Detailed Syllabus

Lecture-wise Breakup

Course Code		15B11MA1	11	Semester Odo	1			ion 2018 -2019 2018- Dec 2018
Course N	ame 1	Mathematics-1						
Credits	4	4			Contact	Hours	3-1-0	
Faculty		Coordinat	or(s)	Prof. Sanjeev	Sharma, I	Dr. Dines	sh Bisht	
(Names)	l l	Teacher(s) (Alphabetic	cally)	Dinesh Bisht,	Anuj Kumar, Dr. ha Ahalawat, Dr. l, Prof. Sanjeev esh Gupta			
COURSE	E OUTCO	OMES						COGNITIVE LEVELS
After purs	suing the	above ment	ioned c	ourse, the stude	ents will b	e able to	:	
C105.1	explain the concepts of limits, continuity and differentiability of functions of several variables.				Understanding Level (C2)			
C105.2	explain the Taylor's series expansion of functions of several variables and apply it in finding maxima and minima of functions.					Applying Level (C3)		
C105.3	C105.3 make use of double and curves and surfaces.			riple integrals to find area and volume of		Applying Level (C3)		
C105.4	explain the concepts of vector calculus and apply Green's, Stoke's and Gauss divergence theorems in engineering problems.				Applying Level (C3)			
C105.5	solve the ordinary differential equations and explain the concepts of Laplace transform for solving engineering problems.				Applying Level (C3)			
C105.6	C105.6		atrix algebra for solving a system of linear equations and igenvalues, eigenvectors, diagonalization and quadratic form.		Applying Level (C3)			
Module No.	Title of the Module			pics in the Module		No. of Lectures for the module		
1.	Partial Chain rule, change of variables, Taylor's series for function of two or more variables, maxima and minima of function of two variables, Jacobians.							
2.	and			ge of order and Beta functions les, Equations t	, Applica	tions to	areas ar	nd

	Total number of lectures 42				
7.	Matrices	Linear dependence and independence of rows, row echelon form, Rank, Gauss elimination method, Eigen values and vectors, symmetric matrices, Reduction to diagonal form Quadratic forms.	6		
6.	Laplace Transform	Laplace Transform, inverse Laplace transform, Dirac delta and unit step function, Solution of IVPs.	6		
5.	Differential Equations	Differential Equations with constant coefficients, Cauchy-Euler equations, Equations of the form y''=f(y), simple applications.	6		
4.	Vector Integration	Line integrals, Green's Theorem in a plane, surface integrals, Gauss and Stokes theorems.	7		
3.	Vector Differentiation	Gradient, divergence and curl, Normal and tangent to a plane surface.	3		
		some well known curves and surfaces.			

Evaluation Criteria

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Quiz, Assignments, Tutorials)
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- Jain, R. K. & Iyenger, S. R. K., Advanced Engineering Mathematics, 3rd Ed., Narosa Publishing House, New Delhi, 2008.
- Prasad, C., (a) Mathematics for Engineers (b) Advanced Mathematics for Engineers, Prasad Mudranalaya, 1982.
- 3. Lipschutz, S., Lipsom, M., Linear Algebra, 3rd Ed, Schaum Outline Series, 2001.
- **Thomas, G. B and Finney, R. L.**, Calculus and Analytical Geometry, 9th Ed., Pearson Education Asia (Adisson Wesley), New Delhi, 2000.
- **5. Stewart, J.,** Calculus, Early Trancendentals, 7th Ed., Cengage Learning, 2012.
- 6. Simmons, G. F., Differential Equations with Applications and Historical Notes, 2nd Ed. McGraw Hill, 1991.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11PH111	Semester: Odd		Semester: I, Session: 2018-2019 Month from: July to December	
Course Name	PHYSICS-1				
Credits	4		Contact Hours		4

Faculty (Names)	Coordinator(s)	R. K. Dwivedi & Suneet Kumar Awasthi
	Teacher(s) (Alphabetically)	Alok Pratap Singh Chauhan, Anuj Kumar, Anuraj Panwar, Anshu D. Varshney, Bhubesh Chander Joshi, D. K. Rai, Dinesh Tripathi, Himanshu Pandey, Manoj Tripathi, Prashant Chauhan, S. C. Katyal, Vikas Malik

COURSE	OUTCOMES	COGNITIVE LEVELS
C101.1	Recall the basic principles of physics related to optics, relativity, quantum mechanics, atomic physics and thermodynamics.	Remembering (C1)
C101.2	Illustrate the various physical phenomena with interpretation based on the mathematical expressions involved.	Understanding (C2)
C101.3	Apply the concepts/principles to solve the problems related to wave nature of light, relativity, quantum mechanics and atomic physics.	Applying (C3)
C101.4	Analyze and examine the solution of the problems using physical and mathematical concepts involved.	Analyzing (C4)

Module No.	Title of the Module Module Topics in the Module		No. of Lectures for the module
1.	Physical Optics Analytical treatment of interference, Intensity distribution of fringe system, Fresnel's Biprism, Newton's rings, Michelson interferometer, Diffraction (limited to Fraunhoffer class) from Single slit, double slit and Diffraction grating, Polarization, Phenomenological understanding of Birefringence, Principles of use of uniaxial crystals in practical polarizers, compensators and wave plates, Production and analysis of completely polarized light. Optical activity, Polarimeter		15
2.	Relativity	Michelson-Morley experiment, Lorentz transformations, Addition of velocities, Mass variation with velocity, Massenergy relation.	5
3.	Radiation	Black body radiation, Wein's law, Rayleigh Jeans law, Planck's law of radiation.	3
4.	Quantum Mechanics	Wave-particle duality, Compton scattering, Matter waves, Heisenberg's uncertainty principle, Schrödinger wave equation and its applications to the free particle in a box, potential barrier and Harmonic oscillator.	9
5.	Atomic Structure	Origin of spectral lines, spin and orbital angular momentum, Quantum numbers, Atoms in magnetic field, Zeeman effect.	
6.	Thermodynamics	Review of the basic laws of thermodynamics, Entropy and Clausius-Cleyperon equation.	4

	Total number of Lectures	40
Evaluation Criteria		
Components	Maximum Marks	
T1 -	20	
T2	20	
End Semester Examination	35	
TA	25 [2 Quiz (10 M), Attendance (10 M) and Cass performance	$(5 \mathrm{M})]$
Total	100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	A. K. Ghatak, Optics, Tata McGraw Hill.				
2.	E. Hecht, Optics, Pearson Education.				
3.	F. A. Jenkins and H. E. White, Fundamentals of optics, Tata McGraw Hill.				
4.	R. S. Sirohi, Wave Optics, Orient and Longman.				
5.	Reshnick, Relativity, New Age.				
6.	A. Beiser, Concepts of Modern Physics, Mc Graw Hill International.				
7.	Mark W. Zemansky, <i>Thermodynamics</i> , Tata McGraw Hill.				

Detailed Syllabus

Course Code	15B11CI111	Semester Odd		Semester I. Session 2018-2019	
		(specify Odd/	Even)	Month f	rom July to December
Course Name Software Developmen		nt Fundamentals	s-I		
Credits 4			Contact I	Hours	3 (L) + 1(T)

Faculty (Names)	Coordinator(s)	Archana Purwar (J62)
	Teacher(s) (Alphabetically)	Adwitiya Sinha, Amanpreet Kaur, Chetna Dabas, Dharamveer Rajput, Gaganmeet Kaur, Parul Agarwal, Sakshi Agarwal, Sonal, Shradha Porwal

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Solve puzzles, formulate flowcharts, algorithms and develop HTML code for building web pages using lists, tables, hyperlinks, and frames	Apply Level (Level 3)
CO2	Show execution of SQL queries using MySQL for database tables and retrieve the data from a single table.	Understanding Level (Level 2)
CO3	Develop python code using the constructs such as lists, tuples, dictionaries, conditions, loops etc. and manipulate the data stored in MySQL database using python script.	Apply Level (Level 3)
CO4	Develop C Code for simple computational problems using the control structures, arrays, and structure.	Apply Level (Level 3)
CO5	Analyze a simple computational problem into functions and develop a complete program.	Analyze Level (Level 4)

Modul e No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Scripting Language & Algorithmic Thinking	Introduction to HTML, Tagging v/s Programming, Algorithmic Thinking and Problem Solving, Introductory algorithms and flowcharts	5
2.	Developing simple software applications with scripting and visual languages	Developing simple applications using python; data types (number, string, list), operators, simple input output, operations, control flow (if -else, while)	4
3.	Elementary Database	Introduction to data base system, Single Table applications, basic operations : ADD, DELETE, UPDATE, SELECT, ALTER, Introduction to primary key	4
4.	C Programming	Syntax and semantics, data types and variables, expressions and assignments, array	15

		and struct, simple I/O, conditional and iterative control structures Programs on unit conversion, approximating the square root of a number, finding the greatest common divisor, average, sum, min, max of a list of numbers, common operations on vector, matrix, polynomial, strings, programs for pattern generation		
5.	Functions in C Programming	Functions and parameter passing (numbers, ,characters, array, structure), recursion, e.g. factorial, Fibonacci, Scope of variable	8	
6.	Data base connectivity using MySQL	Creating Web pages with Database connectivity using MySQL	2	
7.	Aspects of numerical computing	Data representation, Understanding precision, accuracy, error, Introduction to Scientific Computation	4	
		Total number of Lectures		42
Evaluati	on Criteria			
Compon		aximum Marks		
T1		0		
T2		0		
		5		
TA		5		
Total	1	00		

II .	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	H. Cooper and H. Mullish, Jaico Publishing House. "Spirit of C", 4 th Edition, Jaico Publishing House, 2006
2.	Herbert Schildt. "The Complete Reference C", 4 th Edition, TMH, 2000
3.	Brian W. Kernighan and Dennis M. Ritchie ,"The C Programming Language", 2 nd Edition, Prentice-HallIndia, New Delhi, 2002
4.	Peter Norton, "Introduction to Computers", 5 th edition, Tata McGraw-Hill, Delhi.,2005.
5	Balaguruswamy, Programming in ANCI C", 2 nd Edition, TMH, 2001.
6.	Ashok N. Kamthane , "Programming with ANSI and Turbo C", Pearson Education, Delhi, 2003
7.	Rajaraman V., "Fundamentals of Computer", 3 rd Edition, Prentice-Hall India, New Delhi, 2005.
8.	B. A. Forouzan, R. F. Gilberg "Computer Science: A Structured Programming Approach Using C", 2 nd Edition, Thomson Press, New Delhi, 2006
9	AviSilberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6 th edition, McGraw-Hill, 2010.
10.	User manuals supplied by department for SQL and Python

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Course Code	15B11HS112	Semester: Odd		Semester: I Session 2018 -2019	
				Month from July 18 to Dec 18	
Course Name	English	<u>, </u>			
Credits	3	Contact Hours 2-1-0			
Faculty (Names)	Coordinator(s)) Ms Puneet Pannu, Dr Anshu Banwari			
	Teacher(s) (Alphabetically)	Dr Anshu Banwari, Dr Monali Bhattacharya, Dr Nilu Chaudhary, Dr Santosh Dev, Ms Puneet Pannu, Dr. Santoshi Sengupta, Dr Ekta Srivastava			

COURSE	COURSE OUTCOMES	
C114.1	Develop an understanding and appreciate the basic aspects of English as a communication tool.	Understand (C2)
C114.2	Apply the acquired skills in delivering effective presentations	Apply (C3)
C114.3	Demonstrate an understanding of different forms of literature and rhetorical devices	Understand (C2)
C114.4	Examine literature as reflection of individual and society	Analyse (C4)
C114.5	Compose different forms of professional writing	Create (C6)
C114.6	Apply Phonetics through theory and practice for better pronunciation	Apply (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	English as a Communication Tool	Basic aspects of English ·LSRW: Listening, Speaking, Reading, Writing Non Verbal Communication: Body Language, Voice Modulation, Posture Gambits Phonetics: Pronunciation, Stress, Rhythm, Intonation	10
2.	Language through Literature	Short Stories ·Too Bad by Isaac Asimov ·The Castaway by Rabindranath Tagore Poems ·The Highwayman by Alfred Noyes ·Where the mind is without fear by Rabindranath Tagore ·"If" by Rudyard Kipling ·Ode to Clothes by Pablo Nerruda	10

3.	Professional	One act Play ·Refund by Fritz Karinthy Famous Speech ·Swami Vivekanand's Chicago Speech Textual Organization	8
	Application/Writing	·Letter Writing ·Circulars ·Notices ·Agenda ·Minutes ·Report Writing	
	,	Total number of Lectures	28
Eval	uation Criteria		
Com T1	ponents I	Maximum Marks 20	
T2		20	
End S	Semester Examination	35	
TA Tota	1	25 (Assignment, Creative Project, Test, Oral Questions) 100	
		: Author(s), Title, Edition, Publisher, Year of Publication et	c. (Text books,
Refe	rence Books, Journals, Report	s, Websites etc. in the IEEE format)	
1.	C.L.Bovee, J.V.Thill, M.C copyright@ Dorling Kinders	C haturvedi , <i>Business Communication Today</i> ,9 th Ed, Peslay (India) Pvt Ltd,2009	earson Education,
2.	Kelly M. Quintanilla and S India Ltd,2011	S.T.Wahl, Business and Professional Communication, Sag	e Publications Pvt
3.	S. Kumar and Pushp Lata,	Communication Skills, Oxford University Press,1st, Ed. 201	1
4.	R.K Bansal, and J.B Harri	son, Spoken English for India, Orient Longman	
5	Alfred Noyes, "The Highwa	nyman", Oxford University Press, USA, Sep 1999	
6	Rabindranath Tagore, "W	here the Mind is without Fear", BK Classics	
7	Rudyard Kipling, "If", If H	Handbook, Creative Editions, 2014	
8	Pablo Neruda, "Ode To Clo	othes" Late & Posthumous Poems	
9	Isaac Asimov, "Too Bad", I	Robot Visions, ROC Books, New York, NY, USA, 1991	
10	RabindraNath Tagore, "Tagore, "Tagore, "Tagore," Radice", Penguin Classics	he Castaway", Selected Short Stories, Introduction & tran	slated by William
11	Fritz Karinthy, "The Refundan	ad", A Play in One Act adapted by Percival Wilde, French	's Acting Edition,
12		Sankar Srinivasan, "Sisters & Brothers of America: cago, 1893", Creative Space Independent Publishing Platfor	*

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17PH171	Semester Odd		Semester I Session 2018 -2019	
				Month 1	from: July - December
Course Name	Physics Lab-1				
Credits	01		Contact H	lours	02

Faculty (Names)	Coordinator(s)	Himanshu Pandey and Anshu D. Varshney
	Teacher(s) (Alphabetically)	Alok Pratap Singh Chauhan, Amit Verma, Anuj Kumar, Anuraj Panwar, Anshu D. Varshney, Bhubesh Chander Joshi, D. K. Rai, Dinesh Tripathi, Manoj Kumar, Manoj Tripathi, N. K. Sharma, Navendu Goswami, Prashant Chauhan, S. C. Katyal, Sandeep Chhoker, Swati Rawal, Vikas Malik, Vivek Sajal

COURSE	OUTCOMES	COGNITIVE LEVELS
C170.1	Recall optics and modern physics principles behind the experiments.	Remembering (C1)
C170.2	Explain the experimental setup and the principles involved behind the experiments performed.	Understanding (C2)
C170.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C170.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C170.5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	CO
1.	Optics	 To determine the wavelength of sodium light with the help of Newton's rings setup To determine the wavelength of sodium light with the help of Fresnel's Bi-prism To find the specific rotation of cane- sugar solution by a polarimeter at room temperature, using half-shade / Bi-quartz device. To determine the dispersive power of the material of a prism with the help of a spectrometer. To determine the wavelength of prominent spectral lines of mercury light by a plane transmission grating using normal incidence method 	1-5
2.	Modern Physics	6. To study the Photoelectric effect and determine the value of Planck's constant.7. Determination of Planck's constant by measuring radiation in a fixed spectral range.	1-5
3.	Electricity and Magnetism	 8. To verify Stefan's law by electrical method. 9. To determine the resistance per unit length of Carey Foster's bridge wire and specific resistance of the material of the given wire using Carey Foster's bridge. 10. To study the variation of magnetic field with distance, along the axis of Helmholtz galvanometer, and to estimate the radius of the coil. 	1-5

Components	Maximum Marks	
Mid Term Viva (V1)	20	
End Term Viva (V2)	20	
D2D	60	
Total	100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Dey and Dutta, *Practical Physics*, Kalyani Publication.

2. Experiment hand-outs.

Detailed Syllabus

Course Code	15B17CI171	Semester Odd/I		Semeste 2019 Month f		Session y to Decem	2018 - ber
Course Name	Software Development Fundamentals 1 Lab						
Credits	2		Contact I	Hours	4		

Faculty (Names)	Coordinator(s)	Dr. Chetna Dabas and Sarishty Gupta
	Teacher(s) (Alphabetically)	Amanpreet Kaur, Amarjeet Prajapati, Ankit Vidyarthi, Ankita Verma, Ankita Wadhwa, Aparajita Nanda, Archana Purwar, Arpita Jadhav, Bharat Gupta, Chetna Dabas, Deepti Singh, Dharamveer Rajpoot, Kavita Pandey, K. Rajalakshmi, Mradula Sharma, Nisha Chaurasia, Niyati Aggarwal, Parul Aggarwal, Prashant Kaushik, Purtee Kohli, Rohit Pal Singh, Sakshi Aggarwal, Sarishty Gupta, Shardha Porwal, Sherry Garg, Shikha Jain, Somya Jain, Sonal, Vikas Hassija

COURSE	COGNITIVE LEVELS	
CO1	Design HTML code for building web pages using lists, tables, hyperlinks, and frames.	Apply Level (C3)
CO2	Develop python programs for constructs such as lists, tuples, dictionaries, conditions, and loops using Python 3.6.	Apply Level (C3)
CO3	Design simple SQL queries using MySQL to create database tables and retrieve the data from a single table.	Apply Level (C3)
CO4	CO4 Develop C programs for datatypes, expressions, conditional structure, and iterative control structure and pattern generation using Code Blocks and Virtual Lab.	
CO5	Design C programs for array, structure, and functions using Code Blocks and Virtual Lab.	

Module No.	Title of the Module	List of Experiments	CO
1. Introduction to HTML		Experiments to create web pages using tags, lists, tables, frames, forms.	1
2.	Python	Experiments to develop python programs using data types (number, string, list), operators, simple input output operations, control flow (if -else, while)	2
3.	MySQL	Experiments to create MySQL queries using operations like ADD, DELETE, UPDATE, SELECT	3
4.	C Programming (Part-1)	Experiments to develop C programs using datatypes, expressions, conditional structure (if-else), and iterative control structure (do-while, while, for).	4

5.	C Programming (Part-2)	Experiments to develop C programs using for array, structure, and functions.	5
Evaluation	n Criteria		
Compone	nts	Maximum Marks	
Evaluation	n 1	15	
Lab Test 1		20	
Evaluation	n 2	20	
Evaluation	1 3	15	
Lab Test 2		20	
TA		10	
Total		100	

II .	Dommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. t books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	H. Cooper and H. Mullish, Jaico Publishing House. "Spirit of C", 4th Edition, Jaico Publishing House, 2006
2.	Herbert Schildt. "The Complete Reference C", 4th Edition, TMH, 2000
3.	Brian W. Kernighan and Dennis M. Ritchie ,"The C Programming Language", 2nd Edition, Prentice-Hall India, New Delhi, 2002
4.	Peter Norton, "Introduction to Computers", 5th edition, Tata McGraw-Hill, Delhi., 2005.
5.	Balaguruswamy, Programming in ANCI C", 2nd Edition, TMH, 2001.
6.	Ashok N. Kamthane , "Programming with ANSI and Turbo C", Pearson Education, Delhi, 2003
7.	B. A. Forouzan, R. F. Gilberg "Computer Science: A Structured Programming Approach Using C", 2nd Edition, Thomson Press, New Delhi, 2006.
8.	https://www.w3schools.com/html/
9.	https://www.w3schools.com/sql/
10.	https://www.w3schools.com/python/
11.	User manuals supplied by department for HTML, SQL and Python

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15GE112	Semester : Odd			r I Session 2018-2019 rom August
Course Name	WORKSHOP				
Credits	1.5		Contact Hou	ours	3

Faculty (Names)	Coordinator(s)	Nitesh Kumar
	Teacher(s) (Alphabetically)	Chandan kumar Madhu Jhariya Nitesh Kumar Vimal Saini

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1 Learn the basic of manufacturing environment and various safety measures associated with it.		Remembering (Level I)
CO2	Apply the appropriate tools to fabricate joints utilizing work-bench tools.	Applying (Level III)
CO3	Create various prototypes in the carpentry trade, fitting trade, welding trade and tin smithy trade.	Creating (Level VI)
CO4	Demonstrate the working principle of lathe, shaper and milling machines and able to fabricate the prototypes of desired shape and accuracies.	Understanding, (Level II)

Module No.	Title of the Module	List of Experiments	СО
1.	Carpentry	Preparation of T joint as per the given specification. Preparation of Dovetail joint as per given specification.	CO2,CO3
2.	Welding Shop	To study Gas welding and Arc welding equipment. To make Butt joint and Lap joint.	CO2,CO3
3.	Sheet Metal Shop	To Prepare a Square tray using GI sheet. To Prepare a funnel using GI sheet.	CO2,CO3
4.	Fitting Shop	To Prepare V groove fit as per given specifications. To Prepare Square fit as per given specifications.	CO2,CO3
5.	Machine Shop	To Perform Turning, facing and grooving operation on Lathe. To perform Slotting operation on Shaper Machine. To perform face milling operation on Milling Machine.	CO4

Evaluation Criteria

Components Maximum Marks

Mid Term Exam20End Term Exam20

TA 60 (Experimental Work (30) + File Work (20) + Attendance (10)) **Total**

100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,

Refe	rence Books, Journals, Reports, Websites etc. in the IEEE format)	
1.	Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai	
2.	Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology",4th edition, Pearson Education India Edition, 2002.	
3.	Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata Mc GrawHill House, 2017.	
4.	John K.C., Mechanical Workshop Practice, 2nd Edition, PHI, 2010	
5.	Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998	
6.	Gowri P.Hariharan and A. Suresh Babu," Manufacturing Technology – I' Pearson Education, 2008	
7.	Raghuwanshi B.S., Workshop Technology Vol. I & II, Dhanpath Rai & Sons.	