Detailed Syllabus

Subject Code	10B1NEC731	Semester (Specify C	Odd Odd/Even)	Semester Summer Session 2021 - 2022 Month from: June 2021 – July 2021		
Subject Name	Information Theor	y and Applicatic	n			
Credits	3	Contact H	ours	3		
Faculty	Coordinator(s)	1. Ms. Neetu Sir	ngh			
(mames)	Teacher(s) (Alphabetically)	1. Ms. Neetu Sii	ngh			

Course Objectives:

• Establishing the definition of a quantity that can be a valid measurement of information, which should be consistent with a physical understanding of its properties.

• Developing relationship between the information and the source that generates it. This concept will be referred to as source information.

• Developing relationship between the information and the unreliable channel through which it is going to be transmitted. This concept leads to the definition of a very important parameter called the channel capacity.

• Application of information theory techniques in error-detection and correction.

Course Outcomes:

Students will have the concepts and gain knowledge on

- Entropy as basic measure of information.
- Source coding theorem and data compression algorithms.
- Mutual Information and Channel Capacity of communicational channel for information

transmission.

- Channel coding theorem and information capacity theorem.
- Linear Block Codes.
- Cyclic Codes.
- Convolutional Codes

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Review of Basic Probability	Probability spaces. Random variables. Distributions and densities. Functions of random variables. Statistical Averages. Inequalities of Markov and Chebyshev. Weak law of large numbers.	3
2.	Information Measure	Discrete entropy. Joint and conditional entropies. Entropy in the continuous case. Maximization of continuous entropy. Entropy of a bandlimited white Gaussian process.	5
3.	Data Compression	Uniquely decipherable and instantaneous codes. Kraft- McMillan inequality. Noiseless coding theorem. Construction of optimal codes.	4

4.	Data Transmission	Discrete memoryless channel. Mutual information and channel capacity. Shannon's fundamental theorem and its weak converse. Capacity of a bandlimited AWGN channel. Limits to communication – Shannon limit.	5	
5.	Error Control Coding	Coding for reliable digital transmission and storage. Types of codes. Modulation and coding. ML decoding. Performance measures.	3	
6.	Linear Block Codes	Algebra Background, Groups, Fields, Binary field arithmetic. Vector Spaces over GF(2). Generator and parity check matrices. Syndrome and error detection. Standard array and syndrome decoding. Hamming codes.	8	
7.	Cyclic Codes	Polynomial representation, Rings and Rings of Polynomials, Systematic encoding. Cyclic encoding, Syndrome decoding. Shortened Cyclic Codes.	5	
8.	Convolutional Codes	Generator Sequences. Distance Properties. Convolutional encoders. Optimal decoding of convolutional codes- the Viterbi algorithm. Performance and Error Analysis	5	
9.	Turbo Codes	Introduction, Distance properties, Performance analysis, Design of the turbo codes, Iterative decoding of turbo codes.	5	
		Total number of Lectures	43	
Project Based I as well as error-	Learning: Students will learn abo correcting codes with the help of	out the design and implementation of compress assignments.	sion algorithms	
Recommended Reference Books	Reading material: Author(s), T , Journals, Reports, Websites etc.	Title, Edition, Publisher, Year of Publication in the IEEE format)	etc. (Text books,	
1.	R.B. ASH: Information Theory,	Dover, 1990.		
2.	R.W. YEUNG: Information The	ory and Network Coding, Springer, 2008.		
3.	SHU LIN & D.J. COSTELLO: Error Control Coding, 2 nd Edn, Pearson, 2004.			
4.	T.K. MOON: Error Correction C	Coding, Wiley, 2006.		
5.	A. POPOULIS: Probability, Ran Edition, 2002.	dom Variables and Stochastic Processes, Tata	McGraw-Hill	

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	18B12EC411	Semester Odd (specify Odd/Even)		Semester Summer Session 2021 - 2022 Month from: June 2021 – July 2021		
Course Name	Introduction to IOT					
Credits	3		Contact Hours		4	
Faculty (Names)	Coordinator(s)	Dr. Gaurav Ve	rma (62)			
	Teacher(s) (Alphabetically)					

COURSE	COGNITIVE LEVELS	
C434-7.1	Outline the basic concepts of IOT with networking and protocol considerations in IOT scenario.	Understand (C2)
C434-7.2	Identify various IOT hardware platforms and their utilization with various sensors and actuators.	Apply (C3)
C434-7.3	Experiment the basic concepts of python programming and make use of them in image processing, data analytics and machine learning applications.	Apply (C3)
C434-7.4	Examine various case studies and cloud platforms in an IOT scenario for monitoring, control and analysis.	Analyze (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	IOT Basics and its Importance	Introduction to IOT (People Connecting to Things, Things Connecting to Things, Definition of IOT, History of IOT), IOT Components (Sensors & Actuators, Things, Communications, Networks, The Internet, Protocol Stack), Evolution of Connected Devices, IOT Applications, IOT Companies, Baseline Technologies (Machine to Machine (M2M) Communication, Cyber Physical Systems (CPS), Web of Things (WOT)), Address Crunch in IOT, IOT Terminologies (IOT Node, LAN, MAN & WAN, IOT Gateway & Proxy), IOT Network Configuration (Gateway Prefix Allotment, Impact of Mobility on Addressing, Concept of Tunneling, Multi-homing), IPv4 Versus IPv6.	6
2.	Basics of IOT Networking	Introduction to IOT Networking, Networking Standards and Technologies (Network Access & Physical Layer, Internet Layer, Transport Layer, The application layer), IOT Networking Protocols, Network Access and Physical layer IoT Network Technologies ((LPWAN (Low Power Wide Area Network), Cellular, Bluetooth Low Energy (BLE), RFID, NFC, Zigbee, Wifi, Ethernet), Internet layer IoT network technologies (IPv6, 6LoWPAN, and RPL),	6

		Application layer IoT network technologies (HTTP, HTTPS, MQTT, AMQP, and XMPP), IoT networking considerations and challenges, IoT Platforms Capabilities.	
3.	IoT supported Hardware platforms (Arduino) & data visualization using cloud.	Introduction to Arduino (Different Arduino boards, Arduino Uno board description and its pin configuration, Arduino IDE and program uploading, different functions related to GPIOs and special functions (PWM and Serial communication), Interfacing with Arduino using processing language (LED, Switch, Seven Segment, LCD, DC Motor, Relay, IR, LDR and DHT11 sensor), Interrupts, use of simulator and compiler, basics of HTML, Arduino supported IOT modules (Ethernet & Wifi Shield) and their configuration, Monitoring of sensor data on cloud and Web based controlling of actuators.	12
4.	Introduction to Python, Data Analytics, Machine Learning and Case Studies.	Introduction to python, python IDE, Data types, various programming constructs (loops, if, else etc.), operators, functions, modules, data handling (pandas), file operations, Image operations (PIL-pillow), data plotting in python (Matplotlib), basics of machine learning in python (Scikit) and related case studies.	10
5.	IoT supported Hardware platforms (Raspberry pi) & its Applications	Introduction to Raspberry pi (Raspberry pi different model comparison, Pin Configuration, Raspberry Pi operating system choices, Set up your Raspberry pi, Raspbian OS, Remote Access using SSH, Remote Access using TightVNC), Interfacing with Raspberry pi using python and use of open source libraries (LED, Switch, LCD, DC Motor, Relay, IR, LDR and DHT11 sensor), IOT Applications (Water management system, Weather monitoring station on cloud, Smart Agriculture System, Smart Energy meter, Pollution Monitoring system, Smart Dustbin management system.	8
	Π	Total number of Lectures	42
Evaluation	n Criteria		
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25 (Assignments, Attendance & Quiz) 100	
Project Based Learning Component: This course teaches IoT using a building block approach, which allows one to visualize the requirement of an IoT framework and then to design it efficiently. IoT cuts across different			

Project Based Learning Component: This course teaches for using a building block approach, which allows one to visualize the requirement of an IoT framework and then to design it efficiently. IoT cuts across different application domain verticals ranging from civilian to defence sectors. These domains include agriculture, space, healthcare, manufacturing, construction, water, and mining, which are presently transitioning their legacy infrastructure to support IoT. The course will teach IoT based system design using IoT boards, namely Arduino, ESP8266, and Raspberry Pi. The course will introduce various interfacing techniques for popular input devices including sensors, output devices and communication protocols. It will also teach effective embedded programming techniques in python with application to image processing and Machine Learning. It will have a significant practical component, which will be achieved by providing real time demonstrations of various case studies based on IoT.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	"The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press)
2.	"Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press)

Detailed Syllabus

Course Code 17M15EC114 Semester Summer Semester Summer S 2022 Month from: Jun			er Sea 1: June	ssion 202 2021 – Ju	21 - 11y 2021				
Course Name ECE DESIGN AND SIMULATION LAB -2									
Credits		1			С	ontact Hours			
Faculty (Na	umes)		Coordinato	r(s)	Dr Amit K	lumar Goyal			
			Teacher(s) (Alphabetic	ally)	ally) Dr Amit Kumar Goyal				
COURSE (DUTCO	ME	S					COGNIT LEVELS	FIVE S
CO1	Understand and Analyze the path loss exponent for wireless communication. Analyzin						zing (IV)		
CO2	Design strengtl	Design an efficient communication system having adequate signalApplying (Level III)							
CO3	Analyz wireles	e th s co	ne frequency a communication	reuse and har n system.	ndover prob	pability for a given		Apply (Leve	ying 1 III)
CO4	Simula commu	te t inic	he various pe ation system	rformance m	netrics of the	e wireless		Analy	zing (IV)
Module No.	Title	e of	the Module		List	of Experiments			СО
1	Intr Mo	odu ode Wir Cha	action to lling of eless unnel	1. To under Calculat of distar frequence To un	rstand the p ion of receince of separ cy. derstand the transmitted	bath loss prediction ved signal strength ation, antenna heigh the impact of :-	formu as a fu ht and	ala and anction carrier	CO1
				a) b) c) d) e)	Path loss e Carrier free Receiver a Transmitte	xponent, quency, ntenna height, r antenna height.			
				2. Calcula shadow	ation of par fading.	th loss exponent a	nd va	riance of	CO1

2	Wireless	3. To find the 3dB beam-width of a base station antenna.	CO2
	Communication	(a) To study the horizontal beam pattern of the	
	System Optimization	Base Station antenna and calculate the	
		beamwidth for horizontal beam pattern	
		(b) To study the vertical beam pattern of the Base	
		Station antenna and calculate the beamwidth	
		for vertical beam pattern	
		4. To calculate the probability that the received signal level	CO2
		crosses a certain sensitivity level.	
		5. To understand the concept of co-channel interference	CO2
		and hence Signal to Interference and Noise Ratio. A.	
		Downlink:	
		Mobile Station for adaptation of the following	
		parameters,	
		(a) Shadowing effect,	
		(b) Vertical Beam Pattern,	
		B. Unlink.	
		To calculate & plot SINR vs. distance at the base	
		stations for different distance of two mobile	
		stations from the base stations and different	
		separation between them for adaptation of the following parameters	
		(a) Shadowing effect.	
		(b) Vertical Beam Pattern,	
		6. Understanding the impact of many different parameters	CO2
		influence the downlink C/I ratio.	
		(a) Cell radios,	
		(b) Tx power of B.S,	
		(d) Sectoring	
		(e) Shadowing effect.	
		(f) B.S. height,	
		(g) Path loss exponent,	
		(h) Vertical beam tilt	
3	Capacity	7. To understand the cellular frequency reuse concept	CO3
	Improvement	fulfilling the following objectives:	
	Techniaues	(a) Finding the co-channel cells for a particular	
	· · · · · · · · · · · · · · · · · · ·	cell.	
		(b) Finding the cell clusters within certain	
		geographic area.	
		8. To study the effect of handover threshold and margin on	CO3
		SINR and call drop probability and handover	
		probability	

4	Analysis of various	9. To study the outage probability, LCR & ADF in SISO	CO4
	performance metrics of	for Selection Combining and MRC.	
	the wireless		
	communication		
	systems.	10. To study the effect of delay spread on frequency	CO4
		selectivity.	

Project Based Learning: ECE DESIGN AND SIMULATION LAB -2 is a lab course designed for integrated students. The course provides a thorough knowledge about various aspects of wireless communications system (WCS). This includes understanding and analysing the impact of various performance parameters on a designed WCS. Thus, students are provided a wide scope to do their projects in different modules of the course. The projects can be taken towards designing an efficient WCS. This includes optimization of various parameters like receiving and transmitting antenna height, transmitting power, estimating handoff probability to avoid call drop and to study outage probability, LCR & ADF in SISO for Selection Combining and MRC.

Evaluation Criteria

ComponentsMaximum MarksMid Viva20End Viva20TA60Total100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1	T. Rappaport, "Wireless Communication" prentice-hall, 2002.
-	
2.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition,
	2000.
3	John M. Senior, Optical Fiber Communications, 2 nd Edition, PHI, 2002.
4.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson
	Education, 2005.
5.	Journal articles i.e. IEEE, Springer, IOPscience, Elsevier and Video lectures from nanohub,
	NPTFL MIT video lectures
	http://fcmcvlab.iitkgp.ac.in/ http://vlabs.iitkgp.ernet.in/fcmc/#
6.	