Detailed Syllabus Lecture-wise Breakup

Subject Code	17M12EC123	Semester ODD	Semester X Session 2022-2023
			Month from August to December
Subject Name	Information and Coding Theory		
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	Dr. Alok Joshi
(Names)	Teacher(s) (Alphabetically)	Dr. Alok Joshi

COURSE	OUTCOMES	COGNITIVE LEVELS
C140.1	Understand the concept of probability, its relation with information, entropy, and their application in communication systems.	Applying Level (C3)
C140.2	Identify theoretical and practical requirements for implementing and designing compression algorithms.	Analyzing Level (C4)
C140.3	Analyze the need for channel coding in digital communication systems	Analyzing Level (C4)
C140.4	Analyze the channel capacity of wireless communication channels and coding for secured communication in wireless systems	Analyzing Level (C4)

Module No.	title of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction to Information Theory	Random variables, Distributions, Functions of random variables, Statistical Averages, Introduction to Information Theory, Uncertainty and Information, Average Mutual Information, Entropy, Information measures for Continuous random variables, Relative Entropy	8
2.	Source Coding	Fixed and Variable length codes, Kraft Inequality, Source Coding Theorem, Huffman Coding, Shannon-Fano-Elias Coding, Run Length Coding, Rate Distortion Function, Optimum Quantizer Design, Entropy Rate, JPEG Standard for Lossy and Lossless Compression	10
3.	Channel Capacity	Channel Models, Discrete Memoryless Channels, Channel Capacity, Noisy Channel Coding Theorem, Information Capacity Theorem, Capacity of Series and Parallel Gaussian Channels, Water-filling Algorithm, Shannon Limit, Channel Capacity for MIMO Systems	12
4.	Space Time Codes	Introduction to Space Time Block Codes, Coding Gain, Diversity Order, Channel	7

5.	Coding for Secured Communication	Shannon's Notion of Security, The Gaussian Wiretap model, Secrecy Capacity in Wireless Channel, Outage Probability Total number of Lectures	6
		Transition Matrix of MIMO Channel, General Space Time Encoder, Alamouti Scheme.	

Components Maximum Marks

 $\begin{array}{ccc} T1 & 20 \\ T2 & 20 \\ End Semester Examination & 35 \end{array}$

TA 25 (Attendance, Performance. Assignment/Quiz)

Total 100

Project Based Learning: Students will learn about the design and implementation of compression algorithms as well as error-correcting codes along with MIMO concepts helpful in 4G and 5G. Additionally, students in group sizes of two-three required to present a topic on recent advancements in wireless communications and coding theory and even can extend to project.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	R. BOSE: Information theory, coding and cryptography, Mcgraw Hill 2016.	
2.	R.B. ASH: Information Theory, Dover, 1990.	
3.	S. LIN & D.J. COSTELLO: Error Control Coding, 2 nd Edn, Pearson, 2011.	
4.	T.K. MOON: Error Correction Coding, Wiley, 2006.	

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	17M15EC113	Semester: Odd	Semester X Session 2022 -2023
		(specify Odd/Even)	Month from August to December
Course Name	ECE Design and Simulation Lab -I		
Credits	3	Contact	Hours 6

Faculty (Names)	Coordinator(s)	Ashish Goel
	Teacher(s) (Alphabetically)	Ashish Goel, Pankaj K. Yadav

COURSE	OUTCOMES	COGNITIVE LEVELS
C171.1	At the end of the module the student will be able to explain relative merits and demerits of wireless communication technologies.	Remember Level (C1)
C171.2	At the end of the lab the students will be able to simulate the radio propagation model	Understand Level (C2)
C171.3	Plan a communications system for a given environment in which it is to be deployed.	Apply Level (C3)
C171.4	Select a wireless technology or a combination of technologies to suit a given application.	Analyze Level (C4)
C171.5	Use of MIMO technology in 5G communication	Evaluate Level (C5)
C171.6	Perform measurements with commercial equipment and understand the effects of radio channel on the OFDM signal as well as strategies to compensate them	Create Level (C6)

Module No.	Title of the Module	List of Experiments	СО
1.	Exp.1	Introduction to MATLAB and its various applications.	C171.1
2.	Exp.2	To study and simulate Rayleigh and Rician distribution using two signals that follow normal distribution	C171.2
3.	Exp.3	Propagation, log distance and log normal.	C171.2
4.	Exp.4	To study atmospheric turbulence models in Free Space Optical Communication system and implement them using MATLAB	C171.3
5.	Exp.5	To determine the channel capacity for AWGN and faded wireless channels	C171.3
6.	Exp.6	To study Pulse code modulation and demodulation using Matlab	C171.4
7.	Exp.7	Write Matlab program to perform Delta modulation and Adaptive Delta modulation for a sinusoidal signal. Also study the effect of step size and sampling rate on delta modulated signal.	C171.4
8.	Exp.8	To study and simulate the following systems using BPSK modulation: a) wired or AWGN (Additive White Gaussian Noise); b) wireless or faded channel system.	C171.4
9.	Exp.9	Write Matlab program to evaluate the SER of 16-QAM modulated signal over AWGN channel and also verify it with the theoretical results.	C171.4

10.	Exp.10	To Study and Analyze the process of Zero Forcing Equalization process, when channel distorted pulse is applied as an input.	C171.4
11.	Exp.11	To simulate the channel capacity for MIMO system	C171.5
12.	Exp. 12	To analyze the performance of MIMO systems by using space time code technique.	C171.5
13.	Exp. 13	OFDM systems implementation using MATLAB	C171.6
14.	Exp.14	To obtain the PAPR analysis of multi-carrier signal and the performance of PAPR & BER with clipping and filtering Scheme for PAPR reduction technique	C171.6
Evaluation	Criteria		
Componen	nts N	Iaximum Marks	
Viva -1	20		
Viva -2	20		
D2D	60		
Total	100		

Project based learning: Here, students will learn latest communication technologies, starting from the basics process of modulation, demodulation and its impairment. These schemes are of utmost importance to understand the concepts of current and future generations of communication system and to design the same. Student will be able to design the physical layer of 4G communication and to analyze its implementations issues. Students can perform the some simulation on Matlab to analyze the same. Understating of these techniques will further help to work in any core communication industry.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Aditya K Jagannatham, Principles of Modern Wireless Communication Systems Theory and Practice, TMH, 2/e, 2017

2. Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung-Gu Kang, MIMO-OFDM Wireless Communications with MATLAB, Wiley, 2013

Detailed Syllabus

	-
Lecture-wise	Breakup

Subject Code	17M17EC129	Semester Odd	Semester X Session 2022 -2023 Month from August to December	
Subject Name	PROJECT BASED LEA			
Credits	2	Contact Hours	2	

Faculty (Names)	Coordinator(s)	Dr. Vivek Dwivedi
	Teacher(s) (Alphabetically)	NA

COURSE OUTCOMES		COGNITIVE LEVELS
C171.1	Summarize the contemporary scholarly literature, activities, and explored tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Embedded Systems, Signal Processing, VLSI, Communication, Artificial Intelligence and Machine Learning/Deep Learning etc.	Understanding (Level II)
C171.2	Analyze/ Design the skill for obtaining the optimum solution to the formulated problem with in stipulated time and maintain technical correctness with effective presentation.	Analysing (Level IV)
C171.3	Use latest techniques and software tools for achieving the defined objectives.	Evaluating (Level V)
C171.4	Evaluate /Validate sound conclusions based on analysis and effectively document it in correct language and proper format.	Evaluating (Level V)

Project Based Learning Component: Every student will be assigned a project supervisor. The project supervisor will assign 4 different tasks to the student. These tasks will be evaluated by a panel of examiners in the mid and end semester. The students will explore various tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Embedded Systems, Signal Processing, VLSI, Communication, Artificial Intelligence and Machine Learning/Deep Learning etc.

Evaluation Criteria	
Components	Maximum Marks
Mid Sem Evaluation 40	
Final Evaluation 40	
Report	20
Total	100

Course Description

Course Code	17M17EC218	Semester Odd (specify Odd/Even)		Semeste Month f		Session 2022-2023 gust to December
Course Name	Seminar & Term Paper					
Credits	4	Contact Hours				

Faculty (Names)	Coordinator(s)	Saurabh Chaturvedi
	Teacher(s) (Alphabetically)	Saurabh Chaturvedi

S. N.	COURSE OUTCOMES: At the completion of the course, students will be able to	COGNITIVE LEVELS
C212.1	Understand relevant theories, methods and research design relating to the seminar topic selected by a student.	Understanding Level (C2)
C212.2	Analyze the work of other authors/researchers and contribute to the field of knowledge with the cooperation of the supervisor.	Analyzing Level (C4)
C212.3	Evaluate the previously published research works, findings and conclusions.	Evaluating Level (C5)
C212.4	Develop and refine the master's dissertation topic and proposal. Develop the effective technical writing, communication and presentation skills.	Creating Level (C6)

Evaluation Criteria	
Components	Maximum Marks
Mid semester viva	20
End semester viva	20
Day-to-day evaluation	40
Term paper/Report	20
Total	100

Project Based Learning: Students will read through high-quality papers on the latest research areas and develop their interest and understanding of future research. In addition to reading the papers, students may carry out the projects described in them. This subject will also be helpful in selecting a suitable topic for their master's dissertation.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	18M12EC115	Semester Of (specify Odd			ter ODD Session 2022 -2023 from August - December
Course Name	Advanced Optical Co	Communication Systems			
Credits	3	Contact		Hours	3
Faculty	Coordinator(s)	Dr. Jasmine Saini			
(Names)	Teacher(s) (Alphabetically)	Dr. Jasmine Saini			

COURSE	OUTCOMES	COGNITIVE LEVELS
C117.1	Develop an understanding of optical fiber, its structure, types, and principles of light propagation.	Remembering (C1)
C117.2	Identify and examine the different kinds of losses and signal distortion along with their compensation techniques in optical Fibers.	Analyzing (C4)
C117.3	Understand the characteristics of optical transmitter and receiver for analog and digital mode of operation.	Understanding (C2)
C117.4	Design short haul and long haul Analog/ Digital optical communication system with an insight into advanced optical systems.	Evaluating (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Overview of Optical Communications	Guided and unguided transmission of light, Principles of fiber optics: Skew rays. TIR condition, FTIR, Goos-hanchen shift. Effective index method to determine propagation constant, Fibers Modes, V Number analysis for optical fiber, Significance of V-b diagram, Mode Coupling, Step Index fibers, Graded Index fibers. Single mode fibers- Cut off wavelength, line width, propagation velocities.	6
2.	Transmission Characteristics of Optical Fiber	Review of Signal distortion in optical fibers- Attenuation and Dispersion, Analysis of Material dispersion, Wave-guide dispersion and Intermodal dispersion, Fiber Birefringence and Polarization Mode Dispersion. Introduction to Dispersion compensation techniques: chromatic dispersion	7

		compensation, and PMD compensation (both optical and electrical). Non-linear effects in optical fiber	
3.	Optical Transmitters	Review of LED structures, Quantum efficiency, Power, Modulation, Laser Diodes -Modes & threshold conditions, resonant frequencies, structures, characteristics single mode lasers, Modulation of laser diodes, external quantum efficiency, laser diode rate equations, Relative Intensity Noise, Direct and External Modulation Transmitter Design: Source to fiber power launching and coupling	7
4.	Optical Receivers	Review of Optical detectors, Detector response time, Temperature effect on Avalanche gain, Optical receiver: Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of error, Quantum limit, Analog receivers. Coherent Detection, Receiver Sensitivity, Sensitivity Degradation.	8
5.	Optical Amplification and System Design	Optical Amplification, Doped fiber amplifier, semiconductor optical amplifier, Analog and digital systems. Coherent optical fiber communication systems. Modulation and line coding. Bandwidth and rise time budgets, Power budget, and dynamic range. Power penalty, Channel capacity measurement.	6
6.	Advanced Optical Systems and Networks	Multichannel Systems: analysis, design and performance evaluation. Long haul and Metro WDM system, , Introduction to Photonic crystal technology, Photonic crystal fibers, Introduction to Optical Networks, Local area network, Metropolitan-Area N/W,SONET/SDH, Introduction to free space optical and visible light communication.	8
		Total number of Lectures	42

Project Based Learning: The mentioned course is an advanced course for Electronics and Communications students. The course focuses on developing understanding to design an optical communication system including sources, detector and signal guiding mechanism. The students are given a thorough knowledge about various signal degradation mechanism along with their overcome techniques. Thus, it enables students to effectively analyze and realize an optical point link by their own.

Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	

TA	25 (Attendance, Performance, Assignment/Quiz)
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Gerd Keiser, Optical Fiber Communications, 5th Edition, McGraw-Hill India, 2017.

2. John M. Senior, Optical Fiber Communications, 3rd Edition, Pearson Education, 2009.

3. D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.

4. Govind P. Agarwal, Fiber Optic Communication Systems, 4th Edition, John Wiley, 2010.

5. Joseph C. Palais, Fiber Optic Communications, 4th Edition, Pearson Education, 2004

6. Journal articles i.e. IEEE, Springer, IOP science, Elsevier and Video lectures from NPTEL, MIT

video lectures

Revised Detailed Syllabus Lecture-wise Breakup

Course Code	17M11EC119	Semester Od			ter Session 2022 -2023 from August to December
Course Name	Advanced Wireless and Mobile Communication				
Credits	03	Contact		Hours	03

Faculty	Coordinator(s)	Dr. Pankaj Kr. Yadav
(Names)	Teacher(s) (Alphabetically)	Dr. Pankaj Kr. Yadav

COURSE	OUTCOMES	COGNITIVE LEVELS
C113.1	Relate and recall the concepts of Wireless and Mobile Communication.	Remembering Level (C1)
C113.2	Understand the Wireless and Mobile Communication Techniques of Mobile wireless Networks.	UnderstandingLevel (C2)
C113.3	Apply the knowledge of Wireless and Mobile Communication Techniques in Mobile wireless Networks like (GSM/UMTS/HSPA/LTE)	Applying Level (C3)
C113.4	Analyze the application of 3GPP based techniques in Mobile wireless Networks like (GSM/UMTS/HSPA/LTE)	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Overview of wireless communications, Evolution mobile networks, Mobile Standards, Spectrum Considerations. Generic wireless network architecture.	4
2.	Cellular Concept and Engineering	Problems in mobile communication. Need for Cells. Spectrum and its utilization –frequency reuse. Cell design considerations. Cell Topology. Co-channel and adjacent – channel cells interference. Cell splitting and sectoring. Coverage and capacity of cellular system. Hand-off techniques.	8
3.	Propagation of Mobile Radio Signals	Radio wave propagation mechanism. Path loss .Outdoor and Indoor propagation models. Antenna types, size and height. Multipath propagation model .Different types of fading. Doppler effect and mobility.	7
4.	Multiple Access Techniques	FDMA, TDMA, CDMA, techniques and their performance. Number of channels. Introduction to OFDM,OFDMA and SC-FDMA in LTE.	5
5.	Mobile Wireless Networks	Architectures of GSM, UMTS, HSPA and LTE	5
6.	LTE Radio Access Network	LTE Radio Interface; Logical, Transport and physical Channels; Reference Signals, Physical Cell ID, Time-Domain Structure, Scheduling in LTE, LTE Advanced	8

7.	Introduction of 5G	Evolution and characteristics of 5G cellular networks, Enabling technologies for 5G: mm waves, massive MIMO, Small cells, Beamforming, Convergence of cellular and Wi-Fi technologies	5
		Total number of Lectures	42

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25

- a) Attendance and Performance = 10
- b) Class Test/Quiz = 5c) Assignment = 10

Total 100

Project Based Learning: The students will learn the practical limitations of mobile channels imposed on communication systems with the help of assignments. Further, each student is required to prepare an independent review in the area of wireless communication using one or more research publications. The understanding of recent trends helps students in analyzing practical systems and enhance their employability skills.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. T. S. Rappaport, Wireless Communications, PHI, 2002.
- 2. Andrea Goldsmith, Wireless Communications, Cambridge University Press, 2005
- 3. Harri Holma, Antti Toskala, LTE for UMTS: Evolution to LTE-Advanced, John Wiley and Sons, 2011
- **4.** 5G Technology Evolution Recommendations, 4G Americas, 2015
- 5. C. Beard, W. Stallings, Wireless Communication Networks and Systems, Pearson, 2016
- 6. http://www.3gpp.org/ftp/Specs/html-info/36-series.htm

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Course Code	19M12HS211	Semester: Odd/E			r: X Session: 2022 -2023 rom: August-December
Course Name	Cost Accounting for Engineering Projects				
Credits	03	Contact Ho		lours	3-0-0

Faculty (Names)	Coordinator(s)	Dr. Praveen Kumar Sharma
	Teacher(s) (Alphabetically)	Dr. Praveen Kumar Sharma

COURSE	OUTCOMES	COGNITIVE LEVELS
C201.1	Understand basic concepts of Cost Accounting	Understand (C2)
C201.2	Apply concepts of cost in project management	Apply (C3)
C201.3	Analyze cost behaviour for decision making	Analyze (C4)
C201.4	Construct different budgets for controlling the cost	Create (C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Introduction & Overview of Strategic Cost Management Process	2
2.	Cost Concepts	Relevant Cost, Differential Cost, Incremental Cost, Opportunity Cost, Objectives of a costing system, Inventory Valuation, Provision of data for decision making	4
3.	Project execution	Meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities.	5
4.	Project Execution & Quantitative	Pre project execution main clearances and documents Project team: Role of each member. Importance Project site	7

Total nun	42		
8.	Budgetary Control	Flexible budgets, Performance budgets, zero based budgets, Measurements of divisional profitability pricing decisions including transfer pricing.	6
7.	Material Planning	Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card& value chain analysis.	6
6.	Profit Planning Marginal Costing	Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach,	6
5.	Cost Behavior	Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems.	6
	techniques for cost management	Data required with significance, Project contracts, Types and contents, Project execution, Project cost control, bar charts, Project commissioning, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory	

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Quiz+ project)
Total	100

Project based learning: student will form the group of four to five students. To make subject application based, student will apply various concepts such as Cost management and various types of Costing, project execution & quantitative technique for cost management, cost behaviour and profit planning. Student will apply these concept on organization, or in any ongoing project or interdisciplinary base research project or any innovative idea in any particular industry along with feasibility.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. S. M. Datar and M. Rajan, *Horngren's Cost Accounting: A Managerial Emphasis. 16th ed.* Pearson Education, 2018.

2.	B. M. L. Nigam and I. C. Jain, <i>Cost Accounting: Principles And Practice</i> , PHI Learning Pvt. Ltd. PHI Learning Pvt. Ltd., 2010.
3.	R. S. Kaplan and A. A. Atkinson, <i>Advanced management accounting</i> . PHI Learning, 2015.
4.	A. K. Bhattacharyya, <i>Principles and practice of cost accounting</i> . PHI Learning Pvt. Ltd., 2004.
5.	N. D. Vohra, Quantitative Techniques in Management, 3e. Tata McGraw-Hill Education, 2006.
6.	C. Drury, Management and Cost Accounting ,10th edition, Cengage Learning. 2017.
7.	P. Chandra, Projects-Planning Analysis, Selection, Implementation & Review 9e, Tata McGraw Hill, New Delhi. 2019.

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Course Code	19M13HS211	Semester: Od	d		er: X Session: 2022 -2023 August -December
Course Name	Constitution of India				
Credits 2-0-0			Contact Hours		2

Faculty	Coordinator(s)	Dr. Chandrima Chaudhuri
(Names)	Teacher(s) (Alphabetically)	Dr. Chandrima Chaudhuri

COURSE	OUTCOMES	COGNITIVE LEVELS
C202.1	Demonstrate an understanding of the historical inheritances and institutional legacies of Indian Constitution	Understand (C2)
C202.2	Assess the nature of the Indian constitution and its applicability in the study of politics in India.	Evaluate (C5)
C202.3	Assess the devolution of powers and authority of governance of the Union government and the local government.	Evaluate (C5)
C202.4	Demonstrate an understanding of the powers and functions of the Indian executive, legislature and judiciary	Understand (C2)

Module No.	Title of t Module	the	Topics in the Module	No. of Lectures for the module
1.		of the	 History Drafting Committee-Composition & Working 	2

2.	Philosophy of the India Constitution	 Preamble Salient Features Federalism	2
3.	Fundamental Rights and Directive Principles	 Right to Equality Right to Freedom Right against Exploitation Right to Freedom of Religion Cultural and Educational Rights Right to Constitutional Remedies Directive Principles of State Policy Conflict between DPSP and FR Fundamental Duties 	5
4.	Organs of Governance	 Parliament-Composition, Qualifications & and Disqualification, Powers and Functions Executive- President, Governor Council of Ministers Judiciary-Appointment and Transfer of Judges, Qualifications, Power and Functions 	8
5.	Local Administration	 District's Administration head: Role and Importance Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation Panchayati raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role Block level: Organizational Hierarchy (Different departments) Village level: Role of Elected and Appointed officials Importance of Grass root democracy 	8
6.	Election Commission	Election Commission: Role and Functioning	3
Total n	28		

Components Maximum Marks

Mid Term: 30

End Semester Examination 40

TA 30 (Attendance, Quiz, Project)

Total 100

Project Based Learning: Projects based on the different aspects of the Indian Constitution have to be submitted by the students as a part of the project-based learning. This would help the students learn about the nitty gritty of the Constitution, their rights and duties which would later on help them not only in their work place but in their general life.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) Austin, G. (1996). The Indian Constitution: Corner Stone of a Nation. Oxford: Oxford University 1. 2. Bakshi, P.M.(2015). The Constitution of India. Delhi: Universal Law Pub. Co. Pvt. Ltd Bhuyan, D. (2016). Constitutional Government and Democracy in India. Cuttack: Kitab Mahal.. 3. Busi, S.N. (2016). Dr. B. R. Ambedkar framing of Indian Constitution. Hyderabad: Ava 4. **Publishers** Basu, D.D. (2018). Introduction to the Constitution of India. Nagpur: Lexis Nexis 5. Jayal, N.G. & Mehta, P.B. (eds.)(2010). The Oxford Companion to Politics in India. New Delhi: 6. Oxford University Press. Constitution series by Rajya Sabha Television and discussion on Indian Constitution by Rajya 7. Sabha Television