	Lecture-wise Breakup						
Course Code 18M22EC116/ 17M11EC118			Semester Odd 2018 (specify Odd/Even)		Semester I &III Session July 2018 –December 2018		December 2018
Cours	se Name	ADVANCED DIGITA	AL SIGNAL PRO	DCESSING			
Credi	its	3		Contact I	Hours		3
Facul	ty (Names)	Coordinator(s)	Dr. Vineet Kha	andelwal			
Teacher(s) (Alphabetically)NIL							
	RSE OUTCO e end of the se	OMES emester, students will b	e able to				COGNITIVE LEVELS
CO1	CO1 Recall the principles of various transform techniques like Z, Chirp Z, Hilbert, Discrete Fourier transform and Fast Fourier Transform.					Applying (Level III)	
CO2	Demonstrate the ability to apply different methods to design and analyze digital FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters with its structural realization.					Analyzing (IV)	
CO3 Analyze Multirate signal processing and examine its application.						Analyzing (Level IV)	
CO4	Comprehene application	d different methods for	designing adap	tive filters a	and exami	ne its	Analyzing (Level IV)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Review of Digital Signal Processing	Review of discrete-time sequences and systems, Linear Shift Invariant (LSI) systems. Causality and Stability Criterion, FIR & IIR representations, Z-Transform, Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT) algorithms using decimation in time and decimation in frequency techniques, Chirp Z- Transform, Hilbert Transform and applications	9
2.	Design of IIR and FIR Filters	Digital filter specifications, selection of filter type, and filter order, FIR filter design; using windowing Techniques, Fourier Series and frequency sampling method, Design of IIR Filters Using Butterworth, Chebyshev and Elliptic Approximations, Frequency Transformation Techniques; approximation of derivatives, Impulse invariant method, Bilinear transformation, Structures for IIR Systems – Direct Form I & II, Cascade, Parallel, Lattice & Lattice-Ladder Structures, Structures For FIR Systems – Direct, Cascade, Parallel, Lattice & Lattice ladder Structures.	11

3.	Multirate Digital Signal Processing	Decimation & Interpolation, Sampling rate conversion, Identities, polyphase decomposition, General polyphase framework for Decimator and Interpolator, Multistage decimator and Interpolator, Efficient transversal structure for Decimator and Interpolator, FIR and IIR structure for Decimator, Filter design for FIR decimator and Interpolator, Application of Multirate Signal processing.	16			
4.	Adaptive Filters	Introduction. Application of adaptive filters, Adaptive Direct-form FIR filters Adaptive Lattice-Ladder filters.	6			
		Total number of Lectures	42			
Eval	uation Criteria					
Com	ponents	Maximum Marks				
T1		20				
T2		20				
End S	Semester Examination	35				
TA		25 ()				
Tota	l	100				
	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	J.G. Proakis & D.G. Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", PHI ,3 rd Edition					
	John G. Proakis, Charles M. Rader, Euven Ling, Chrysostomos I. Nikias, Mark Moonen and Jan					

	John G. Proakis, Charles M. Rader, Fuyun Ling, Chrysostomos L. Nikias, Mark Moonen and Ian
4.	K. Proudler, Algorithms for Statistical Signal Processing, Pearson Education Inc., 2002

3. P.P. Vaidyanathan, "Multirate Systems and Filter Banks", PHI, 2010

Subject Code		17M11EC119	Semester (specify Odd/ Even)		<u>ODD</u> Session <u>2018 - 19</u> July to December	
Subject Name Advanced Wireless and Mobile Communications						
Credits 03 Contact Hours 03						
Faculty (Names)		Coordinator(s)	1. Pankaj Kr. Yadav			
		Teacher(s) (Alphabetically)	1. Pankaj Kr. Yadav			
COURSE O	OUT	COMES			COGNITIVE LEVELS	
CO1 To review wireless and mo		mobile communication, Ce	ellular Concept	Remember(Level I)		
CO2 To understand		nderstand the concep	t of Propagation of Mol	(Understand Level II)		
CO3		nalyze the FDMA,	TDMA, CDMA, OFD	MA techniques wi	reless Apply (Level III)	

Analyze (Level IV)

and mobile communication

CO4

To evaluate GSM, UMTS and LTE Air Interface

Module No.	Subtitle of the Module	Topics in Module	No. of Lectures	
1.	Introduction	Introduction to the wireless communications. Its relevance. Overview. Coverage- syllabi. Recommended reading. Evaluation Scheme.	4	
2.	Cellular Concept and Engineering	Problems in mobile communication. Need for Cells. Spectrum and its utilization – frequency reuse. Cell design considerations. Cell Topology. Co-channel and adjacent – channel cells interference. Cell splitting and sectoring. Coverage and capacity of cellular system. Hand-off techniques.	8	
3.	Propagation of Mobile Radio Signals	Radio wave propagation mechanism. Path loss .Outdoor and Indoor propagation models. Antenna types, size and height. Multipath propagation model .Different types of fading. Doppler effect and mobility.	6	
4.	Multiple Access Techniques	FDMA, TDMA, CDMA, OFDMA techniques and their performance. Number of channels.	2	
5.	OFDM in LTE	Introduction of Orthogonal Frequency Division Multiplexing, OFDM in LTE	4	

6.	LTE Radio Access Networks	LTE RADIO INTERFACE; Logical, Transport and physical Channels; Reference Signals, Physical Cell ID, Time-Domain Structure, Scheduling in LTE	12		
7.	LTE Advancecd and 5G RAN	Introduction of LTE-Advanced and 5G RAN; and Recent developments.	4		
	Total number of Lectures				

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	T. S. Rappaport, Wireless Communications, PHI, 2002.					
2.	Gunnar Heine, GSM Networks: Protocols, Terminology and Implementation, Artech House, 1999.					
3.	Andrea Goldsmith, Wireless Communications, Cambridge University Press, 2005					
4.	Harri Holma, Antti Toskala, LTE for UMTS: Evolution to LTE-Advanced, John Wiley and Sons, 2011					
5.	5G Technology Evolution Recommendations, 4G Americas, 2015					
6	http://www.3gpp.org/ftp/Specs/html-info/36-series.htm					

Course Code	17M22EC121	Semester ODD		Semes	ter I Session 2018-2019	
		(specify Odd/Even)		(specify Odd/Even) Month from July to December		from July to December
Course Name	RF MICROELECTRONICS					
Credits	3	Contact		Hours	3	
Faculty	Coordinator(s)	SHIVAJI TYA	GI			
(Names)	Teacher(s) (Alphabetically)	SHIVAJI TYAGI				

COURS	E OUTCOMES	COGNITIVE LEVELS
CO1	Defining the RF, wireless standards, system specification and system and circuit design.	Remembering (Level-I)
CO2	Comparing various process technology nodes (both silicon and III-V) and behavior of components and circuits at RF frequency.	Understanding (Level-II)
CO3	Identify the challenges involved in RF circuits and choosing the best option for RF circuit by making use of various parameters.	Applying (Level-III)
CO4	Analysis of MOS Amplifier circuits at high frequency by comparing various topologies.	Analyzing (Level-IV)
CO5	Evaluating various topologies and choosing the best option according to design specification.	Evaluating (Level-V)

Module No.	Title of the ModuleTopics in the Module		No. of Lectures for the module
1.	Introduction: Concepts, Components and Systems	Defining RF, Wireless Standards, System Specification, System and Circuit Design Overview, S-Parameter, Smith Chart, Transmission Lines (Micro strip, Strip line, Coplanar Waveguides); Radio as A Typical RF System	08
2.	RF Device Technology	Behavior of Passive Components , Passive Devices – Resistors, Capacitor, Inductors, Transformers; Active Devices – MOSFET, BJT, HEMTs; Substrate Materials – HMICs, MMICs, CMOS; Characteristics and Fabrication Process detail	06
3.	Issues in RF Circuit Design: Noise, Linearity & Signals	RF Specifications – Stability, Power Gain, Noise, Non- Linearity, Sensitivity, Dynamic Range, Modulated Signals- Phase Modulation, Frequency Modulation	04
4.	Resonant Circuits and Filter Design	Some Definitions, Resonance, Loaded/Unloaded Q, Insertion Loss, Impedance Transformation, Coupling, Filter Types, Filter Design at High Frequency	06
5.	Transistor at Radio Frequency	06	
6.	Low Noise Amplifiers	General Considerations, Problem of Input Matching, LNA Topologies, Design schemes, Noise in LNA, Narrowband and Wideband LNA design	06

7.	Mixers Performance Parameters, Active and Passive mixers			
8.	Voltage Controlled Oscillators	Introduction, Oscillator Types, Negative Resistance approach to L-C oscillators, Feedback Approach to L-C oscillators, Frequency Stability of L-C Oscillators	04	
		Total number of Lectures	44	
Evaluation	n Criteria			
Componen	Components Maximum Marks			
T1		20		
T2		20		
End Semester Examination		35		
ТА		25		
Total		100		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Behzad Razavi, "RF Microelectronics", Second edition, Prentice-Hall 2012							
2.	Thomas Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", Second Edition, Cambridge University Press, 2003							
3.	David Pozar, "Microwave and RF Design of Wireless Systems", 3rd Edition, Wiley 2000							
4.	R. Ludwig and G. Bogdanov, "RF Circuit Design: Theory and Applications" 2 nd edition 2000.							
5.	NPTEL Course: RF Integrated Circuits by Dr Shouri Chatterjee, IITD							

Course C			Session 2018 -2019 y – Dec. 2018				
Course N	lame	Detection and Estimation	ation Theory				
Credits	Credits 3 Contact Hours			3			
Faculty (Names)		Coordinator(s)	Dr. Vikram Ka	arwal			
		Teacher(s) (Alphabetically)	Dr. Vikram Ka	arwal			
COURSE	E OUTCO	OMES					COGNITIVE LEVELS
CO1	The co proper	ourse aims to familiariz ties.	e student with s	tochastic pr	ocesses and	l its	Apply Level (C3)
CO2	2 The course helps students to analyze probabilistic models and estimate the parameters of the model parameters.				Analyze Level (C4)		
CO3		course helps students evaluate the observations of the noise- upted functions and determine the best estimate of the state. Evaluate Level (C5)				Evaluate Level (C5)	
CO4		ourse helps student com timates or detection de	• •	•	· ·	7	Create Level (C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Review of random variables	Distribution and density functions, moments, independent, uncorrelated and orthogonal random variables; Vector- space representation of random variables, Schwarz Inequality, Orthogonality principle in estimation, Central limit theorem, Random Process, stationary process, autocorrelation and autocovariance functions, Spectral representation of random signals, Wiener Khinchin theorem, Properties of power spectral density, Gaussian Process and white noise	5
2.	Parameter estimation theory	Principal of estimation and applications, Properties of estimates, unbiased and consistent estimators, MVUE, CR bound, Efficient estimators; Criteria of estimation: the methods of maximum likelihood and its properties; Baysean estimation: Mean Square error and MMSE, Mean Absolute error, Hit and Miss cost function and MAP estimation	7
3.	Estimation of signal in presence of White Gaussian Noise(WGN)	Linear Minimum Mean-Square Error(LMMSE) Filtering: Wiener Hoff Equation FIR Wiener filter, Causal IIR Wiener filter, Noncausal IIR Wiener filter, Linear prediction of signals, Forward and Backward Predictions, Levinson Durbin Algorithm, Lattice filter realization of prediction error filters	8
4.	Complexity Computations	Principle and Application, Steepest Descent Algorithm, Convergence characteristics; LMS algorithm, convergence, excess mean square error, Leaky LMS algorithm; Applications of Adaptive filters; RLS algorithm, derivation,	8

	Matrix inversion Lemma, Initilization, tracking of nonstationarity.						
5. Kalman Filtering		Principle and application, Scalar Kalman filter, Vector Kalman filter	3				
6.	Detection Theory	Hypothesis testing, Bayesian, Neyman-Pearson and Minimax detetion, Composite Hypothesis testing, Generalized LRT, Sequential and Distributed Detection, Non-parametric detection, Detection in Gaussian noise	9				
Total number of Lectures							
Evaluation Criteria							
Com	ponents	Maximum Marks					
T1		20					
T2		20					
	Semester Examination	35 35 (5 A) (5 C) (5 C) (5 C) (10 A) (10 A)					
TA		25 (5 Assignment, 5 Quiz, 5 Class Participation, 10 Attendance	e)				
Tota	1	100					
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)							
1.	1. An Introduction to Signal Detection and Estimation by H. Vincent Poor						
2.	Linear Estimation by Thomas Kailath, Ali H sayed, Babak Hassibi						
3.	Fundamentals of Statistica	al Signal Processing: Detection theory by Steven M Kay					

Fundamentals of Statistical Signal Processing: Estimation theory by Steven M Kay

4.

Detailed Syllabus

Lecture-wise Breakup

Subject Code	18M12EC114/17M2	2EC113	Semester	Odd	Semester Month from	FIRST m July to		2018-19
Subject Name	HDL Based Digital							
Credits	3	Contact Ho	ours	3				
Faculty	Coordinator(s)	Atu	l Kumar Sriv	vastava				
(Names)	Teacher(s) (Alphabetically)	Atu	Atul Kumar Srivastava , Shruti Kalra					

Course Objectives:

- Verilog IEEE 1364 standard
- Hardware Descriptive language programming (RTL, testbenches & UDP's)
- Combinational & Sequential Circuit Description
- Component Test & Verification

Course Outcome:

• Logic Design with Verilog, Gate level and data flow modeling, FSM modeling, Fault analysis , synthesis and FPGA's

COUR	SE OUTCOMES	COGNITIVE LEVELS
CO1	Understand the concept of Verilog and their application in Digital systems design systems.	Understanding (C1)
CO2	Identify theoretical and practical requirements for implementation and designing of Finite state machines.	Applying (C3)
CO3	Understand the concept of Asynchronous Finite State Machines and their application in Digital systems design systems.	Understanding (C1)
CO4	Understand the concept of Fault and Analysis in Digital systems design systems	Analyzing (C4)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	HDL Based Design	Introduction to Logic Design with Verilog, Gate Level, data flow level, UDP, data types, behavioral level, ,structural modeling, operators, test bench, function and task, system task, compiler directive, synchronization, FSM Modeling	17
2.	Finite State Machine (FSM)	FSM Design methodology, Pulse generations, Frequency Dividers, conversion between Mealy and Moore, State Reduction, State Assignment, Implementation, and state diagram partitioning	8
3.	Asynchronous Finite State	Asynchronous Analysis, Design of Asynchronous Machines, Flow table	9

	Machines	realization, reduction, state assignments and design, Cycle and race analysis. Hazards, Essential Hazards, and its removal					
4.	Fault Analysis	s-a-0, s-a-1 fault analysis using path sensitization method, Boolean Difference Method,	5				
5.	Introduction to FPGA	FPGA Architecture, Implementation using ISE, System Generator based Implementation, Accel DSP based implementation	4				
Total number of Lectures 43							
	Reading material: Author(s), Tit , Journals, Reports, Websites etc.	le, Edition, Publisher, Year of Publication etc. (in the IEEE format)	Text books,				
1.	Roth, Charles H. Digital system	as design using VHDL. Vol. 20. PWS publishing	g company, 1998.				
2.	Bhasker, Jayaram, and Jayaram Bhasker. A Vhdl primer. Prentice Hall PTR, 1999.						
3.	Pedroni, Volnei A. Circuit design with VHDL. MIT press, 2004.						
4.	Z.Kohavi: Switching and Finite Automata Theory, 2 nd Edition, Tata Mc-Graw Hill, 2001						
5.	A. Anand Kumar : Fundamental of Digital Circuits, PHI, 2 nd Edition 2012						

Course Code	18M12EC115	Semester ODD (specify Odd/Even)		2019	Semester ODD Session 2018 - 2019 Month from July - December		
Course Name	Advanced Optical Communication Systems						
Credits	3	Contact Hours 3					
Faculty	Coordinator(s)	Dr Amit Kumar Goyal					

Faculty	Coordinator(s)	Dr Amit Kumar Goyal
(Names)	Teacher(s) (Alphabetically)	Dr Amit Kumar Goyal

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Develop an understanding of optical fiber, its structure, types, propagation, transmission and non-linear properties.	Remembering (Level I)
CO2	Identify and examine the different kinds of losses and signal distortion along with their compensation techniques in optical Fibers.	Analyzing (Level IV)
CO3	Classify the Optical sources and detectors and their principle of operation. Analize various coupling techniques.	Understanding (Level II)
CO4	Design a fiber optic link based on budget analysis.	Evaluating (Level V)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Overview of Optical fiber Communications	Introduction to fiber optics, Physics of light. Principles of fiber optics: Introduction, light propagation, Skew rays. TIR condition, FTIR, Goos-hanchen shift. Effective index method to determine propagation constant, Fibers Modes, V Number analysis for optical fiber, Significance of V-b diagram, Mode Coupling, Step Index fibers, Graded Index fibers. Single mode fibers- Cut off wavelength, line width, propagation velocities. Non-linear effects in optical fiber	7
2.	Signal Degradation in Optical fibers	Signal distortion in optical fibers- Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses. Information capacity, Group delay, Types of Dispersion - Material dispersion, Wave-guide dispersion, Intermodal dispersion, Fiber Birefringence, Polarization Mode Dispersion. Introduction to Dispersion compensation techniques, Advanced chromatic dispersion compensation, Advanced PMD compensation (both optical and electrical).	7

3.	Optical Sources Optical Sources Photodetectors & Receivers	Light emitting diode (LEDs)- structures designing and performance analysis, Quantum efficiency, Power, Modulation, Laser Diodes -Modes & threshold conditions, resonant frequencies, structures, characteristics single mode lasers, Modulation of laser diodes, external quantum efficiency, laser diode rate equations. Source to fiber power launching: - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Various fiber to light coupling techniques, Laser diode to fiber coupling, LED coupling to single mode fiber.	8			
		Detector response time, Temperature effect on Avalanche gain, Optical receiver: Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of error, Quantum limit, Analog receivers.				
5.	Optical system design	Optical Amplification, Doped fiber amplifier, semiconductor optical amplifier, Analog and digital systems. Coherent optical fiber communication systems. Modulation and line coding. Bandwidth and rise time budgets, Power budget, and dynamic range. Power penalty, Channel capacity measurement.	6			
6.	Advanced Optical Systems and Networks	Wavelength Division Multiplexing. Long haul and metro WDM system, WDM system analysis, design and performance evaluation, Introduction to Photonic crystal technology, Photonic crystal fibers, Introduction to Optical Networks, Local area network, Metropolitan-Area N/W,SONET/SDH, Introduction to Free Space optical Communication.	8			
7.						
		Total number of Lectures	44			
	on Criteria					
Compone T1 T2 End Seme TA Total	ents Maxim 20 20 ester Examination 35 25 100	um Marks				
Recomm	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.					

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition, 2000.
2.	John M. Senior, Optical Fiber Communications, 2nd Edition, PHI, 2002.
3.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.
4.	Govind P. Agarwal, Fiber Optic Communication Systems, 3rd Edition, John Wiley, 2004.

5.	Joseph C. Palais, Fiber Optic Communications, 4th Edition, Pearson Education, 2004
6.	Journal articles i.e. IEEE, Springer, IOPscience, Elsevier and Video lectures from nanohub, NPTEL, MIT video lectures

Libertar e ville Di canap						
Course Code	18M12EC113	Semester Odd		Semeste 2019	er 1^{st} (M.Tech)	Session 2018
				Month f	from July 2018	to Dec 2018
Course Name	Basics of Embedded System Design					
Credits	3 Contact		Contact H	Iours	3 pe	er week
Foculty (Nomos)	Coordinator(s)	notor(c) Mondoon Singh Norula				

Faculty (Names)	Coordinator(s)	Mandeep Singh Narula
	Teacher(s) (Alphabetically)	Mandeep Singh Narula

COURSE	OUTCOMES	COGNITIVE LEVELS
C01	Study basics of embedded systems and its applications	Understand (Level II)
CO2	Understand different instructions of microprocessor and microcontrollers	Analyzing (Level IV)
CO3	Ability to Interface the memory chips and peripheral chips with 8085 microprocessors and microcontrollers.	Evaluate (Level V)
CO4	Study basics of ARM processors and communication protocols	Understand (Level II)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Embedded Systems	Embedded System and its applications, Design Parameters of Embedded System and its significance, Embedded System design flow and design life cycle, Digital Circuit Parameters (Open collector outputs, Tristate outputs, I/O source and sinking, Fan-in and Fan-out, Propagation delay, Figure of merit, PAL, PLA, CPLD, FPGA, SOC	4
2.	Introduction to Microprocessors and Microcontrollers	Introduction (Microprocessor Versus Microcontrollers, Microcontrollers for Embedded Systems, Embedded Versus External Memory Devices, CISC Versus RISC Processors, Harvard Versus Von-Neumann architecture, 8051/8031/8052 Microcontroller (Basic architecture, Pin configuration, Memory organization (registers and i/o ports), Assembly language programming) (addressing modes and instruction set), Timers and Interrupts, Serial Communication.	10
3.	Real World Interfacing with Microcontroller	Interfacing of single LED, Blinking of LED with timer and without timer, Interfacing of push-button and LED, Interfacing of 7-segment display, Interfacing of 8 push- buttons to control 7-segment display, Intelligent LCD Display, Interfacing of intelligent LCD display, Interfacing of Matrix Keyboard to control 7-segment display, ADC and DAC Modules, Interfacing of ADC0804, Interfacing with	12

4.	Introduction to RTOS and ARM Microprocessor	 DAC0808, Different wave generation through DAC0808, Stepper Motor & DC Motor, Interfacing with stepper & DC motor, Different Sensor Interfacing, (IR Sensor, DTMF, Temperature Sensor, LDR) Real Time Operating System (RTOS), Types of real time tasks, Task Periodicity, Process state diagram, Kernel and Scheduler, Scheduling algorithms, Shared data (Resource) and Mutual Exclusion, Semaphore, Introduction to ARM, 	10			
		Features, ARM Pipeline, Instruction Set Architecture (ISA), Thumb Instructions, Exceptions in ARM				
5.	Communication Protocols	Communication Protocols, Serial Protocols (Inter IC (I2C), Controller Area Network (CAN), Serial Peripheral Interface (SPI), Universal Serial Bus (USB)), Parallel Protocols (Peripheral Component Interconnect (PCI), ARM Bus), Wireless Protocols (Infrared Data Association (IrDA), Bluetooth, IEEE 802.11)	2			
6.	Low Power Embedded System Design	Introduction, Sources of Power Dissipation, Dynamic power dissipation (Short circuit power, Switching Power, Glitching Power, Static power dissipation), Power Reduction Techniques (Algorithmic power minimization, Architectural power minimization, Parallelism for low power, Pipelining for low power, Logic and circuit level power minimization, Different encoding techniques, Logic synthesis for low power, Technology mapping, Control logic power minimization, System Level Power Management, Advanced configuration and power interface (ACPI)	4			
		Total number of Lectures	42			
Com T1 T2 End S TA	T220End Semester Examination35					
	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Muhammad Ali Mazidi, "The 8051 microcontroller and Embedded Systems using Assembly and C", 2 nd Edition, Pearson Education, 2008.					
2.	Frank Vahid / Tony Givargis, "Embedded System Design", Willey India, 2002.					
3.	Santanu Chattopadhyay, "Embedded System Design", 1 st Edition, PHI Learning, 2010.					

Detailed Syllabus

			Lecture-wise Breakup	1	
Course	1	7M12EC213	Semester Odd	Semester I Session 2018 -2019 Month from Jul to Dec	
Code			(specify Odd/Even)		
Course Information and Code Name		nformation and Cod	ing Theory		
Credits ³			Contact Hours	3	
Faculty		Coordinator(s)	Ms. Neetu Singh		
(Names)		Teacher(s) (Alphabetically)	Ms. Neetu Singh		

	OUTCOMES mpletion of the course, students will be able to:	COGNITIVE LEVELS
CO1	Understand the concept of probability, its relation with information, entropy, and their application in communication systems.	Understand Level C2
CO2	Identify theoretical and practical requirements for implementing and designing compression algorithms.	Analyze Level C4
СО3	Analyze the need for channel coding in digital communication systems, the relationship between bandwidth and capacity of communication channels with its importance in real life communication systems.	Analyze Level C4
CO4	Generate block codes for error detection and correction.	Analyze Level C4
CO5	Generate convolutional codes for error detection and correction.	Analyze Level C4

Module No.	title of the Module	Topics in the module	No. of Lectures for the module
1.	Review of Basic Probability	Probability spaces. Random variables. Distributions and densities. Functions of random variables. Statistical Averages. Inequalities of Markov and Chebyshev. Weak law of large numbers.	3
2.	Information Measure	Discrete entropy. Joint and conditional entropies. Entropy in the continuous case. Maximization of continuous entropy. Entropy of a bandlimited white Gaussian process.	5
3.	Data Compression	Uniquely decipherable and instantaneous codes. Kraft- McMillan inequality. Noiseless coding theorem. Construction of optimal codes.	4
4.	Data Transmission	Discrete memoryless channel. Mutual information and channel capacity. Shannon's fundamental theorem and its weak converse. Capacity of a bandlimited AWGN channel. Limits to communication – Shannon limit.	5
5.	Error Control Coding	Coding for reliable digital transmission and storage. Types of codes. Modulation and	3

		coding. ML decoding. Performance measures.			
6.	Linear Block Codes	Algebra Background, Groups, Fields, Binary field arithmetic. Vector Spaces over GF(2).	8		
		Generator and parity check matrices. Syndrome and error detection. Standard array and syndrome decoding. Hamming codes.			
7.	Cyclic Codes	Polynomial representation, Systematic encoding. Cyclic encoding, Syndrome decoding.	6		
8.	Convolutional Codes	Generator Sequences. Structural properties. Convolutional encoders. Optimal decoding of convolutional codes- the Viterbi algorithm.	8		
		Total number of Lectures	42		
Evaluatio	on Criteria				
Compone		num Marks			
T1					
T2 End Seme	20 ester Examination 35				
TA		ttendance, Performance. Assignment/Quiz)			
Total	100				
	nded Reading material: Auth Books, Journals, Reports, Web	or(s), Title, Edition, Publisher, Year of Publication etc. (T osites etc. in the IEEE format)	ext books,		
1.	R.B. ASH: Information	R.B. ASH: Information Theory, Dover, 1990.			
2.	R. BOSE: Information th	R. BOSE: Information theory, coding and cryptography, Macgraw Hill 2008.			
۷.					
3.		ation Theory and Network Coding, Springer, 2008.			
	R.W. YEUNG: Informa	ation Theory and Network Coding, Springer, 2008. LO: Error Control Coding, 2 nd Edn, Pearson, 2004.			

Course Code		17M15EC114	Semester: Odd 2018 (specify Odd/Even)		Semester1stSession2018 - 2019Month fromJuly to December		.9
Course Name		ECE Design and Simulation Lab -I					
Credits			Contact Hours				
Faculty (Names)		Coordinator(s)	Vikram Karwal				
		Teacher(s) (Alphabetically)	Vikram Karwal, Vivek Dwivedi				
COURSE	E OUTCO	OMES				COGNITIVE LEV	ELS
CO1		end of the module the student will be able to explain relative and demerits of wireless communication technologies. Remember Level (I))		
CO2		end of the lab the students will be able to simulate the radio ation model Understand Level (II)			II)		
CO3		wireless communications system for a given environment in it is to be deployed. Apply Level (III)					
CO4		a wireless technology or a combination of technologies to suit a application. Analyze Level (IV)					
CO5	Use of	MIMO technology in 5G communication Evaluate Level (V)					
CO6	effects	n measurements with commercial equipment and understand the of radio channel on the OFDM signal as well as strategies to nsate them					
Module No.	Title	e of the Module		List of	Experiments		СО
1.	Exp.1 Introduction to MATLAB and its various applications.		lications.	CO1			
2.	Exp.	xp.2 To study and simulate Rayleigh distribution using two signals that follow normal distribution.		CO2			
3.	Exp.3 To study and simulate Rician distribution using two signals th follow normal distribution.		ng two signals that	CO2			

3.	Exp.3	To study and simulate Rician distribution using two signals that follow normal distribution.	CO2
4.	Exp.4	To study and simulate Propagation Path loss Models: Free Space Propagation, log distance and log normal.	CO2
5.	Exp.5	To write a MATLAB program to calculate the median path loss for Outdoor Propagation – Okumura Model and Hata Model.	CO3
6.	Exp.6	To study atmospheric turbulence models and implement them using MATLAB.	CO3
7.	Exp.7	To study and simulate the SISO outdoor channel models i.e. FWGN channel model and Jakes model.	CO4
8.	Exp.8	To simulate the channel capacity for MIMO system.	CO5
9.	Exp.9	To analyze the performance of MIMO systems by using space time code technique.	CO5
10.	Exp.10	OFDM systems implementation using MATLAB	CO6
11.	Exp.11	To obtain the PAPR analysis of single-carrier signal and the performance of PAPR & BER with clipping and filtering	

		reduction technique.			
12.	Exp.12	Final Project Based on the pre-knowledge of wireless communication system Adaptive Channel Estimation and Data Estimation			
Evaluation	Evaluation Criteria				
Component Viva -120 Viva -2 20 D2D 60		Aaximum Marks			
Total		100			
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
Princit	ales of Communication	Systems Simulation with Wireless Applications William H. Tranter			

1.	Principles of Communication Systems Simulation with Wireless Applications William H. Tranter K. Sam Shanmugan Theodore S. Rappaport Kurt L. Kosbar		
2.	Digital Communication over Fading Channels -A Unified Approach to Performance Analysis By Marvin K. Simon Mohamed-Slim Alouini		
3.	Adaptive Filters by Ali H Sayed		