frequency-division multiplexing (OFDM) block diagram, modulation, demodulation, synchronization, peak-to-average power ratio (PAPR) reduction.	8
2.	ICI cancellation	Inter carrier interference (ICI) cancellation , ICI self cancellation, correlative coding based ICI cancellation, conjugate cancellation etc.	6
3.	PAPR reduction	Various PAPR reduction techniques, clipping and filtering/Windowing, selective mapping (SLM), partial transmit sequence (PTS),tone reservation (TR), tone injection, peak insertion (PI) techniques etc	4
4.	MIMO systems	MIMO channel model, antenna diversity, space-time coding, MIMO detection algorithms, channel capacity	4
5	MIMO OFDM in 4G/LTE Networks	LTE, LTE advance, beam forming for LTEA,	10
6	MIMO OFDM in 5G Networks	Introduction to 5G-NR, Massive MIMO, beam forming in 5G-NR	10
		Total number of Lectures	42
Evaluation Components T1 T2		ΣS	

End S	Gemester 35						
TA	25						
Total	100						
Proje	Project Based Learning: Student will be able to develop code for computing PAPR, MIMO detection Algorithm						
Reco	mmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,						
Refe	Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	MIMO-OFDM Wireless Communications with MATLAB, by Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung-Gu Kang, Wiley, 2018.						
2.	OFDM for Wireless Communication Systems, Ramjee Prasad, ARTECH house						

Subject Code	20B12EC413	Semester (Odd)	Semester VII Session – 2021- 2022 Month Jul. – Dec. 2021				
Subject Name	Basics of Antenna	Basics of Antenna and Wave Propagation					
Credits	4	Contact Hours	4 (3 - 1 - 0)				

Faculty (Names)	Coordinator(s)	Vishal Narain Saxena, Mr. Abhay Kumar
(ivanies)	Teacher(s)	Mr. Abhay Kumar, Prof. Shweta Srivastava
	(Alphabetically)	Vishal Narain Saxena

Course Objectives:

- To introduce the fundamental principles of different types of antennas and their applications.
- Emphasis will be on dipole antennas, loop antennas, antenna arrays, aperture antennas and microstrip patch antennas, their design considerations for use in wireless communication systems.
- Learn how to characterize antennas and use antenna design for communications, radar, remote sensing systems.
- Emphasis on modern antennas like Reconfigurable antenna, Active antenna, Dielectric antennas, Electronic band gap structure and propagation of radio waves

S. No.	Course Outcomes Cog Levels/ Taxo					
C433- 8.1	Recall the concepts of Electromagnetic field theory, classify different Understative types of antennas, illustrate antenna parameters and demonstrate the effect on antenna parameters due to changes in the physical dimensions.					
C433- 8.2		ntennas, Frequency Independent antennas and plain Dipole antenna and their characteristic,	Applyin (C3)	g Level		
C433- 8.3	Design Array Antennas and identify the E and H fields for the Creating Lev antennas. Design Reconfigurable antenna, Active antenna, Dielectric (C6) antennas and measure radiation pattern, polarization and VSWR.					
C433- 8.4	Define terminology relevant to mode of propagation and examine the propagation of radio waves in different atmospheres. (C4)					
Module No.	Subtitle of the Module	Topics		No. of Lectures		
1.	Radiation Fundamentals &	Antenna types, radiation, use of potential fu radiated fields, far fields, Radiation from		8		

	Antenna Parameters	element, Infinitesimal dipole, antenna parameters, radiation pattern, Directivity, numerical evaluation of directivity, Gain, efficiency, impedance, Loss resistance, Polarization, equivalent area, effective area and its relation to gain	
2.	Linear Antennas Loop Antennas	Linear antennas, current distribution Total power, radiation resistance, Short-dipole, center-fed dipole, Half-wave dipole, dipole characteristics, folded dipole, Small loop antenna, Loop characteristics	7
3.	Antenna Arrays	Antenna arrays, Broadside and End-fire arrays, Hansen-Woodyard array, Binomial arrays, Array theory Scan blindness in array theory ,Aperiodic arrays	7
4.	Broadband Antennas, Frequency Independent antennas & Aperture antennas	Yagi-Uda arrays, helical antennas Log-periodic antenna Fields as sources of radiation; Horn antennas, Reflector antennas	7
5.	Modern antennas-	Reconfigurable antenna, Active antenna, Dielectric antennas, Electronic band gap structure and applications, Antenna Measurements - Test Ranges, Measurement of Gain, Radiation pattern, Polarization, VSWR	6
6.	Propagation of Radio Waves	Modes of propagation , Structure of atmosphere, Ground wave propagation , Free Space Wave Propagation, Ground Reflection, Surface Waves, Tropospheric propagation , Duct propagation, Troposcatter propagation , Flat earth and Curved earth concept, Ionospheric propagation, Sky wave propagation – Virtual height, critical frequency , Maximum usable frequency – Skip distance, Fading , Multi hop propagation, Electrical Properties of Ionosphere	8
		Total number of Lectures	43

Evaluation Criteria

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25
Total	100

Project based learning: Each student in a group of 4-5 will do project based on antenna designing and measurement. Each group will assign designing problems on different types of antenna with its real time applications. Apart from course different research paper will provide to the students then based on the research data students will solve different design problem and do discussion in class.

Recommended Reading (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)						
1.	John D. Kraus & RJ Marhefka, Antennas for all applications, The McGraw-Hill Companies, 5 th edition, 2017					
2.	C.A. Balanis, Antenna Theory, Analysis and Design. NY: John Wiley and Sons, 4 th edition, 2016.					
3.	WL Stutzman& GA Thiele, Antenna Theory and Design , John Wiley and Sons, 2 nd edition,1997					
4.	Edward C.Jordan and Keith G.Balmain" Electromagnetic Waves and Radiating Systems" Prentice Hall of India, 2015					

Course Co	ode	15B1NEC733	NEC733 Semester ODD Semester 7 th S (specify Odd/Even) Month from J			Session 2021-2022 July to Dec		
Course Na	me	Fundamentals of Em	bedded Systems					
Credits		4		Contact Hours			3L+ 1T	
Faculty (N	ames)	Coordinator(s)	Dr. Rachna Sir	ngh				
		Teacher(s) (Alphabetically)						
COURSE	OUTCO	DMES					COGNITIVE LEVELS	
e			undamental concepts for embedded te architecture of the ATMEGA16/32		Understanding Level (C2)			
	431-4.2 Identify various on chip peripherals of the ATMEGA16/32 Applications.					Applying Level (C3)		
C431-4.2			use of them f	for designi	ng embeo	dded	Apprying Lever (C3)	

	applications around various sensors and actuators.	
C431-4.4	Understanding of the basic concept of RTOS, detailed study of	Understanding Level
C451-4.	ARM7 architecture (32 bit) and study of wireless protocols.	(C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Fundamental for Embedded Developers.	Embedded System and its applications, Future Trends of Embedded System, Design Parameters of Embedded System and its significance, Microprocessor Versus Microcontrollers, Microcontrollers for Embedded Systems, Embedded Versus External Memory Devices, CISC Versus RISC Processors, and Harvard Versus Von-Neumann architecture.	4
2.	Detailed Study of AVR Microcontroller	ATmega16/32 Microcontroller (Basic architecture, Pin configuration, Memory organization (registers and i/o ports), Embedded C programming, Timers, on chip PWM, on chip ADC, Interrupts and Serial Communication.	10
3.	Concept of Embedded 'C' programming	Introduction to C, Difference between C and Embedded C, Data Types used in Embedded C, Arithmetic & Logical Operators, Control Flow, If & If – else, While & Do – while, For, Switch & Case, Continue & Break, Array & String, Functions and Header files, Pointers.	6
4.	Real World Interfacing with Microcontroller	Interfacing of single LED, Blinking of LED with timer and without timer, Interfacing of push-button and LED, Interfacing of 7-segment display, Interfacing of 8 push- buttons to control 7-segment display, Intelligent LCD Display, Interfacing of intelligent LCD display, Interfacing of Matrix Keyboard to control 7-segment display, ADC and	12

5.	Concept of RTOS and Advanced Microprocessor	DAC Modules, Interfacing of ADC0804, Interfacing with DAC0808, Different wave generation through DAC0808, Stepper Motor & DC Motor, Interfacing with stepper & DC motor, Different Sensor Interfacing, (IR Sensor, DTMF, Temperature Sensor) Real Time Operating System (RTOS), Types of real time tasks, Task Periodicity, Process state diagram, Kernel and Scheduler, Scheduling algorithms, Shared data (Resource) and Mutual Exclusion, Semaphore, Introduction to ARM, Features, ARM Pipeline, Instruction Set Architecture (ISA), Thumb Instructions, Exceptions in ARM, Embedded Wireless Protocols (Infrared Data Association (IrDA), Bluetooth, IEEE 802.11).	10		
		Total number of Lectures	42		
Com T1 T2 End TA Tota Proj appr Lear the f desig the techn teach	T220End Semester Examination35				
	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Muhammad Ali Mazidi, "The AVR microcontroller and Embedded Systems using Assembly and C", 2nd Edition, Pearson Education, 2008.				
2.	-	argis, "Embedded System Design", Willey India, 2002.			
3.	Santanu Chattopadhyay, "Em	bedded System Design", 1stEdition,PHI Learning, 2010.			

Detailed Syllabus

Course Code	15B19EC793	Semester -: Odd (specify Odd/Even)		Semester-: 7 th Session 2021-22 Month- : July - December	
Course Name	Summer Training Vi	iva			
Credits	Qualifying	ving		Hours	-
Faculty (Names)	Coordinator(s) Dr. Bajrang I		ansal, Mrs.	Smriti Bł	natnagar
	Teacher(s)	Dr. Bajrang Bansal, Dr. Ashish Gu Mandeep Narula			ota, Mrs. Smriti Bhatnagar, Mr.

COURSE	OUTCOMES	COGNITIVE LEVELS
C455.1	Extend theoretical knowledge to real time Industry	Understanding Level (C2)
C455.2	Demonstrate the capacity for critical reasoning and independent learning	Understanding Level (C2)
C455.3	Make use of Industrial Training experience to prepare a scientific report	Applying Level (C3)
C455.4	Develop greater clarity about career goals in present condition	Applying Level (C3)

Evaluation Criteria	
Components	Maximum Marks
Viva	25
Real world idea and knowledge of Industry	25
Report	25
Diary	25
Total	100

Subject Code	17B11EC733	Semester: Odd (specify Odd/Even)	Semester: 7 th Session: 2021-22 Month : from July to December
Subject Name	Optical Comm	nunication	
Credits	4	Contact Hours	3(L)+1(T)

Faculty	Coordinator(s)	Dr. Kaushal Nigam (JIIT-128) and Dr. Neetu Joshi (JIIT-62)
(Names)	Teacher(s) (Alphabetically)	

	COURSE OUTCOMES	COGNITIVE LEVELS
C412.1	Develop an understanding of optical fiber, its structure, types, and propagation and transmission properties.	Remembering (C1)
C412.2	Identify and examine the different kinds of losses and signal distortion in optical Fibers.	Analyzing (C4)
C412.3	Classify the Optical sources and detectors and their principle of operation	Understanding (C2)
C412.4	Design a fiber optic link based on budget analysis.	Evaluating (C5)

Module No.	Subtitle of the Module	Topics	No. of lectures for the module
1.	Overview of Optical fiber Communications	Electromagnetic Spectrum, Historical development and advantages of optical fiber communication, Elements of optical fiber transmission link, Optical laws and definitions, optical fiber modes and configurations.	3
2.	Optical fibers Structures	Optical fiber wave guides, Ray theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays. Cylindrical fibers Modes, V Number, Mode Coupling, Step Index fibers, Graded Index fibers. Single mode	4

		fibers- Cut off wavelength, Mode Field Diameter, Effective Refractive Index.	
3.	Signal Degradation in Optical fibers	Signal distortion in optical fibers- Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses. Information capacity, Group delay, Types of Dispersion - Material dispersion, Wave-guide dispersion, Polarization mode dispersion, Intermodal dispersion, Pulse broadening. Optical fiber Connectors- Connector types, Single mode fiber connectors, Connector return loss.	7
4.	Optical Sources	Light emitting diode (LEDs)-structures, materials, Figure of merits, Quantum efficiency, Power, Modulation, Power bandwidth product. Laser Diodes - Modes & threshold conditions, resonant frequencies, structures, characteristics and figure of merits, single mode lasers, Modulation of laser diodes, temperature effects, external quantum efficiency, and laser diode rate equations. Reliability of LED & ILD.	6
5.	Power Launching and Coupling	Source to fiber power launching: - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Laser diode to fiber coupling, LED coupling to single mode fiber. Fiber Splicing- Splicing techniques, splicing single mode fibers. Multimode fiber joints and single mode fiber joints. Fibre alignment and joint loss.	6
6.	Photo detectors& Receivers	Optical detectors- Physical principles of PIN and APD, Detector response time, Temperature effect on Avalanche gain, Comparison of Photo detectors. Optical receiver operation:- Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of error, Quantum limit, Analog receivers.	7

7. Optical System Design		Considerations, component choice, multiplexing.Point-to- point links, System considerations, Link considerations. Overall fiber dispersion in multi mode and single mode fibers. Rise time considerations. Distance consideration in optical transmission system. Line coding in Optical links, WDM Principles & Types of WDM, Measurement of Attenuation and Dispersion, Eye pattern.	7
		Total number of lectures	40
Evaluation Criteria	a		
ComponentsMaximum MarksT120T220End Semester Examination35TA25 (Assignment, quiz, attendance)Total100			

Project Based Learning: Students will learn about fundamental concepts, working and applications of an optical communication system. Understanding of various losses in an optical link provide requisite skills in design, analysis and evaluation of the performance of analog and digital optical fiber link. Students will be able to design an optical link with the given specifications. Designing based questions given in the assignments built-up the thought process of the students in the field applications.

Recommended Reading(Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)

1.	Govind P. Agarwal, Fiber Optic Communication Systems, 5 th Edition, John Wiley, 2021.
2.	Gerd Keiser, Optical Fiber Communications, 5 th Edition, Mc Graw-Hill International Edition, 2017.
3.	John M. Senior, Optical Fiber Communications, 5 th Edition, PHI, 2014.
4.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.
5.	Joseph C. Palais, Fiber Optic Communications, 5 th Edition, Pearson Education, 2005

Course Code	18B12EC413	Semester OD	D Sem		er -VII Session 2021 -2022 from Aug-Dec
Course Name	Digital Control Syste	ems			
Credits	3		Contact Hours		3L+1T
Faculty (Names)	Coordinator(s)	Ritesh Kumar Sharma			
	Teacher(s) (Alphabetically)	Ritesh Kumar Sharma			

COURSE	OUTCOMES	COGNITIVE LEVELS
C434-8.1	To represent the systems in the Z domain and in state space	Remembering
	representation.	Level(C1)
C434-8.2	To analyze transient and steady state behaviors of linear discrete time	Analyzing
	control systems with modified transfer function.	Level (C4)
C434-8.3	To understand and gain knowledge in stability analysis of digital control	Understanding
	systems.	Level (C2)
C434-8.4	To Design Digital Control Systems	Designing
		Level (C6)

Module No.	Subtitle of the Module	Topics	No. of Lectures	
1.	Review of Z transform	z transform and inverse z transform . Relationship between s- plane and z- plane- Difference equation . Solution by recursion and z-transform.		
2.	Review of state space techniques	Review of state space techniques to continuous data		
3.	Introduction to Digital Control System	, , , , , , , , , , , , , , , , , , ,		
4.	Analysis of Digital Control Systems	Digital control systems- Pulse transfer function . analysis of closed loop and open loop systems in z domain, Modified z- transfer function- Stability of linear digital control systems and Jury's stability test	8	
5.	Stability tests	Stability tests- Steady state error analysis, Root loci ,Frequency domain analysis- Bode plots, Gain margin and phase margin.		
6.	State feedback concept	Controllability and Observability - Response between sampling instants using state variable approach, Pole placement using state feedback .	5	
7.	Digital System Design	Observer Design for digital control, Pole placement design based on input-output models.		

		Total number of Lectures	42
Evaluation Criteria			
Components	Maximum Marks		
T1	20		
T2	20		
End Semester Examination	35		
ТА	25		
Total	100		

Project Based Learning: Students will learn about the analysis and Design of Digital controllers with the help of assignments/simulations based projects. Some designing and simulation based problems will be assigned to students.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	B. C. Kuo , "Digital control systems" (Second Edition) , Oxford University Press,2007.		
2.	K. Ogatta, "Discrete Time control systems", 2nd ed. PHI),1995		
3.	3. M. Gopal, "Digital Control and State Variable Methods", 3rd Edition, TMH, Sep-2008.		
4.	4. G. F. Franklin, J. D. Powell, M. Workman, Digital Control of Dynamic Systems, 3 rd Edition, Longman, 1998.		

Detailed Syllabus

Lecture-wise	Breakup
	Diemin

Course Code	19B12EC416	Semester odd	Semester 7 th Session 2021-2022
			Month from August 21 to December 21
Course Name	Deep Learning for Multimedia		
Credits	4	Contact Hours	3-1-0

Faculty	Coordinator(s)	Mr.B.Suresh		
(Names)	Teacher(s) (Alphabetically)	Mr.B.Suresh		
COURSE O	OUTCOMES		COGNITIVE LEVELS	
C431-7.1	Compare various loss functions and optimization methods for deep Und learning approaches		Understanding Level (C2)	
C431-7.2	Experiment with various CNN architectures for related applications		Applying Level (C3)	
C431-7.3	Apply and analyze sequence models for natural language processing		Analyzing Level (C4)	
C431-7.4	Utilize and compare various deep learning techniques in real life problems		Evaluating Level (C5)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Neural Networks, Loss Functions and Optimization	Neuron Model and Network Architectures: Perceptron and Hamming networks. Perceptron learning rule and proof of convergence. Performance surfaces and optimum points: Performance Optimization, Steepest Descent, Stable Learning Rates and Widrow-Hoff Learning.	13
2.	Backpropagation and Generalization	Backpropagation: Multilayer Perceptrons, Function Approximation, Performance Index, Chain Rule, Backpropagating the Sensitivities, Convergence, Generalization., Methods for Improving Generalization: Early Stopping, Regularization, Relationship Between Early Stopping and Regularization	8
3.	Convolutional Neural Network (CNN) Architectures	Review: Feed forward neural net, Layers for Conv Nets, Feature Maps and Pooling, FC layer to Conv layer conversion, CNN to Classify Text and Images: LeNet5, AlexNet, VGG, ResNet.	10
4.	Sequential Networks	Recurrent Neural Networks, Adding Feedback Loops and Unfolding a Neural Network, Long Short-Term Memory, Recurrent Neural Network for word predictions, Autoencoders, Different Autoencoder Architectures, Neural Language Models: Word Embeddings and Word Analogies, Word2vec.	10

	Total number of Lectures	41
Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
ТА	25 [Assignments and Quiz]	
Total	100	
technology and write done A	a student in a group of 3-4 select a topic related to latest dev Algorithms and their corresponding code, This method of lead development in the industry once they land in to entry it w	arning will help

task to design and implement any given task. Knowledge acquired during this course will boost their confidence and clarity while attending any Interview related to placement activities and establishment of their own application based startup company related with latest and cutting edge technologies

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Introduction to Deep Learning, S. Kansi, Springer 2018
2.	Pattern Recognition and Machine Learning, C.M. Bishop, 2nd Edition, Springer, 2011.
3.	Deep Learning, I. Goodfellow, Y, Bengio, A. Courville, MIT Press, 2016.
4.	The Elements of Statistical Learning, T. Hastie, R. Tibshirani, J. Friedman., 2nd Edition, 2008
5.	Machine Learning Yearning, A. Ng, 2018

Subject Code	21B12EC412	Semester (specify Odd/Even)	SemesteroddSession2021-22Month fromJulytoDec
Subject Name	Modeling and Simulation of Semiconductor Devices		
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	Dr. Akansha Bansal
(Names)	Teacher(s) (Alphabetically)	

S. No.	Course Outcomes	Cognitive Levels/
		Blooms Taxonomy
CO1	Develop an understanding of semiconductor physics,	Understanding Level
	different modeling techniques and models.	(C2)
CO2	Perform mathematical modeling for different transport	Applying Level (C3)
	equations and given boundary conditions.	
CO3	Analyze the electrical performances of Semiconductor	Analyzing Level (C4)
	devices.	
CO4	Analyze the electrical performances of Optical and Photonic	Analyzing Level (C4)
	devices.	

Module No.	Subtitle of the Module	Topics	No. of Lectures
1.	Introduction	Review of semiconductor electronics, band model for solids, Distinguish among activities of analysis, modeling, simulation and design, Transform the equivalent circuit form of a device model into a mathematical form, and vice-versa, Semi-classical Bulk Transport – Qualitative Model	8
2.	Fundamentals of Models	Fundamental equations for semiconductor devices: current equations, Poisson equation, study cases, continuity equations, Semi-classical Bulk Transport – EM field and Transport Equations. Drift-Diffusion Transport Model – Equations, Boundary Conditions, Mobility and Generation / Recombination	12

3.	Modeling and design strategy of MOSFET	 MOSFET: basic theories and models, MOSFET parameters, Body effects, transconductance, speed of response, channel-length modulation, MOSFET design, control of the threshold voltage. MOSFET Model: Structure and Characteristics, Qualitative Model, Equations, Boundary Conditions and Approximations, Surface Potential based and Threshold based solutions, Parameter Extraction 	10
4.	Modeling and design strategy of Photonic Devices	Introduction to optical and photonic devices, Electromagnetic waves in homogeneous material, Waves scattering on interfaces and thin slabs, light cone, dispersion relation, Modeling of one-dimensional photonic crystal: physical origin of gaps, lattice defects, bound states. Photonic crystal slabs and Bloch surface wave based design.	10
5.	Recent Trends	Introduction to recent trends in semiconductor devices	2
	•	Total number of Lectures	42

Evaluation Criteria

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25
Total	100

Project Based Learning: Students will learn about the modeling & analysis of semiconductor devices with the help of assignments/simulations based projects. Some modeling and simulation based problems will be assigned to students.

Recommended Reading (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)

1.	Sophocles J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University, 2016
2.	Sarkar C. K., Technology Computer Aided Design: Simulation for VLSI MOSFET, 2018.
3.	Sahay S., Mamidala M. J., Junctionless Field-Effect Transistors: Design, Modeling, and Simulation, 2018.
4.	IEEE, Elsevier, and IOPscience Journals

				бгеакир			
Course C	Code	15B19EC791	Semester Odd			er 7 th Sessio	
			(specify Odd/	Even)	Month	from Augus	t to December
Course N	lame	Major Project Part-1					
Credits		4		Contact H	Iours		
Faculty (Names)	Coordinator(s)	Mr. Shivaji Ty	agi, Dr. Me	gha Agga	rwal	
		Teacher(s) (Alphabetically)	Dr. Rahul Kau	shik, Dr. Sa	ijaivir Sin	gh	
COURSE	COURSE OUTCOMES					COGNITIVE LEVELS	
CO1	tools/	Summarize the contemporary scholarly literature, activities, and explored Understanding (C2) (C2) (C2) (C2)					
CO2		ze/ Design the skill for ated problem with in s	0 1	otimum solu	ition to th	e	Analyzing (C4)
CO3	Evaluate /Validate sound conclusions based on evidence and analysis Evaluating (C5)						
CO4	Develop the skill in student so that they can communicate effectively in both verbal and written form. Create Level (C6)						
Evaluation Criteria							

Components	Maximum Marks
Mid Sem Viva	20
Final Viva	30
Day to Day	30
Day to Day Project Report	20
Total	100

Course Code	16B1NHS831	Semester: Odd (specify Odd/Even)			er: VII Session 2021 -2022 Aug2021 -Dec2021
Course Name	Gender Studies				
Credits	3		Contact I	Hours	3-0-0
Faculty (Names)	Coordinator(s) Ms. Shikha Ku		nari		
	Teacher(s) (Alphabetically)	Ms. Shikha Kumari			

COURSE OUTCO	OMES	COGNITIVE LEVELS
C401-19.1	Demonstrate knowledge of the construct of gender and the way itintersects with other social and cultural identities ofrace, class, ethnicity and sexuality	Understanding Level (C2)
C401 - 19.2	Apply feminist and gender theory in an analysis of gender including an examination of the social construct of femininity and masculinity	Applying Level (C3)
C401- 19.3	Analyze the ways in which societal institutions and power structures such as the family, workplace impact the material and social reality of women's lives	Analyzing Level (C4)
C401-19.4	Assess the need for Gender Sensitization and Gender Inclusivity and its practice in contemporarysettings	Evaluating Level (C5)
C401- 19.5	Evaluate and interpret information from a variety of sources including print and electronic media, film, video and other information technologies	Evaluating Level (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introducing • Sex andGender Gender Issues • Types ofGender • Gender Roles • Gender Division ofLabor • Gender Stereotyping and GenderDiscrimination		9
2.	Gender Perspectives of Body & Language	 Socio-Cultural Perspectives ofbody Body as a Site and Articulation of PowerRelations Cultural Meaning of Female Body andWomen's Lived Experiences The Other andObjectification 	6
3.	Social Construction of Femininity &Feminism	 Bio-Social Perspective of Gender Gender as AttributionalFact Feminine & Feminist Major Theorists of Feminism Challenging Cultural Notions of Femininity Feminism Today: Radical, Liberal, Socialist, Cultural, Eco feminism & Cyberfeminism Images of Women in Sports, Arts, Entertainment, Media and Fashion Industry ;Cultural Feminism& 	9

Total		100		
ТА		25 (Project/ Assignment)		
EndSem	esterExamination	35		
T2		20		
T1		20		
Compo	nents	MaximumMarks		
Evaluat	ion Criteria			
		Total number of Lectures	42	
		in Gender &Culture		
	Inclusivity	 Gender Studies & Media: Creating NewParadigms 		
	&Gender	 Gender Sensitization & Gender Inclusivity 		
	Empowerment	Profil women's studies to Gender Studies.A ParadigmShift		
	Sensitization	 Women & Women Rights InIndia From Women's Studies to Gender Studies:A 		
5.	Gender		9	
		Media.		
		 Masculine Identities in Literature, Cinema & 		
	Wascumity	 Major Theorists of Masculinity 		
	Construction of Masculinity	Position of MasculinityPolitics of Masculinity and Power		
	Social	Social Organization of Masculinity and Privileged Desition of Masculinity		
		Sociology of Masculinity& itsTypes		
4.		Definition and Understanding of Masculinities	9	
		Analysis of role women have played acrosscultures		
		Celebrating Womanhood		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1	Davis K., et al, "Handbook of Gender and Women's Studies. London: Sage. (2006)
2	Helgeson, Vicki S., "The Psychology of Gender", Pearson(2012)
3	Friedan B., "The Feminine Mystique", Penguin. (1971/1992)
4	DebeauvoirS., "The Second Sex", Vintage (1953/1997)
5	Wharton Amy S., " <i>The Sociology of Gender: An Introduction to Theory & Research</i> ", Wiley-Blackwell (2005)
6	Pachauri G.," Gender, School & Society", R.Lall Publishers(2013)
7	Connell R.W, "Masculinities", Cambridge: Polity. (1985)
8	MacInnes J., "The End of Masculinity". Buckingham: Open University Press. (1998)
9	Kaul A.& Singh M., "New Paradigms for Gender Inclusivity", PHI Pvt Ltd (2012)

Course Co	de	17B1NBT73				nester VII Session 2021-2022 onth from July to Dec			
Course Na	me	Healthcare M	larketpla	ace					
Credits			3		Contact I	Hours		3	
Faculty (N	ames)	Coordinato	r(s)	Dr. Shweta Da	ng				
		Teacher(s) (Alphabetica	ally)	Dr. Indira P. Sa	arethy, Dr.	Shweta D	ang		
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS
CO1	-	in healthcare : olders	market,	drugs and dev	ices, role c	of various	8	Understan	d Level (C2)
CO2		related intell althcare secto	-	property laws a	nd regulate	ory appro	ovals	Apply Lev	vel (C3)
CO3	•	ze the various care industry	s busine	ess models/ inne	ovations ir	n the		Analyze L	evel (C4)
CO4	Comp	are economic	aspects	s pertaining to t	the sector			Analyze L	evel (C4)
Module No.	Title o Modul		Topics	Topics in the Module					No. of Lectures for the module
1.	Introd Health marke			the various Reg al innovations 2	ulatory bod	ies for apj	proval	of new	02
2.	and C	al nacokinetics linical trials w Drugs	measu facilita	Biologic sampling techniques, analytical methods for the measurement of drugs and metabolites, and procedures that facilitate data collection and manipulation. Clinical Trials: PhI, II, III and IV					05
3.	Regula appro pathw	val	Preclinical studies06US and EU filingsIND submissions, NDA and BLA Submissions, Non-patent exclusivities, data and market exclusivities cost analysis					06	
4.	and de		Role of patents on new drugs and devices, Ever-greening of patents, Product and Process patents.08Hatch Waxman act and Introduction of generics and					08	
5.	Econo health			olders in health eir roles, technol		-		d insurers	7
6.	Medic techno insura	al ology and	For m	and their roles, technology and human capital For medical devices, pharmaceuticals, genetic diagnostic tests and their regulations					4
7.	Indian sector	-		is players – gover ctives, case stud	-	vate, PPP	models	s, strategic	4

8	Innovations in the Health to market innovations					
9	Healthcare informatics	e-health, collection of health data, data processing, evaluation, health information systems, case studies	2			
		Total number of Lectures	42			
Eval	uation Criteria					
Components Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25 (PBL, Assignments 1, 2, 3, Attendance) Total 100 Project Based Learning: Students analyze the site https://pmjay.gov.in/about/pmjay, understand the following sections: • Coverage under PM-JAY • Implementation Model • Financing of the Scheme						
And represent them in one comprehensive diagram, integrating all the above components. This helps them in understanding recent innovations in healthcare market and integration of healthcare informatics.						
	e	l: Author(s), Title, Edition, Publisher, Year of Publication etc. tts, Websites etc. in the IEEE format)	(Text books,			
1.	https://www.who.int/nation	alpolicies/processes/stakeholders/en/				
2.	Conflict of interests. I. Lo, Bernard. II. Field, Marilyn J. (Marilyn Jane) III. Institute of Medicine (U.S.). Committee on Conflict of Interest in Medical Research, Education, and Practice. IV. National Academies Press (U.S.), 2009					

3.

Research papers and online resources

Course Code	18B12CS424	Semester Odd		Semester VII Session 2021-22 Month from July to December		
Course Name	Algorithm Analysis a	Algorithm Analysis and Artificial Intelligence				
Credits	3	Contact H		Hours	3-0-0	
Faculty (Names)	Coordinator(s)	Alka Singhal				

Teacher(s) (Alphabetically)	Alka Singhal
(111)	

COURSE	OUTCOMES	COGNITIVE LEVELS				
C401- 12.1	Analyze algorithm's time complexities (Master's method, Recursion tree and substitution method- Sorting and Searching algorithms)Analyzing Level (C4)					
C401- 12.2	Propose solutions for real life computing problems using greedy, divide & conquer, and dynamic programming techniques.	Creating Level (C6)				
C401- 12.3	Apply informed and uninformed searching algorithms(A*, Hill Climbing and Simulated Annealing) in AI related problems.	Applying Level (C3)				
C401- 12.4	Solve constraint satisfaction problems and adversarial search algorithms	Creating Level (C6)				
C401- 12.5	Apply inference mechanisms(propositional logic , first order predicate logic, and probabilistic reasoning)	Applying Level (C3)				
C401- 12.6	Design and simulate Genetic Algorithms for Optimization.	Creating Level (C6)				

Sr.	Module	Chapters	Lectures
1.	Introduction	Time Complexity analysis: Master's Method. Divide and Conquer methods: Insertion Sort, Merge Sort, Quick Sort	06
2.	Divide and Conquer and Greedy Algorithms	Strassen's Matrix multiplication, Knapsack Problem; Coin change Problem; Huffman Coding; Activity Selection; Minimum Spanning tree, shortest path.	09
3.	Dynamic Programming Algorithms	Knapsack Problem; Coin change Problem; Matrix chain Multiplication, Longest common subsequence etc.	05
4.	Artificial Intelligence : Problem Spaces and Problem Solving by search	State Spaces, Uninformed search strategies (BFS, DFS, DLS, IDS, Bidirectional search),Informed Search & exploration (A*,Heuristic, Local search algorithms, online search agents)	07
5.	Constraint satisfaction problems	Constraint satisfaction problems (backtracking, variable and value ordering, local search), Adversarial Search (games, alpha beta pruning, elements of chance, state of art games)	06
6.	Propositional Logic	Knowledge based agents, PL, FOPL, Syntax and semantics, use, knowledge engineering), Inference in FOPL(Propositional vs First order inference	06
7.	Uncertainty	Probabilistic reasoning, Bayesian rule, Bayesian network, Inference, Reasoning over time	03

		Travelling Salesman Problem, Knapsack Problem	01
	Genetic		
	Algorithms		
		Total number of Lectures	43
		· · · · · ·	
Eva	luation Criteria		
Con	nponents	Maximum Marks	
T1	-	20	
T2		20	
	Semester Examination	35	
TA Tota		25(Attendance-10Quiz/Assignments/Presentations/Mini-Proj. 100	ect- 15)
Rec	ommended Reading mater	ial: Author(s), Title, Edition, Publisher, Year of Publication etc.	
TEX	KT BOOKS		
TEX	KT BOOKS	les E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduct	
ТЕУ 1.	XT BOOKS Thomas H. Cormen, Char Algorithms, MIT Press, 3	les E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduct	ion to
ТЕУ 1. 2.	XT BOOKS Thomas H. Cormen, Char Algorithms, MIT Press, 3 Artificial Intelligence –	les E. Leiserson, Ronald L. Rivest, and Clifford Stein , Introduct rd Edition, 2009	ion to
TE2 1. 2. REI	XT BOOKS Thomas H. Cormen, Char Algorithms, MIT Press, 3 Artificial Intelligence – FERENCE BOOKS Journ	les E. Leiserson, Ronald L. Rivest, and Clifford Stein , Introduct rd Edition, 2009 A modern approach by Stuart Russel and Peter Norvig, PH	ion to 11, 2008.
TE2 1. 2. REI	XT BOOKS Thomas H. Cormen, Char Algorithms, MIT Press, 3 Artificial Intelligence – FERENCE BOOKS Journ Artificial Intelligence Rev	les E. Leiserson, Ronald L. Rivest, and Clifford Stein , Introduct rd Edition, 2009 A modern approach by Stuart Russel and Peter Norvig, PH als, Reports, Websites etc. in the IEEE format	ion to HI, 2008. r
TE) 1. 2. <u>REI</u> 3.	XT BOOKS Thomas H. Cormen, Char Algorithms, MIT Press, 3 Artificial Intelligence – FERENCE BOOKS Journ Artificial Intelligence Rev	les E. Leiserson, Ronald L. Rivest, and Clifford Stein , Introduct rd Edition, 2009 A modern approach by Stuart Russel and Peter Norvig, PH als, Reports, Websites etc. in the IEEE format riew: An International Science and Engineering Journal, Springer o, "Nature-Inspired Computing Design, Development, and Appli	ion to HI, 2008.
TEX 1. 2.	XT BOOKS Thomas H. Cormen, Char Algorithms, MIT Press, 3 Artificial Intelligence – FERENCE BOOKS Journ Artificial Intelligence Rev Nunes de Castro, Leandro Global, 31-May-2012 - 43	les E. Leiserson, Ronald L. Rivest, and Clifford Stein , Introduct rd Edition, 2009 A modern approach by Stuart Russel and Peter Norvig, PH als, Reports, Websites etc. in the IEEE format riew: An International Science and Engineering Journal, Springer o, "Nature-Inspired Computing Design, Development, and Appli	ion to HI, 2008. r
TEX 1. 2. REI 3. 4.	XT BOOKS Thomas H. Cormen, Char Algorithms, MIT Press, 3 Artificial Intelligence – FERENCE BOOKS Journ Artificial Intelligence Rev Nunes de Castro, Leandro Global, 31-May-2012 - 43 Steven Skiena ,The Algor	les E. Leiserson, Ronald L. Rivest, and Clifford Stein , Introduct rd Edition, 2009 A modern approach by Stuart Russel and Peter Norvig, PH als, Reports, Websites etc. in the IEEE format iew: An International Science and Engineering Journal, Springer , " Nature-Inspired Computing Design, Development, and Appli 55 pages ithm Design Manual, Springer; 2nd edition , 2008 er Programming Volume 1, Fundamental Algorithms, Addison-V	ion to HI, 2008. r ications" IGI

1		1		Lecture-wi	se Breand						
Course Code		17B1NPH73	2	Semester: OD	D	Semeste	er: 7 th	Session: 2	Session: 2021 -2022		
						Month f	from J	uly to Dec	ly to December		
Course Na	me	Nanoscience	and Tec	chnology							
Credits			3		Contact H	Iours		3+	-1		
Faculty (N	ames)	Coordinato	r(s)	Navendu Gosw	ami						
		Teacher(s) (Alphabetica	ally)	Navendu Gosw	vami						
COURSE	u							COGNIT	IVE LEVELS		
C401-4.1		erminologies a		l Technology an lopments involv				Remembe	ring (C1)		
C401-4.2	type			epending on the r and explain				Understan	ding (C2)		
C401-4.3	11.0	the concepts ical problems	of Nan	oscience for so	lving the t	heoretica	1 and	Applying	(C3)		
C401-4.4		Determine the properties of nanomaterials through suitable Analyzing (C4) characterization tools						g (C4)			
Module No.	Title of the ModuleTopics in the Module					No. of Lectures for the module					
1.	IntroductionDevelopment of nanoscience and nanotechnology, naturally occurring nanomaterials, Crystallinity of nanomaterials, Metallic nanostructures, Semiconductor nanostructures Magnetic nanomaterials, Chemically assisted nanostructures, Growth in 2-D nanostructures, Carbon					10					
2.	nanomaterialsProperties of NanomaterialsSurface to volume ratio, Surface states and energy, Nanoscale oscillators, Confinement in nanostructures, Density of States and number of states of 0-, 1-, 2-, 3- 					5					
3.	NanomaterialsIntroduction to synthesis techniques, Top down and bottom up approach, Biological methods, Sol-gel method,					10					
4.	Imitations, Soft Lithography and NanolithographyCharacterization of NanomaterialsResolving power (Rayleigh and other criteria) of microscopes and their limitations for nanostructure measurements, Concept of Far and Near field and modification by NSOM, Basic principle, Design of setup, Theory and working, Characterization procedure, result analysis, Merits/demerits of SEM, TEM, STM, AFM						5				
5.	Applic	ation of			anobiotechr		Catal		10		
ļ											

	Nanomaterialsnanoparticles, Quantum dot devices, Quantum well devices, High Tc nano-Superconductors, Nanomaterials for memory application, CNT based devices, MEMS and NEMS					
	N	Total number of Lectures	40			
Eval	uation Criteria					
ComponentsMaximum MarksT120T220End Semester Examination35TA25 [2 Quiz (10 M), Attendance (10 M) and Cass performance (5 M)]Total100						
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	1. <i>Nanostructures and nanomaterials: synthesis properties and application</i> , Guozhong Cao, Imperial college press, London.					
2.	Introduction to nanotechnology, Charles Poole et al J John Wiley & Sons, Singapore.					
3.	The Handbook of Nanote	chnology: Nanometer Structures, Theory, Modeling, and Simulat	ion, A.			

4. *Springer Handbook of Nanotechnology*, Edited by B. Bhushan, Springer Verlag.

Lakhtakia, Spie Press USA.

Project based learning: Students would work on a project of their choice in the field of Nanoelectronics, Nanobiotechnology, Catalysis by nanoparticles, Quantum dot devices, Quantum well devices, High Tc nano-Superconductors, Nanomaterials for memory application, CNT based devices, MEMS and NEMS. In such projects students can apply the basic concepts of Nanoscience for solving theoretical and numerical problems. They can also work on analysis of a nanomaterial to determine its properties through suitable characterization tools such as SEM, TEM, AFM etc. The learning gained through this project would consolidate the understanding and provide skills of analysis and application in Nanoscience and Technology and thereby providing the employability prospects in the organizations and industries involved in the research and development of nanomaterials synthesis and characterizations, nanoelectronics, nanobiotechnology/nanomedicine etc.

Course	Code	17M11EC118		Semester C (specify Oc)dd	Semes	ster 7th Son from July		n 2021-2022 December
Course	Name	ADVANCED	DIGITA	L SIGNAL PRO)CESSING(CO code	: C110)		
Credits			3		Contact I	Hours		,	3
Faculty	(Names)	Coordinato	r(s)	Dr. Vineet Kha	ndelwal				
		Teacher(s) (Alphabetica	ally)	NIL					
	SE OUTCO nd of the se	DMES emester, studen	ts will be	e able to					OGNITIVE EVELS
CO1	like Z, C		, Discret	transform techn e Fourier transfe					Applying Level (C3)
CO2	FIR (Finit	•		different method nd IIR (Infinite)	•		• •		Analyzing Level(C4)
CO3	Analyzing Analyze Multirate signal processing and examine its application.								
CO4	Comprehe applicatio		ethods fo	or designing ada	ptive filter	s and exa	mine its		nalyzing evel(C4)
Module Title of No. Module			Topics	in the Module					No. of Lectures for the module
1.		v of Digital Processing	Shift I Criteric Fourier algorith frequen	w of discrete-time sequences and systems, Linea Invariant (LSI) systems. Causality and Stability ion, FIR & IIR representations, Z-Transform, Discrete er Transform (DFT), Fast Fourier Transform (FFT thms using decimation in time and decimation in ency techniques, Chirp Z- Transform, Hilber form and applications		oility crete FFT) n in	6		
2. Design FIR F		n of IIR and ilters	filter or Fourier IIR Fil Approx approxi Bilinear Form I	der, FIR filter of Series and free ters Using Bu imations, Freq mation of der transformation & II, Cascade	fications fications, selection of filter type, and ther design; using windowing Techniques, frequency sampling method, Design of Butterworth, Chebyshev and Elliptic Frequency Transformation Techniques; derivatives, Impulse invariant method, tion, Structures for IIR Systems – Direct eade, Parallel, Lattice & Lattice-Ladder res For FIR Systems – Direct, Cascade,		12		

		Parallel, Lattice & Lattice ladder Structures.				
3.	Multirate Digital Signal ProcessingDecimation & Interpolation, Sampling rate conversion, Identities, polyphase decomposition, General polyphase framework for Decimator and Interpolator, Multistage decimator and Interpolator, Efficient transversal structure for Decimator, FIR and IIR structure for Decimator, Filter design for FIR decimator and Interpolator, Application of Multirate Signal processing.					
4.	Adaptive Filters	Introduction, Application of adaptive filters, correlation structure, FIR Weiner Filter, Adaptive Direct-form FIR filters Adaptive Lattice-Ladder filters, Introduction to linear prediction, linear prediction and autoregressive modeling.	10			
	·	Total number of Lectures	42			
Evaluatior	n Criteria					
Componer	nts	Maximum Marks				
T1		20				
T2		20				
	ter Examination	35				
TA		25				
Total		100				

Project based learning: Students will learn different techniques used for the design of the adaptive DSP systems that are used to condition, extract and interpret information bearing signal which is essential for smart phones, home appliances, biomedical devices and multimedia systems. These systems have dynamic transfer function whose frequency response are changed or controlled by varying certain variable parameters by means of an optimization algorithm. Student shall be given various practical situation based design exercises to be implemented in MATLAB. This would enable them to recall and apply various techniques and algorithms taught in course to design and analyse the required system that meets the given technical specification.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	J.G. Proakis & D.G. Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", 4 th Edition, PHI, 2012					
2.	Aurelio Uncini, "Fundamentals of Adaptive Signal Processing", Springer Nature, Jan 2015.					
3.	Tulay Adah and Simon Haykins, "Adaptive Signal Processing: Next Generation Solutions", Wiley India, 2012.					

Course Code	20M41EC117	Semester: ODD	Semester: 7th Session: 2021-22
		(specify Odd/Even)	Month from Aug to Dec
Course Name	ADVANCED DIGITAL COMMUNICATION SYSTEMS		
Credits	3	Contact Hours	3
Faculty (Names)	Coordinator(s)	Dr. Ashish Goel	
	Teacher(s) (Alphabetically)	Dr. Ashish Goel	

COURSE	OUTCOMES- At the completion of the course, students will be able to	COGNITIVE LEVELS
C112.1	Understanding of line coding schemes and study of various issues related to ISI	Understanding Level (C2)
C112.2	Understand and analyse the Optimum filter realization for digital signals	Analyzing Level (C4)
C112.3	Understand the concepts of digital modulation techniques and evaluate their probability of error and bandwidth efficiency.	Evaluating Level (C5)
C112.4	Understanding of symbol and carrier synchronization and various equalization schemes.	Understanding Level (C2)
C112.5	Analyse different types of spread spectrum techniques.	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Waveform Coding and Baseband Shaping for Data Transmission	Overview of wave form coding scheme, Companding scheme for PCM system, Signal to Quantization Noise Ratio of Companded PCM system. Line codes and Power Spectral Density of line coding schemes, Intersymbol Interference: Ideal solution, Practical Solution and Correlative Coding. Eye pattern.	10
2.	Optimal Reception of Digital Signals	Baseband Signal Receiver, Peak signal to RMS Noise output Voltage Ratio, Probability of error, Optimum Threshold: Maximum Likelihood Detector and Bayes' Receiver, Optimal receiver design: calculation of the optimum filter transfer function, Optimum filter realization using Match filter, Probability of error of Matched filter, Optimum filter realization using Correlator	8
3.	Digital Modulation Techniques	Digital modulation formats, M-ray modulation techniques: Modulation, Demodulation, Power spectra, Bandwidth efficiency, symbol error probabilities. Channel capacity theorem for M- ary modulation formats. Minimum Shift keying: Effect of side lobes, MSK as FSK, Signal Space representation of MSK, Phase continuity in MSK, generation and reception of MSK, GMSK.	10
4.	Synchronization and Equalization	Synchronization: Phase Jitter in Symbol Synchronization, Carrier synchronization.	7

		Equalization: Maximum–Likelihood Sequence Estimation (MLSE), Linear equalization, Decision -feedback equalization, Reduced complexity ML detectors	
5.	Spread Spectrum Signals for Digital Communication	Model of spread spectrum digital communication system, Spreading code sequences; generation and properties: PN Sequence, Gold Code, Walsh Hadamard Code. Direct sequence spread spectrum signals; Frequency hopped spread spectrum signals, FDMA, TDMA, CDMA, Time hopping SS, Synchronization of SS systems.	7
		Total number of Lectures	42

Project based learning: Here, students will learn the advanced concept digital communication starting from the basics process of modulation, demodulation and its impairment. These schemes are of utmost importance to understand the concepts of any current or future generations of communication system and to design the same . Student will be able to design the physical layer of digital communication and to analyze the effect of ISI, effect of noise and fading issues. Students can perform the some simulation on Matlab to analyze the same. Understating of these techniques will further help to work in any core communication industry.

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25(Attendance, Performance. Assignment/Quiz)
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	John G. Proakis, "Digital Communication", McGraw Hill, 5th edition, 2013.
2.	H. Taub, D. L. Schilling and Gautam Saha, Principles of Communication Systems, 4 th /ed, TMH, 2017
3.	S.Haykin, Digital Communication Systems ,John Wiley & Sons, 2013
4.	Don Torrieri, " Principles of Spread-Spectrum Communication Systems ", Springer, 2015.