Jaypee Institute of Information Technology

M.Tech. Biotechnology

Semester I

Course Descriptions

Course Code	17M11BT111	Semester Odd	Semeste Sem(M.	er VII (Integrated) / I Tech) Session 2018 -2019
			Month	from July to December
Course Name		Biomolecules and cell communication		
Credits	3		Contact Hours	3

Faculty (Names)	Coordinator(s)	Dr. Reema Gabrani
	Teacher(s) (Alphabetically)	Dr. Reema Gabrani

COURSE	OUTCOMES	COGNITIVE LEVELS
C110.1	Explain the signal molecules and major cell signaling pathways	Understand Level (C2)
C110.2	Analyze cell signaling pathways in normal and diseased conditions	Analyze Level (C4)
C110.3	Interpret the mechanisms and regulation of cell cycle and cell death	Understand Level (C2)
C110.4	Analyze the therapeutic drug targets for cancer	Analyze Level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Signal molecules	Cytokines and Hormones, Growth factors, neurotransmitters, extracellular matrix components as signaling molecules; autocrine, paracrine, juxtacrine and endocrine signaling	3

End Semes	ster Examination	35	
T1 T2		20	
Evaluation Component	n Criteria nts	Maximum Marks	
	~ ~ ~ ~	Total number of Lectures	42
7.	Malfunction of Signaling Pathways and Tumorigenesis	Hallmarks of cancer, Developmental pathways and cancer: Notch signalling from Drosophila to humans, Wnt signalling, Hedgehog pathway; Epigenetic changes in cancer, Signalling pathways as therapeutic targets, Analysis of signalling events via case studies	8
6.	Cell cycle regulation and cell death	Cyclin-CDK variation, Checkpoint signaling, Ubiquitin proteasome proteolytic system, Intrinsic and Extrinsic apoptotic pathways	8
5.	Bacterial Chemotaxis	Two-component signaling pathway, histidine kinase associated receptor, Adaptation, Chemotaxis in pathogenicity, symbiotic associations and biofilm	4
4.	Nuclear receptor based signaling	Classification and Structure of Nuclear Receptors, Signaling by steroid hormones, Retinoids, Vitamin D3, and the T3-Hormone, Mechanisms of Transcriptional Regulation by Nuclear Receptors	4
3.	Signaling mediated by enzyme linked cell surface receptor	Photoreceptor development in Drosphila, Ras to MAP kinase, Phosphoinositide-3-kinase and signaling through insulin receptor, JAK-STAT pathway, Signal Transduction via Integrins	7
2.	G-protein linked signaling pathways	G Protein-Coupled Receptors, Heterotrimeric G Proteins, Second messengers, Effector enzymes, Mechanism of transduction, Switching Off and Desensitization of Receptors, Visual transduction pathway	8

ТА	25 (Presentation, Assignments)
Total	100

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Ernst J. M. Helmreich, "The biochemistry of cell signaling," Indian Ed., Oxford University Press, 2005			
2.	B. Gomberts, "Signal transduction", Academic Press, 2009			
3.	John T. Hancock, "Cell signaling", 2nd Ed. Indian Ed. Oxford University Press, 2006			
4.	Alberts, Johnson, Lewis, Morgan, Raff, Roberts and Walter, "Molecular Biology of the Cell" Sixth Edition, Garland Science Publication, 2014			
5.	Refereed papers from scientific journals for case studies			

Course Code	17M11BT112	Semester Od	d	Semeste	er I
		(specify Odd/	Even)	Session	2018 -2019
				Month	from June to Dec
Course Name	Molecular Modeling and Drug design				
Credits	3		Contact I	Hours	LTP 300

Faculty (Names) Coordinator(s)		Dr Chakresh Kumar Jain
	Teacher(s) (Alphabetically)	Dr Chakresh Kumar Jain

COURSE	OUTCOMES	COGNITIVE LEVELS
C112.1	Explain macromolecular structures, their Mathematical representation and visualization	Understanding (C2)
C112.2	Explain structural modeling, simulation and dynamics	Understanding (C2)
C112.3	Apply computational drug designing and simulation approaches for drug discovery	Applying (C3)
C112.4	Compare <i>in-silico</i> ligand-target interaction methods	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Molecular Modeling	Introduction to structure of DNA, protein and RNA. Structure representation and visualization, Coordinate Systems, Potential Energy Surfaces, Software and Hardware for molecular modeling, Tools such as Swiss pdb viewer, Pymol, VMD etc.	5
2.	Quantum Mechanics and Force Fields	Electron methods and molecular orbital calculations, General Features of Molecular mechanics force field, Bond Stretching. Angle Bending. Introduction to Non-bonded Interactions. Electrostatic Interactions. Van der Waals	5

		Interactions. Hydrogen Bonding in Molecular Mechanics. Force Field Models for the Simulation of Liquid Water.	
3.	Energy Minimization and computer simulations	Minimization and Related Methods for exploring the Energy Surface. Non-Derivative method, Minimization methods. Computer Simulation Methods. Simple Thermodynamic Properties and Phase Space. Boundaries. Analyzing the Results of a Simulation and Estimating Errors.	5
4.	Molecular Dynamics and simulations	Molecular Dynamics Simulation Methods. Molecular Dynamics Using Simple Models. Metropolis Method. Monte Carlo methods, Web Based Resources, Databases and tools such as GROMACS, AMBER, & CHARMM.	6
5.	Structure Prediction	Principles of structure prediction, comparative modeling and protein folding, Comparative and <i>ab-inito</i> modeling, CASP, validations, Projects such as ROSETTA, protein folding at home.	6
6.	Drug designing	Introduction to drug discovery and drug development, Rational approach to drug design, Approaches to lead optimization such as conformation restriction, pharmacophore etc. Designing drugs against enzymes and receptors, Computer Aided Drug Design methods. ADMET, QSAR Tools and databases such as AUTODOCK, MOLEGRO, Drug Bank etc.	16
	n	Total number of Lectures	43
Evaluatio	n Criteria		
Compone T1 T2 End Seme TA Total	nts ster Examination	Maximum Marks 20 20 35 25 (Assignment-1, MCQ, Project, Presentation) 100	

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Andrew R leach, V.J Gillet, "An introduction to Chemoinformatics" Springer pumodel of publication, 2007				
2.	Gasteiger Johann, "Chemoinformatics A text book "John Wiley, 2008				

	Andrew R. Leach, "Molecular Modeling principles and applications" Pearson Education, Second edition,
3.	2001

Course Code	17M12BT111	Semester Odd (specify Odd/Even)		IdSemester MTech I Session 2018 -2019/Even)Month from July to December		
Course Name	Biosensors					
Credits	3	Contact		ct Hours	3	

Faculty (Names)	Coordinator(s)	Prof. Sudha Srivastava
	Teacher(s) (Alphabetically)	Prof. Sudha Srivastava

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Explain principle and working of biosensors and characterization techniques	Understand Level(C2)
CO2	Evaluate different methods of immobilization and their effect on biosensor performance	Evaluate Level (C5)
CO3	Analyze performnce of a biosensor for disease diagnosis, environmental pollution, pathogen quantification	Analyze Level (C4)
CO4	Design strategy for fabrication of a given biosensor with high sensitivity and wide detection range	Create Level (C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction:	Sensors and biosensors, definitions, types of sensors, markets, target analytes, glucose and other medical sensors	2
2.	Biosensor Advancements and nanotechnology	First-, second-, third generation biosensors, Nanotechnology and present day biosensors	3

3.	Basic Design Considerations	Calibration, dynamic Range, signal to noise, sensitivity, selectivity, interference.	3		
4.	The biological component	Whole cell sensors, enzymes – sensing substrates or inhibitors, antibodies (Mab, Fab). And other binding proteins, oligonucleotides and aptamers.	3		
5.	Types of biosensors	Optical biosensors, Electrochemical biosensors, Piezoelectric biosensor, Calorimetric biosensors	8		
6.	Immobilization method	Non-covalent immobilization - entrapment and multipoint electrostatic attachment. Covalent attachment via thiol, amino and hydroxyl groups. Affinity interactions - avidin/biotin, , complementary oligonucleotides.	4		
7.	Techniques for sensing : Physical and chemical	Absorbance, fluorescence, chemi/bioluminescence and phosphorescence, Surface Plasmon Resonance (SPR), quartz crystal microbalance, cyclic voltammetry	8		
8.	Sensor stabilization	Storage and operational stability. Polyols, polymers and low Mw compounds as stabilizing agents for drying and long term storage. Stabilization mechanisms.	3		
9.	Applications	Pharmaceutical, agricultural, food safety, biomedical applications, food processing: state of the field, market potential, unique design criteria and needs, current sensors in use.	8		
		Total number of Lectures	42		
Evaluation	Evaluation Criteria				
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25 (Class Test, Presentation) 100			

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Ligler, F.S. and Rowe Taitt, C.A. 2002. Optical Biosensors: Present & Future. Elsevier, The				
	Netherlands. ISBN: 0-444-50974-7.				
2.	Yang, V.C. and T.T. Ngo. 2000. Biosensors and Their Applications. Kluwer				
	Academic/Plenum Publishers, New York, NY. ISBN: 0-306-46087-4.				
3.	Recent research articles				

Course Code	17M12BT112	Semester ODD		Semeste	r I Session 2018-2019
		(specify Odd/Even)		(specify Odd/Even) Month from July to December	
Course Name	ANIMAL AND PLANT BIOTECHNOLOGY				
Credits	3		Contact Hours		3

Faculty (Names)	Coordinator(s)	Dr. Garima Mathur
	Teacher(s) (Alphabetically)	Dr. Garima Mathur

COURSE	OUTCOMES	COGNITIVE LEVELS
CO131.1	Explain the concepts of animal and plant cell culturing and various transformation methods	Understand level(C2)
CO131.2	Make use of scientific literature to plan strategies for animal and plant biotechnology	Apply level(C3)
CO131.3	Identify appropriate techniques to address related biotechnological problems	Apply level(C3)
CO131.4	Examine the applicability of animal and plant biotechnology to existing Biotech Industries	Analyze level(C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Plant Biotechnology	Introduction and types of plant tissue culture, germplasm conservation.	5
2.	Large scale culture and propagation methods	Large scale culture and problems associated, Micropropagation, somaclonal variation, generation of haploid plants, embryo rescue, somatic hybrids and germplasm conservation.	10
3.	Virus free plants	Meristem culture and generation of virus free plants, applications and limitations	2

4.	Transgenic plants	Gen constructs, vectors and transformation methods, applications	6
5.	Animal Biotechnology	Introduction, organ culture, cell culture and initiation of cell culture, evolution of continous cell lines	4
6. Large scale cult phases, somatic c applications		Large scale culture of cell lines, maintenance, growth phases, somatic cell fusion and hybridoma technology and applications	9
7.	Stem cells Culture, identification, maintenance, characterization and proliferation heterogenity		2
8.	Transgenic animals Gene constructs and transgenic animals		4
		Total number of Lectures	42
Evaluatior	n Criteria		
Components		Maximum Marks	
T1 T2		20 20	
End Semester Examination		35	
TA		25 ()	
Total		100	

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	H. S. Chawla, Introduction to Plant Biotechnology, 3rd Edition, Science Publishers, 2009				
2.	S.S.Bhojwani and M K Razadan, Plant tissue culture: theory and Practice, Elsevier, 1996				
3.	S. Narayanaswamy, Plant cell and tissue culture, Tata Mcgraw Hill, 1992				
4.	R. Ian Freshney, Culture of animal cells : a manual of basic techniques, Wiley-Liss, 2005				
5.	J. R.W. Masters, Animal cell culture, 3 rd Edition, Oxford University Press, 2000				
6.	A. Mukhopadhyay, Animal Cell Technology, I.K. International, 2009				

Course Code	17M12BT113	Semester ODD (specify Odd/Even)		Semeste Month f	r I Session 2018-2019 From July to December
Course Name	Information Technology for Biologist				
Credits	3		Contact Hours		3

Faculty	Coordinator(s)	Dr. Chakresh Jain
(Names)	Teacher(s) (Alphabetically)	Dr. Chakresh Jain

COURSE	OUTCOMES	COGNITIVE LEVELS
C132.1	Explain about the information technology, computer resources and architecture	C2
C132.2	Summarize about high performance computing and protein simulations	C2
C132.3	Applying information technology in biological problems	C3
C132.4	Comparing the docking methods and simulations	C4

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Concepts of Information Technology relevant to biologist	History of Computing in biology, Building blocks of computing systems such as Memory, ALU etc., Internet Architecture and Protocols such as IP, TCP, DNS, NTP. History of Web & internet in Bioinformatics, Scientific	10

		Computing, Public and private data in biology, Operating Systems such as Windows and Linux.Biological Information Resources.	
2.	Problem solving in Biology through data structure and Programming	Computational approaches for biologist- Definition of Algorithms, Flow charts, Decomposition and pattern recognition (gene prediction using Genscan; Protein Structure Prediction using Swiss Model), program design, errors-syntax, runtime & logic. Basics of C language. Scripting languages such as Perl, Bioperl, and HTML.	15
3.	High-performance computing in Bioinformatics	Parallel architectures, parallel computation in biological sequence analysis, Case study- Performance optimization of Clustal W and Turbo Blast. Distributed computing and its applications in protein folding simulations.	6
3.	Applications of IT in large scale biological projects	Databases and Cloud- 1000 genome project, Personal Genomes- International Consortium of Cancer Genomes, Genographics Project, Imaging- Allen Brain Atlas, NGS Data pipelines and work flow systems, Large Scale Docking Projects.	11
		Total number of lectures	42

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Programming Perl , Larry Wall, Tom Christiansen, Jon Orwant, , O'Reilly Media, 3rd edition, , July 2000.

2. Programming in ANSI C, Balagurusamy, Tata McGraw-Hill Education, 8 rth edition, 2008 -

3. Data Structures and Algorithms in C++, Adam Drozdek, Course Technology, 2nd Edition, 2000.

4. Bioinformatics: High Performance Parallel Computer Architectures (Embedded Multi-Core Systems), Bertil Schmidt, CRC Press; 1 edition (July 15, 2010).

Course Code	17M12BT114	Semester Odd		Semester M. tech 1st Session 2018 - 2019 Month from July to Dec		
Course Name	Enzyme Technology					
Credits 3		Contact H	Hours		3	

Faculty (Names)	Coordinator(s)	Dr. Priyadarshini
	Teacher(s) (Alphabetically)	Dr. Priyadarshini, Dr. Smriti Gaur

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Explain enzyme kinetics and its regulation.	Understand Level (C2)
CO2	Outline the purification and characterization strategies for industrial enzymes.	Understand Level (C2)
CO3	Plan the production of metabolites in biological system.	Apply Level (C3)
CO4	Apply acquired knowledge for commercialization of products.	Apply Level (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Fundamentals of Enzymology	Objectives and strategies of Enzyme purification, Introduction to enzyme Kinetics, Mechanism of enzyme action and control of enzyme activity with examples related to control of metabolic pathways.	8
2.	Sources of industrial enzymes	Natural & recombinant), enzymes in the cell and in organized systems, enzyme turnover, correlation between rate of turnover and structure and function of enzymes	6
3.	Enzyme immobilization	Preparation and kinetics of immobilized enzymes, enzyme reactors, membrane reactors, packed bed reactors, continuous flow reactors, stirred tank reactor, fluidized reactors, along with their application in dairy, cereal, fruit juice, oil and fat industry, and their safety aspects,	3

		use of immobilized raffinase, lipase, invertase and lactase in industry Recent advances in enzyme technology.	
4.	Enzymes as commercial products	The large-scale use of enzymes	4
5.	Enzymes in plant fiber based industry	Biopulping Paper and Pulp industry, Textile industry and in Laundry detergents	4
6.	Enzymes in Waste remediation	Explosives, Organophosphates in Pesticide Residues and Nerve Gas, Oil and Gas Desulfurization	4
7.	Enzymes in Animal nutrition and in Food production	Pig husbandry, Chicken feed, cattle fodder like Milk and Cheese industries, Sugar industry, Meat industry, Oil, Fat, Flavor and Fragrance industry	4
8.	Enzymes as therapy targets and Pharmaceuticals	Proteases, Cycloxygenase, Antivirals, and reverse transcriptase, Polyketide Synthases in Pharmaceutical processing, FDA-Approved Enzyme Drugs and research and development products.	4
9.	Introduction to Metabolic engineering	Analysis of sequence of reactions and Stoichiometry, Synthesis of primary and secondary metabolites, The genetic switch in E.coli illustrating the dynamic nature of the genome, Metabolic Flux analysis and Metabolic control analysis, Case studies.	7
		Total number of Lectures	42
Evaluation	n Criteria		
Componen T1 T2 End Semes	nts M	Jaximum Marks 20 20 35	
TA Total		25 (Assignment 1, Assignment 2) 100	

Reco Refe	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Industrial enzymes and their applications Helmut Uhlig, John Wiley and sons.
2.	Biochemical engineering and Biotechnology Atkins and Mavituna 2nd edition Stockton Press New york

3.	Industrial Enzymology . Godfrey T. West ,S.(eds) 1996, Mac millan Press London
4.	Industrial Application of Immobilized enzymes . Tanaka , A . Tosa , T . and Kobayashi, T .(eds).1993 Marcel Dekker , New York
5.	Gerharts W, "Enzyme Industry-Production and Applications"
6.	Tailor, R.F., "Protein immobilisation-Fundamentals and application"
7.	Zubay G., "Biochemistry"

Course Code	17M12BT116	Semester Odd		Semester XSession2018 - 2019Month fromJuly to December		
Course Name	Regulatory affairs					
Credits	3		Contact H		3	

Faculty (Names)	Coordinator(s)	Dr Shweta Dang
	Teacher(s) (Alphabetically)	Dr Shweta Dang

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Explain regulatory markets and agencies; preclinical and clinical trials	Understanding (Level 2)
CO2	Analyze the guidelines for approvals of new drugs/biologics	Analyzing (Level 4)
CO3	Compare innovator and generic pharmaceutical industry with Patent and Non patent exclusivity	Evaluating (Level 5)
CO4	Interpret ICH guidelines applicable to drugs and biotechnology based therapeutic products.	Understanding (Level 2)
CO5	Assess regulatory approvals via related case studies	Evaluating (Level 5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction To Regulatory agencies	CDSCO, India USFDA, USA EMEA, Europian Union TGA, Australia	2
2.	Introduction To Pharmacopoeias and Monographs	Indian Pharmacopoeia (IP) British Pharmacopoeia (BP)	2

		United Sates Pharmacopoeia (USP) International Pharmacopoeia (Int. Ph.)	
		European Pharmacopoeia (Eur. Ph.)	
3.	Safety and efficacy of drugs/biologics, preclinical studies, Clinical phases	Case studies of safety issues in history, Preclinical requirements, acute and chronic toxicity, dose determination, NOAEL, phases of clinical trials (I,II III)	4
4.	Approval pathways for Drugs/ biologic/ biopharmaceuticals in USFDA	FDA,CDER, CBER, IND, NDA, BLA, recalls, Phase IV, filing procedures	7
5.	Approval pathways for Drugs/ biologic/ biopharmaceuticals in europe	EMEA, market authorization application. Centralized, Decentralized, National, Mutual recognition procedure. CTD, eCTD, Nees Submissions, ICH M4	4
6.	Approval pathways for Drugs/ biologic/ biopharmaceuticals in India and Japan	Central Drug Standard Control Organization, INDIA, Pharmaceutical and Medical Devices Agency of Japan	3
7.	Generics and Biosimilars	Hatch Wax man Act (Para I,II,III and IV filings), BPCI act USA, CDSCO guildines, EMEA guidelines, Status of guidelines	6
8.	Non Patent Exclusivities	Orphan Drug law, Market exclusivity, Pediatrics exclusivity, First to file exclusivity	5
9.	ICH Guidelines for Biologics and Good Clinical Practices	Overview of ICH guidelines, ICH QSEM, ICH Q5,Q6,. ICH E6, ICH Q8,9,10	5
11.	Case Studies	Relevant Case studies	4
		Total number of Lectures	42
Evaluati	on Criteria		
Compon T1 T2 End Sem TA	ents ester Examination	Maximum Marks 20 20 35 25 (Class Test, Assignment I and II)	

Total 100

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Sandy Weinberg, GUIDEBOOK FOR DRUG REGULATORY SUBMISSIONS, 2009 (first edition), John Wiley & Sons, Inc.					
2.	The Common Technical Document (CTD), Internet: http://www.ich.org/					
3.	Guideline for submitting supporting documentation in drug applications for the manufacture of drug substances, February 1987, Internet: http://www.fda.gov/cder/guidance/drugsub.pdf					
4.	ICH Guideline: The Common Technical Document for the Registration of Pharmaceuticals for Human Use: Quality - M4Q; Quality Overall Summary of Module 2, Module 3: Quality, Internet: http://www.ich.org/MediaServer.jser?@_ID=556&@_MODE=GLB					

Course Code	14M1NBT334/17 M12BT118	Semester Odd		Semeste Month f	r III. Session 2018 -2019 `rom June to Dec ember
Course Name Product Development in Biotechnology					
Credits	4	Contact H		Iours	4

Faculty (Names)	Coordinator(s)	Dr. NeerajWadhwa
	Teacher(s) (Alphabetically)	Dr. NeerajWadhwa

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Outline various processes relevant for Biobusiness	Understand (C2)
CO2	Compare marketing techniques and related ethics	Apply Level (C2)
CO3	Select appropriate technology for the production of Biological products	Understand Level (C3)
CO4	Explain financial, regulatory, health policy aspects for biobased industries	Understand Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Biotechnology Industries overview	Biotech industries in India and abroad, ,Biotechnology as a function of science and business ,Company structures versus other non-biotech companies , Functional units Company structure and functions Emerging technology and technical convergences issues	5
2.	Business in the context of biotechnology Entrepreneurship-	Science/development, the idea and its development, Plant tissue culture lab-equipment- glasswares chemical requiremen construction,techniquesin culturing and export abroad, Vermitechnology, Mushroom cultivation, single cell protein, Biofertilizer technology-production, Textile	10

		processing, leather treatment, Detergent industry, bakery, diary Pharmaceutical drug development, Medical device product development ,Technology product development Other biotech product development, such as biofuels, bioengineered foods, etc commercialization of Bakery and dairy products	
3.	Product development	 a. Production of commercially important primary metabolites like organic acids, amino acids and alcohol & Production processes for various classes of secondary metabolites: Antibiotics, Vitamins and Steroids. b.Production of Industrial Enzymes, Biopesticides, Biofertilizers, Biopreservatives, Biopolymers Biodiesel. Cheese, Beer, SCP & Mushroom culture, Bioremediation. c.Production of recombinant proteins having therapeutic and diagnostic applications, vaccines. Bioprocess strategies in Plant Cell and Animal Cell culture. d.Biotransformation applications of enzymes - Hydrolytic- Ester bond, Amide, Epoxides, Nitriles, Reduction reactions – aldehydes, Ketones, C=C, Oxidation reactions – Alkanes, Aromatic, Baeyer-Villiger, Enzymes in organic synthesis – esters, amide, peptide , Modified and Artificial Enzymes , Catalytic antibodies 	12
4.	Intellectual property, Bioethics,legal issues	Patents, Confidentiality, Licensing agreements Business Development/Licensing, Strategy Marketing and public perception in product development, genetically modified products and organism- transgenic products licencing and branding concerns	5

5.	Biobusiness plans	Concerns and oppurtunities, Bank loan and finance strategy, Budget planning,Policy and regulatory concerns,Corporate partners marketing- Model project Case studies of different industries and strategic planning	10
6.	Biotechnology Industries overview	Biotech industries in India and abroad, ,Biotechnology as a function of science and business ,Company structures versus other non-biotech companies , Functional unitsCompany structure and functionsEmerging technology and technical convergences issues	5
7.	Business in the context of biotechnology Entrepreneurship-	Science/development, the idea and its development, Plant tissue culture lab-equipment- glasswares chemical requiremen construction,techniquesin culturing and export abroad, Vermitechnology, Mushroom cultivation, single cell protein, Biofertilizer technology-production, Textile processing, leather treatment, Detergent industry, bakery, diary Pharmaceutical drug development, Medical device product development ,Technology product development Other biotech product development, such as biofuels, bioengineered foods, etc commercialization of Bakery and dairy products	10
8.	Product development	 a. Production of commercially important primary metabolites like organic acids, amino acids and alcohol & Production processes for various classes of secondary metabolites: Antibiotics, Vitamins and Steroids. b.Production of Industrial Enzymes, Biopesticides, Biofertilizers, Biopreservatives, Biopolymers Biodiesel. Cheese, Beer, SCP & Mushroom culture, Bioremediation. c.Production of recombinant proteins having therapeutic and diagnostic applications, vaccines. Bioprocess strategies in Plant Cell and Animal Cell culture. d.Biotransformation applications of enzymes - Hydrolytic- Ester bond, Amide, Epoxides, Nitriles, Reduction reactions – aldehydes, Ketones, C=C, Oxidation reactions – Alkanes, Aromatic, Baeyer- 	12

		Villiger, Enzymes in organic synthesis – esters, amide, peptide , Modified and Artificial Enzymes , Catalytic antibodies	
9.	Intellectual property, Bioethics,legal issuesPatents , Confidentiality , Licensing agreementsBusiness Development/Licensing, Strategy Marketing and public perception in product development, genetically modified products and organism- transgenic products licencing and branding concerns		5
		Total number of Lectures	42
Evaluation	n Criteria		
Components		Maximum Marks	
T1 T2		20	
12 End Semester Examination		20 25	
TA		25 (Assignment)	
Total		100	

 Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

 1.
 Satyanarayana, U. "Biotechnology" Books & Allied (P) Ltd., 2005.

 2.
 Kumar, H.D. "A Textbook on Biotechnology" 2nd Edition. Affiliated East West Press Pvt.

 2.
 Ltd., 1998.

 3.
 Balasubramanian, D. etal., "Concepts in Biotechnology" Universities Press Pvt.Ltd., 2004.

 4.
 Ratledge, Colin and Bjorn Kristiansen "Basic Biotechnology" 2nd Edition Cambridge

 4.
 University Press, 2001

 5.
 Faber K , Biotransformations in Organic Chemistry, IV edition , Springer

6.	Dubey, R.C. "A Textbook of Biotechnology" S.Chand& Co. Ltd., 2006.Trevor Palmer, Enzymes II edHorwood Publishing Ltd
7.	Cruger,Wulf and Anneliese Crueger, "Biotechnology: A Textbook of Industrial Microbiology", 2 nd Edition, Panima Publishing, 2000
8.	Moo-Young, Murrey, "Comprehensive Biotechnology", 4 Vols. Pergamon Press, (An Imprint of Elsevier) 2004.
9.	Richard Oliver "The coming Biotech Age ; the business of Biomaterials" Mc Graw Hill Publication , New York USA2000
10.	Karthikeyan,S and Arthur Ruf." Biobusiness"MJP Publication Chennai India 2009
11.	Cynthia Robins," The business of Biotechnology". UK Harper Collins 2001

Lecture-wise Breakup

Subject Code	17M12BT119	Semester : ODD	Semester : X Session : 2018-2019 Month from : July to December
Subject Name	PHYTOTHERAPEU	TICS AND PHARMA	COLOGY
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	1. Dr.Vibha Rani
(Names)	Teacher(s)	1.
	(Alphabetically)	2.

COURSE DESCRIPTION Introduction of Indian medicinal plants and natural therapeutics; Classes of secondary metabolites; Analysis of phytomolecules – quantitative and qualitative; Purification methods - HPLC, GC-MS, FTIR, NMR; Phytomolecules' structure and their function relationship; Therapeutic applications and mechanism of action of secondary metabolites; Herbal therapies for diseases affecting human health such as respiratory, urinary, cardiovascular, cancer, neurodegenerative diseases, etc.; Current aspects of phytomedicine on toxicity and clinical analyses; Case studies.

COURSE	OUTCOMES	COGNITIVE LEVELS
CO130.1	Analyze the existing biotechnological techniques to develop plant based therapeutics	Analyzing (C4)
CO130.2	Evaluate the classes, synthesis and structure functional relationship of phytomolecules	Evaluating (C5)
CO130.3	Explain the therapeutic applications of phytochemicals	Understanding (C2)
CO130.4	Identify the current aspects of phytomedicines on toxicity and clinical trials	Applying (C3)
CO130.5	Case studies to analyze Ayurpharmacoepidemiology	Analyzing (C4)
CO130.6	Use of bioinformatics tools and approaches to predict the molecular function of novel bioactive molecules	Creating (C6)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures
			for the module
1	Introduction		2
2	Medicinal Plants	Introduction to metabolites	4
	Metabolites	Secondary metabolites, properties and	
		beneficial aspects.	
3	Isolation technique	Isolation from medicinal plants.	4

	extraction procedure	Isolation from aromatic plants.		
4	Characterization technique	Qualitative and quantitative Analysis Gas Chromatogrophy High Performance Liquid Chromatography: (HPLC) High Performance Thin Layer Chromatography: (HPTLC)	4	
5 Structure functional relationship		Mechanism of Action Unidentified Therapeutic Intakes Factors That Affect Metabolism	4	
6	Therapeutic Application	Plants used in respiratory system. Plants used in urinary system. Plants used with antimicrobial activity. Plants used with Plants used in dermatology. Plants used in cardiovascular system. Plants used in romatology.	8	
7	Toxicity Issue and Clinical Trials	Current aspects of phytomedicine on toxicity and clinical trials	6	
9	Case studies		8	
10	Potential risks associated and future aspects		2	
12				
		Total number of Lectures	42	
Evaluatio	on Criteria			
Compone T1 T2 End Seme TA Total	ents Maximum M 20 20 20 35 25 (Class Te 100	l arks est-1, Assignment-1&2, Case studies 1, 2& 3)		
Recomm Reference	nended Reading material: Author(s), ce Books, Journals, Papers, Reports, W	Title, Edition, Publisher, Year of Publication etc. /ebsites etc. in the IEEE format)	. (Text books,	
1.	Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives. Valdir Cechinel-Filho (Ed.). 2012 John Wiley & Sons, Inc.			
2.	Phytotherapeutics (Recent Progress in Medicinal Plants). S. K. Sharma, J. N. Govil, V. K. Sing. 2005. Studium Press.			
3.	Phytotherapies: Efficacy, Safety, and	Regulation. Iqbal Ramzan (Ed.) 2015 John Wiley	& Sons, Inc.	

Course Code	17M12BT122	Semester: Od	d	Semeste	er: I Session : 2018 -2019
				Month	from: July to December
Course Name	Advanced Microbiol	ogy and Immuno	ology		
Credits	Credits 3-0-0 Contact Hour		Hours	3	

Faculty (Names)	Coordinator(s)	Dr Rachana
	Teacher(s) (Alphabetically)	Dr Rachana , Dr Smriti Gaur

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Explain ecological diversity of microorganisms.	Understating (C2)
CO2	Outline various structural and functional elements of immune system.	Understating (C2)
CO3	Make use of metabolic pathways for various biotechnological applications.	Applying (C3)
CO4	Analyze Communicable and non communicable diseases and associated immune responses.	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Microbial ecology	Structure, function and diversity from various habitats, functional diversity and its understanding from ecological and biotechnological perspectives	6
2.	Virology	Diversity, classification, replication, virus biotechnology, viral diseases	5
3.	Industrial	Metabolic pathways and products; important metabolites	5

microbiology		produced by microorganisms; industrial processes	
4.	Environmental microbiologyBiotechnology in waste treatment, microbial bioser microbial fuel cells		5
5. Key players of immune system		Humoral and cell mediated immunity; Antigen; Primary and secondary immune response; Cells of the immune system	6
6. Disorders of the Immune System		Immunity against pathogens; Immunological tolerance and Autoimmunity; Hypersensitivity; Immunodeficiency	7
7.	Tumor Immunology	Immune response to tumor; immune evasion	4
8. Immunological Applications		Medical role of antibodies in Diagnostics and Therapeutics; Immuno fluorescence	4
		Total number of Lectures	42
Evaluation	n Criteria		
Components T1 T2 End Semester Examination TA		Maximum Marks 20 20 35 25 (Comprises of attendances and Assignments)	
Total		100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

	K. Murphy, "Janeway's Immunobiology", 8th edition, Garland Science, 2012.
1.	
2.	B. Osborne, R. Goldsby, "Kuby Immunology", 4 nd Ed. W. H. Freeman & Co., 2000
3.	J. Black. Microbiology: Principles and Applications. New Jersey, USA: Prentice Hall, 2004.
4.	L. M. Prescott, J. P. Harley and D. A. Klein. <i>Microbiology</i> , 6 th edition. New York, USA: McGraw Hill, 2005.
5.	M. J. Pelczar, E. C. S. Chan and N. R. Krieg. <i>Microbiology: Concepts and Applications</i> . India: Tata McGraw Hill, 1993.
6.	Bruce Alberts "The cell " by, E- copy, 2003

7.	Kaja SL, Kiran SS, Kattapagari KK, Chitturi RT, Chowdary SD, Reddy BV. J Orofac Sci A review on tumor immunology 2017; 9:7-15.
8.	Immunochemical Techniques by Lenka Fialová, translated by Jan Pláteník a Martin Vejražka and Ustav Lékařské Biochemie , Immunochemical Methods, 2010-2011
9.	Referred papers from scientific journals for case studies

Lab-wise Breakup

Course Code	17M15BT111	Semester Odd (specify Odd/Even)		Semester I Session 2018 -2019 Month from July to December	
Course Name Biotechniques Lab-I					
Credits	3		Contact I	Hours	6

Faculty (Names)	Coordinator(s)	Prof. Pammi Gauba
	Teacher(s) (Alphabetically)	Dr. Indira P. Sarethy, Prof. PammiGauba, Dr.Reema Gabrani, Dr. Shweta Dang, Dr.Vibha Rani

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Apply basic analytical techniques in biotechnology	Apply Level (C3)
CO2	Develop skills in molecular biology techniques	Apply Level (C3)
CO3	Examine and analyse gene expression	Analyze (Level C4)
CO4	Make use of purification techniques for natural products	Apply Level (C3)

Module No.	Title of the Module	List of Experiments	CO
1.	Analytical techniques	To learn about basic calculations/mole concepts; To learn about UV-VIS spectrometry/ plot calibration curves and calculate analyte concentration, to prepare drug-loaded nanoparticles; to analyze entrapment efficiency via UV- VIS Spectrophotometer	
2.	Molecular biology techniques	To isolate plasmid DNA from bacterial cells; separate and visualize DNA bands by agarose gel electrophoresis;	3
3.	Gene expression techniques	Designing primers for amplification of gene of interest by PCR	3
4.	Purification techniques	To obtain antimicrobial compound from bacterial culture; to purify the antimicrobial compound by column chromatography; use of bioactivity-guided fractionation to	3

	analyse and quantitate the compound		
	Total	12	
Evaluation Criteria			
Components	Maximum Marks		
Mid-Term Viva	20		
Day-to-Day (Lab record,			
attendance, performance)	60		
Final Viva	20		
Total	100		

Reco Refe	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, arence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Introduction to Biotechnology, Laboratory Manual: http://www.austincc.edu/awheeler/Files/BIOL%201414%20Fall%202011/BIOL1414_Lab%20Manual_Fa ll%202011.pdf
2.	Frederick M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J.G. Seidman, John A. Smith, Kevin Struhl (eds.) Current Protocols in Molecular Biology. John Wiley & Sons Inc; ringbou edition (December 4, 2003)
3.	Molecular Biology web book- http://www.web-books.com/MoBio/
4.	S. V. S. Rana, Biotechniques Theory and Practice. Rastogi Publications 2008.
5.	Methods standardized in lab

Course Code	18M12BT211	Semester ODD (specify Odd/Even)		Semeste Month f	r X Session 2019 -2020 From July to December
Course Name	PUBLIC HEALTH	BLIC HEALTH ECONOMICS AND POLICY			
Credits	3		Contact H	Hours	3

Faculty (Names)	Coordinator(s)	DR. ASHWANI MATHUR
	Teacher(s) (Alphabetically)	DR. ASHWANI MATHUR

COURSE	OUTCOMES	COGNITIVE LEVELS
C141.1	Explain Government policies, socio-economic conditions and research methods in Public Health	Understanding (Level 2)
C141.2	Explain fundamentals of disease epidemiology	Understanding (Level 2)
C141.3	Applying computational tools for determining health indicators from primary and secondary data	Applying (Level 3)
C141.4	Analysis of the role of health care in policy making	Analyzing (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Importance of Public Health	Introduction to Public Health, Health Promotion and Disease Prevention, Relevance of policy response in public health, Public health research methods – qualitative and quantitative methods, Role of ethics in research	6
2.	Basic Epidemiology	Introduction to Fundamentals of Epidemiology; Disease- History, prevention and intervention; measurement of occurrence, effect and impact; cohort studies	7
3.	Statistical Tool in Public Health	Introduction to probability, Probability Distribution, Hypothesis testing, Baye's Theorem, Continuous and	5

		categorical outcome		
4.	Health Economics and micro economics	Economics and Health; Use and understanding of Universal indicators, HDI, LE, Mortality and Morbidity; Principles of economics in health	6	
5.	Economic Evaluation	Welfare economics, monetary value of health changes; revealed and expressed preference approach, cost benefit analysis, cost effectiveness analysis	6	
6.	Health Policy Analysis	Policy analysis process; health care and health policy; Role of government in policy making; Policy analysis process- identification, evaluation (technology assessment; economic viability)	7	
7.	Health financing	Cost behaviour and break even analysis, depreciation concept, health as inventory and investment	5	
Total number of Lectures				
Evaluation Criteria				
Components T1 T2 End Semester Examination TA		Maximum Marks 20 20 35 25 (Assignment / Class Test-1 & 2)		
Total		100		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Schneider, M-J. Introduction to Public Health. Jones and Bartlett Publishers, USA	
2.	Bhattacharya, J., Hyde, T., Tu, P. Health Economics. Palgrave Macmillan	
3.	Drummond M., et al. Methods for the Economic Evaluation of health care programmes. Oxford University Press	
4.	Johannesson, Magnus. Theory and Methods of Economic Evaluation of Healthcare. Springer Science Business Media	