Subject Code	17M21EC111	Semester Odd	Semester I Session 2018-19
Subject Name	Microelectronic Device	es Technology and Desig	Month from July to December n Interface
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	Dr Saurabh Chaturvedi
(Names)	Teacher(s) (Alphabetically)	Dr Saurabh Chaturvedi

COURSE	OUTCOMES - At the end of the course, students will be able to:	COGNITIVE LEVELS	
CO1	-Relate and recall the concepts of semiconductor physics, devices and Remembering (Level I) technology		
CO2	-Understand the MOS structure and explain the operation of MOS transistors	Understanding (Level II)	
CO3	-Apply the knowledge of MOSFET scaling, short-geometry effects and fabrication techniques in advanced nanoscale devices and circuits	Applying (Level III)	
CO4	-Analyze the device layout and characteristics -Analyze design flow and design interface	Analyzing (Level IV)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures
1.	Semiconductor physics	Semiconductor materials, Energy bands, Intrinsic carrier concentration, Doping, Carrier drift and diffusion, Generation and recombination processes, Continuity equation, Thermionic emission process, p-n junction	11
2.	MOS capacitor	MOS structure, MOS system under external bias	7
3.	MOS transistor	Physical structure of MOS transistor, Types, Threshold voltage, MOSFET operation, Layout, MOSFET capacitances, SPICE models	11
4.	Scaling of MOS transistor	Types of scaling, Short-geometry effects, Introduction to SPICE model parameters	4
5.	Fabrication of MOS transistor	Basic steps, n-well CMOS process, Twin- tub technology	3
6.	Overview of CMOS/VLSI technology	CMOS technology, VLSI design methodologies, VLSI design flow, Design hierarchy, VLSI design styles	3
7.	Design interface	CMOS lambda-based design rules, Foundry interface	3

		Total number of lectures	42
Evaluation Criteria			
Components	Maximum Marks		
T1 -	20		
T2	20		
End Semester Examination	35		
ТА	25		
Total	100		

Recommended	Recommended Reading Material:			
1.	S. M. Sze, Semiconductor devices: Physics and technology, 2nd ed., John Wiley & Sons, 2009.			
2.	A. B. Bhattacharyya, Compact MOSFET models for VLSI design, 1st ed., Wiley-IEEE Press, 2009.			
3.	Y. Tsividis, Operation and modeling of the MOS transistor, 2nd ed., Oxford University Press, 2009.			

Course Code	17M21EC112	Semester ODD (specify Odd/Even)			ter I Session 2018-2019 from July - December
Course Name	Digital Integrated Circuit Design				
Credits	3		Contact	Hours	3
Faculty	Coordinator(s) Dr Amit Kun		ır Goyal		
(Names)	Teacher(s) (Alphabetically)	Dr Amit Kumar Goyal			

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Develop an understanding of exiting challenges in digital IC design, and analysis of CMOS inverter performance.	Understanding (Level II)
CO2	Identify and estimate the delay and power consumption in CMOS based gates and choosing best design configuration via logical effort.Analyzing (Level IV	
СОЗ	Design and analyze combinational and sequential logic circuits effectively.	Applying (Level III)
CO4	Design different types of semiconductor memories and test integrated circuits for fault tolerance.	Evaluating (Level V)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to CMOS digital integrated circuits Digital integrated circuit basic: cost, reliability, yield and performance, Challenges in DIC design, CMOS devices and manufacturing technology and design rules, CMOS inverters and gates, Propagation delay calculation of CMOS inverter, noise margins, power dissipation, and regenerative logic circuits		10
2.	Delay Estimation and Power consumption in CMOS gates	Delay Definitions, Switch-level RC Delay Models, Effective Resistance and Capacitance calculations, Elmore Delay Model, Linear Delay Model, Switching Activity of logic gates	7
3.	Logical Effort	Delay in a Logic gate, Multistage Logic Networks, Gate sizing, Choosing the best No. of stages, Limitation of logical effort	6
4.	Designing Arithmetic Building Blocks	Complex CMOS circuit design, Static and dynamic logic, Adders, Multipliers and Shifters	8
5.	Sequential Circuit Analysis	Timing Metrics for Sequential Circuits, Bi-stability principle, Static latches and Registers, Flip flops,	7

		Dynamic Sequential Circuit, Schmitt Trigger		
6.	Designing Memory an Array Architecture	nd Semiconductor Memories, Memory peripheral Circuitry	4	
7.	Testing	Introduction to testing and various concepts	4	
	<u> </u>	Total number of Lectures	46	
Eval	luation Criteria		<u> </u>	
Com	Components Maximum Marks			
T1	20			
T2	20			
End	Semester Examination 35			
TA	25	(Two Assignment and One Quiz)		
Tota				
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	J. M. Rabaey, A. Chandrakasan, B. Nikolic: Digital Integrated Circuit: A design perspective, 2 nd EditionPearson Education, Delhi-2005			

2. Weste, Neil HE, and David Money Harris. *CMOS VLSI Design*. Pearson/Addison Wesley, 2005.

3. Geiger, Randall L., Phillip E. Allen, and Noel R. Strader. *VLSI design techniques for analog and digital circuits*. Vol. 90. New York: McGraw-Hill, 1990.

4. *www.ieeexplore.ieee.org*

Lecture while Dreakup						
Course Code	18M12EC113	Semester Odd		Semeste 2019	er 1^{st} (M.Tech)	Session 2018 -
				Month	from July 2018	to Dec 2018
Course Name	Basics of Embedded System Design					
Credits	3		Contact I	Hours	3 pe	er week
Faculty (Names)	Coordinator (s) Mandeep Singh Narula					

Faculty (Names)	Coordinator(s)	Mandeep Singh Narula	
	Teacher(s) (Alphabetically)	Mandeep Singh Narula	

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Study basics of embedded systems and its applications	Understanding (Level II)
CO2	Understand different instructions of microprocessor and microcontrollers	Analyzing (Level IV)
CO3	Ability to Interface the memory chips and peripheral chips with 8085 microprocessors and microcontrollers.	Evaluating (Level V)
CO4	Study basics of ARM processors and communication protocols	Understanding (Level II)

Module No.	Title of the Module Topics in the Module		No. of Lectures for the module
1.	Introduction to Embedded Systems	Embedded System and its applications, Design Parameters of Embedded System and its significance, Embedded System design flow and design life cycle, Digital Circuit Parameters (Open collector outputs, Tristate outputs, I/O source and sinking, Fan-in and Fan-out, Propagation delay, Figure of merit, PAL, PLA, CPLD, FPGA, SOC	4
2.	Introduction to Microprocessors and Microcontrollers	Introduction (Microprocessor Versus Microcontrollers, Microcontrollers for Embedded Systems, Embedded Versus External Memory Devices, CISC Versus RISC Processors, Harvard Versus Von-Neumann architecture, 8051/8031/8052 Microcontroller (Basic architecture, Pin configuration, Memory organization (registers and i/o ports), Assembly language programming) (addressing modes and instruction set), Timers and Interrupts, Serial Communication.	10
3.	Real World Interfacing with Microcontroller	Interfacing of single LED, Blinking of LED with timer and without timer, Interfacing of push-button and LED, Interfacing of 7-segment display, Interfacing of 8 push- buttons to control 7-segment display, Intelligent LCD Display, Interfacing of intelligent LCD display, Interfacing of Matrix Keyboard to control 7-segment display, ADC and DAC Modules, Interfacing of ADC0804, Interfacing with	12

			DAC0808, Different wave generation through DAC0808, Stepper Motor & DC Motor, Interfacing with stepper & DC motor, Different Sensor Interfacing, (IR Sensor, DTMF, Temperature Sensor, LDR)				
4. Introduction to RTOS and ARM Microprocessor		RTOS and ARM	Real Time Operating System (RTOS), Types of real time tasks, Task Periodicity, Process state diagram, Kernel and Scheduler, Scheduling algorithms, Shared data (Resource) and Mutual Exclusion, Semaphore, Introduction to ARM, Features, ARM Pipeline, Instruction Set Architecture (ISA), Thumb Instructions, Exceptions in ARM	10			
5. Communication Protocols			Communication Protocols, Serial Protocols (Inter IC (I2C), Controller Area Network (CAN), Serial Peripheral Interface (SPI), Universal Serial Bus (USB)), Parallel Protocols (Peripheral Component Interconnect (PCI), ARM Bus), Wireless Protocols (Infrared Data Association (IrDA), Bluetooth, IEEE 802.11)	2			
6. Low Embedd Design		Embedded System	Introduction, Sources of Power Dissipation, Dynamic power dissipation (Short circuit power, Switching Power, Glitching Power, Static power dissipation), Power Reduction Techniques (Algorithmic power minimization, Architectural power minimization, Parallelism for low power, Pipelining for low power, Logic and circuit level power minimization, Different encoding techniques, Logic synthesis for low power, Technology mapping, Control logic power minimization, System Level Power Management, Advanced configuration and power interface (ACPI)	4			
		· <u> </u>	Total number of Lectures	42			
Com T1 T2 End S TA	T220End Semester Examination35						
	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	Muhammad Ali Mazidi, "The 8051 microcontroller and Embedded Systems using Assembly and C", 2 nd Edition, Pearson Education, 2008.						
2.	Fran	k Vahid / Tony Giva	rgis, "Embedded System Design", Willey India, 2002.				
3.	Santanu Chattopadhyay, "Embedded System Design", 1 st Edition, PHI Learning, 2010.						

Course Code	17M22EC121	Semester ODD		Semester ODD Semester I Session 201	
		(specify Odd/Even)		Month from July to December	
Course Name	RF MICROELECTR	MICROELECTRONICS			
Credits	3		Contact Hours		3
r		r			
Faculty	Coordinator(s)	SHIVAJI TYAGI			
(Names)	Teacher(s) (Alphabetically)	SHIVAJI TYA	GI		

COURS	E OUTCOMES	COGNITIVE LEVELS	
CO1	Defining the RF, wireless standards, system specification and system and circuit design. Remembering (Lev		
CO2	Comparing various process technology nodes (both silicon and III-V) and behavior of components and circuits at RF frequency.	Understanding (Level-II)	
CO3	Identify the challenges involved in RF circuits and choosing the best option for RF circuit by making use of various parameters.	Applying (Level-III)	
CO4	Analysis of MOS Amplifier circuits at high frequency by comparing various topologies.	Analyzing (Level-IV)	
CO5	Evaluating various topologies and choosing the best option according to design specification.	Evaluating (Level-V)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction: Concepts, Components and Systems	Defining RF, Wireless Standards, System Specification, System and Circuit Design Overview, S-Parameter, Smith Chart, Transmission Lines (Micro strip, Strip line, Coplanar Waveguides); Radio as A Typical RF System	08
2.	RF Device Technology	Behavior of Passive Components , Passive Devices – Resistors, Capacitor, Inductors, Transformers; Active Devices – MOSFET, BJT, HEMTs; Substrate Materials – HMICs, MMICs, CMOS; Characteristics and Fabrication Process detail	06
3.	Issues in RF Circuit Design: Noise, Linearity & Signals	RF Specifications – Stability, Power Gain, Noise, Non- Linearity, Sensitivity, Dynamic Range, Modulated Signals- Phase Modulation, Frequency Modulation	04
4.	Resonant Circuits and Filter Design	Some Definitions, Resonance, Loaded/Unloaded Q, Insertion Loss, Impedance Transformation, Coupling, Filter Types, Filter Design at High Frequency	06
5.	Transistor at Radio Frequency	Basic MOS Amplifier – DC and low-frequency problem ; High-frequency behavior of basic amplifiers, Amplifiers loaded with coupled resonance circuits	06
6.	Low Noise Amplifiers	General Considerations, Problem of Input Matching, LNA Topologies, Design schemes, Noise in LNA, Narrowband and Wideband LNA design	06

7.	Mixers Performance Parameters, Active and Passive mixers				
8. Voltage Controlled Oscillators		Introduction, Oscillator Types, Negative Resistance approach to L-C oscillators, Feedback Approach to L-C oscillators, Frequency Stability of L-C Oscillators	04		
Total number of Lectures					
Evaluation	n Criteria				
Components		Maximum Marks			
T1		20			
T2		20			
End Semester Examination		35			
ТА		25			
Total		100			

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

-						
1.	Behzad Razavi, "RF Microelectronics", Second edition, Prentice-Hall 2012					
2.	Thomas Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", Second Edition, Cambridge University Press, 2003					
3.	David Pozar, "Microwave and RF Design of Wireless Systems", 3rd Edition, Wiley 2000					
4.	R. Ludwig and G. Bogdanov, "RF Circuit Design: Theory and Applications" 2 nd edition 2000.					
5.	NPTEL Course: RF Integrated Circuits by Dr Shouri Chatterjee, IITD					

Course Co	ode	17M12EC125	(anosify Odd/Eyon)		Semeste Month		Session 2018 -2019 ly – Dec. 2018
Course Name		Detection and Estimation	ation Theory				
Credits		3	Contact Hours		3		
Faculty (Names)		Coordinator(s)	Dr. Vikram Karwal				
		Teacher(s) (Alphabetically)	Dr. Vikram Karwal				
COURSE OUTCO		OMES					COGNITIVE LEVELS
CO1	CO1 The course aims to familiarize student with stochastic processes and its properties.		nd its	Apply Level (C3)			
CO2	2 The course helps students to analyze probabilistic models and estimate the parameters of the model parameters.			Analyze Level (C4)			
CO3		A	valuate the observations of the noise- ermine the best estimate of the state. Evaluate Level (C5)				
CO4		he course helps student compute the optimality criteria to quantify est estimates or detection decisions and limits on performance.			Create Level (C6)		

Module No.			No. of Lectures for the module
1.	Review of random variables	Distribution and density functions, moments, independent, uncorrelated and orthogonal random variables; Vector- space representation of random variables, Schwarz Inequality, Orthogonality principle in estimation, Central limit theorem, Random Process, stationary process, autocorrelation and autocovariance functions, Spectral representation of random signals, Wiener Khinchin theorem, Properties of power spectral density, Gaussian Process and white noise	5
2.	Parameter estimation theory	1 11 / 1	
3.	Estimation of signal in presence of White Gaussian Noise(WGN)Linear Minimum Mean-Square Error(LMMSE) Filtering: Wiener Hoff Equation FIR Wiener filter, Causal IIR Wiener filter, Noncausal IIR Wiener filter, Linear prediction of signals, Forward and Backward Predictions, Levinson Durbin Algorithm, Lattice filter realization of prediction error filters		8
4.	Complexity Principle and Application, Steepest Descent Algorithm, Convergence characteristics; LMS algorithm, convergence, excess mean square error, Leaky LMS algorithm; Applications of Adaptive filters; RLS algorithm, derivation,		8

	Matrix inversion Lemma, Initilization, tracking of nonstationarity.						
5.	Kalman Filtering	Principle and application, Scalar Kalman filter, Vector Kalman filter	3				
6. Detection Theory		Hypothesis testing, Bayesian, Neyman-Pearson and Minimax detetion, Composite Hypothesis testing, Generalized LRT, Sequential and Distributed Detection, Non-parametric detection, Detection in Gaussian noise	9				
Total number of Lectures							
Eval	uation Criteria						
Com	ponents	Maximum Marks					
T1		20	-•				
T2		20					
	Semester Examination	35 25 (5 Assistant 5 Osia 5 Class Participation 10 Attendence)					
TA		25 (5 Assignment, 5 Quiz, 5 Class Participation, 10 Attendance	e)				
Tota	1	100					
	6	rial: Author(s), Title, Edition, Publisher, Year of Publication etc. (ports, Websites etc. in the IEEE format)	Text books,				
	An Introduction to Signal Detection and Estimation by H. Vincent Poor						
1.	An Introduction to Signal	Detection and Estimation by H. Vincent Poor					
1. 2.		Detection and Estimation by H. Vincent Poor omas Kailath, Ali H sayed, Babak Hassibi					

Fundamentals of Statistical Signal Processing: Estimation theory by Steven M Kay

4.

Detailed Syllabus

Lecture-wise	Breakup
--------------	---------

Subject Code	18M12EC114		Semester	Odd	SemesterISession2018-19Month fromJuly to Dec
Subject Name	HDL Based Digital	HDL Based Digital Design			
Credits	3		Contact Ho	ours	3
Faculty	Coordinator(s)	Atul Kumar Srivastava			
(Names)	Teacher(s) (Alphabetically)	Atul Kumar Srivastava , Shruti Kalra			hruti Kalra

Course Objectives:

- Verilog IEEE 1364 standard
- Hardware Descriptive language programming (RTL, testbenches & UDP's)
- Combinational & Sequential Circuit Description
- Component Test & Verification

Course Outcome:

• Logic Design with Verilog, Gate level and data flow modeling, FSM modeling, Fault analysis , synthesis and FPGA's

COURSE OUTCOMES COGNITIVE LEVELS		COGNITIVE LEVELS
CO1	Understand the concept of Verilog and their application in Digital systems design systems.	Understanding (C1)
CO2	Identify theoretical and practical requirements for implementation and designing of Finite state machines.	Applying (C3)
CO3Understand the concept of Asynchronous Finite State Machines and their application in Digital systems design systems.Understanding (C1)		Understanding (C1)
CO4	Understand the concept of Fault and Analysis in Digital systems design systems	Analyzing (C4)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	HDL Based Design	Introduction to Logic Design with Verilog, Gate Level, data flow level, UDP, data types, behavioral level, ,structural modeling, operators, test bench, function and task, system task, compiler directive, synchronization, FSM Modeling	17
2.	Finite State Machine (FSM)	FSM Design methodology, Pulse generations, Frequency Dividers, conversion between Mealy and Moore, State Reduction, State Assignment, Implementation, and state diagram partitioning	8
3.	Asynchronous Finite State	Asynchronous Analysis, Design of Asynchronous Machines, Flow table	9

	Machines	realization, reduction, state assignments and design, Cycle and race analysis. Hazards, Essential Hazards, and its removal		
4.	Fault Analysis	s-a-0, s-a-1 fault analysis using path sensitization method, Boolean Difference Method,	5	
5.	Introduction to FPGA	FPGA Architecture, Implementation using ISE, System Generator based Implementation, Accel DSP based implementation	4	
	Total number of Lectures43			
	Reading material: Author(s), Titls, Journals, Reports, Websites etc.	le, Edition, Publisher, Year of Publication etc. (in the IEEE format)	(Text books,	
1.	Roth, Charles H. Digital systems design using VHDL. Vol. 20. PWS publishing company, 1998.			
2.	Bhasker, Jayaram, and Jayaram Bhasker. A Vhdl primer. Prentice Hall PTR, 1999.			
3.	Pedroni, Volnei A. Circuit design with VHDL. MIT press, 2004.			
4.	Z.Kohavi: Switching and Finite Automata Theory, 2 nd Edition, Tata Mc-Graw Hill, 2001			
	A. Anand Kumar : Fundamental of Digital Circuits, PHI, 2 nd Edition 2012			

Course Code	18M12EC115	Semester O		2019		Session 2018 - y - December
Course Name	Advanced Optical Communication Systems					
Credits	3 Contact Hours 3		3			
Faculty	Coordinator(s)	Dr Amit Kuma	r Goyal			

Faculty	Coordinator(s)	Dr Amit Kumar Goyal
(Names)	Teacher(s) (Alphabetically)	Dr Amit Kumar Goyal

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Develop an understanding of optical fiber, its structure, types, propagation, transmission and non-linear properties.	Remembering (Level I)
CO2	Identify and examine the different kinds of losses and signal distortion along with their compensation techniques in optical Fibers.	Analyzing (Level IV)
CO3	Classify the Optical sources and detectors and their principle of operation. Analize various coupling techniques.	Understanding (Level II)
CO4	Design a fiber optic link based on budget analysis.	Evaluating (Level V)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Overview of Optical fiber Communications	Introduction to fiber optics, Physics of light. Principles of fiber optics: Introduction, light propagation, Skew rays. TIR condition, FTIR, Goos-hanchen shift. Effective index method to determine propagation constant, Fibers Modes, V Number analysis for optical fiber, Significance of V-b diagram, Mode Coupling, Step Index fibers, Graded Index fibers. Single mode fibers- Cut off wavelength, line width, propagation velocities. Non-linear effects in optical fiber	7
2.	Signal Degradation in Optical fibers	Signal distortion in optical fibers- Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses. Information capacity, Group delay, Types of Dispersion - Material dispersion, Wave-guide dispersion, Intermodal dispersion, Fiber Birefringence, Polarization Mode Dispersion. Introduction to Dispersion compensation techniques, Advanced chromatic dispersion compensation, Advanced PMD compensation (both optical and electrical).	7

3.	Optical Sources Photodetectors & Receivers	Light emitting diode (LEDs)- structures designing and performance analysis, Quantum efficiency, Power, Modulation, Laser Diodes -Modes & threshold conditions, resonant frequencies, structures, characteristics single mode lasers, Modulation of laser diodes, external quantum efficiency, laser diode rate equations. Source to fiber power launching: - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Various fiber to light coupling techniques, Laser diode to fiber coupling, LED coupling to single mode fiber. Optical detectors- principles of PIN and APD, Detector response time, Temperature effect on	8
		Avalanche gain, Optical receiver: Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of error, Quantum limit, Analog receivers.	
5.	Optical system design	Optical Amplification, Doped fiber amplifier, semiconductor optical amplifier, Analog and digital systems. Coherent optical fiber communication systems. Modulation and line coding. Bandwidth and rise time budgets, Power budget, and dynamic range. Power penalty, Channel capacity measurement.	6
6.	Advanced Optical Systems and Networks	Wavelength Division Multiplexing. Long haul and metro WDM system, WDM system analysis, design and performance evaluation, Introduction to Photonic crystal technology, Photonic crystal fibers, Introduction to Optical Networks, Local area network, Metropolitan-Area N/W,SONET/SDH, Introduction to Free Space optical Communication.	8
7.			
		Total number of Lectures	44
Evaluatio	on Criteria		
Compone T1 T2 End Seme TA Total	ents Maxim 20 20 20 35 25 100	um Marks	
Recomm	nended Reading material	Author(s), Title, Edition, Publisher, Year of Pu	iblication etc

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.
(Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition, 2000.
2.	John M. Senior, Optical Fiber Communications, 2nd Edition, PHI, 2002.
3.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.
4.	Govind P. Agarwal, Fiber Optic Communication Systems, 3rd Edition, John Wiley, 2004.

5.	Joseph C. Palais, Fiber Optic Communications, 4th Edition, Pearson Education, 2004
6.	Journal articles i.e. IEEE, Springer, IOPscience, Elsevier and Video lectures from nanohub, NPTEL, MIT video lectures

Detailed Syllabus

			Lecture-wise Breakup					
Course	1	7M12EC213	Semester Odd	Semester I Session 2018 -2019 Month from Jul to Dec				
Code			(specify Odd/Even)					
Course Name	Ir	nformation and Cod	ling Theory					
Credits	3		Contact Hours	3				
Faculty		Coordinator(s)	Ms. Neetu Singh					
(Names)		Teacher(s) (Alphabetically)	Ms. Neetu Singh					

	OUTCOMES mpletion of the course, students will be able to:	COGNITIVE LEVELS
CO1	Understand the concept of probability, its relation with information, entropy, and their application in communication systems.	Understand Level C2
CO2	Identify theoretical and practical requirements for implementing and designing compression algorithms.	Analyze Level C4
CO3	Analyze the need for channel coding in digital communication systems, the relationship between bandwidth and capacity of communication channels with its importance in real life communication systems.	Analyze Level C4
CO4	Generate block codes for error detection and correction.	Analyze Level C4
CO5	Generate convolutional codes for error detection and correction.	Analyze Level C4

Module No.	title of the Module	Topics in the module	No. of Lectures for the module
1.	Review of Basic Probability	 Probability spaces. Random variables. Distributions and densities. Functions of random variables. Statistical Averages. Inequalities of Markov and Chebyshev. Weak law of large numbers. 	3
2.	Information Measure	Discrete entropy. Joint and conditional entropies. Entropy in the continuous case. Maximization of continuous entropy. Entropy of a bandlimited white Gaussian process.	5
3.	Data Compression	Uniquely decipherable and instantaneous codes. Kraft- McMillan inequality. Noiseless coding theorem. Construction of optimal codes.	4
4.	Data Transmission	Discrete memoryless channel. Mutual information and channel capacity. Shannon's fundamental theorem and its weak converse. Capacity of a bandlimited AWGN channel. Limits to communication – Shannon limit.	5
5.	Error Control Coding	Coding for reliable digital transmission and storage. Types of codes. Modulation and	3

		coding. ML decoding. Performance measures.					
6.	Linear Block Codes	Algebra Background, Groups, Fields, Binary field arithmetic. Vector Spaces over GF(2).	8				
		Generator and parity check matrices. Syndrome and error detection. Standard array and syndrome decoding. Hamming codes.					
7.	Cyclic Codes	Polynomial representation, Systematic encoding. Cyclic encoding, Syndrome decoding.	6				
8.	Convolutional Codes	Generator Sequences. Structural properties. Convolutional encoders. Optimal decoding of convolutional codes- the Viterbi algorithm.	8				
		Total number of Lectures	42				
Evaluation	n Criteria						
Compone		ximum Marks					
T1	20						
T2 End Some	ster Examination 20						
TA		(Attendance, Performance. Assignment/Quiz)					
Total	10						
		thor(s), Title, Edition, Publisher, Year of Publication etc. (Vebsites etc. in the IEEE format)	Text books,				
1.	R.B. ASH: Informati	R.B. ASH: Information Theory, Dover, 1990.					
2.	R. BOSE: Information	R. BOSE: Information theory, coding and cryptography, Macgraw Hill 2008.					
3.	R.W. YEUNG: Infor	R.W. YEUNG: Information Theory and Network Coding, Springer, 2008.					
4.	S. LIN & D.J. COSTI	S. LIN & D.J. COSTELLO: Error Control Coding, 2 nd Edn, Pearson, 2004.					
5.	TK MOON Error	T.K. MOON: Error Correction Coding, Wiley, 2006.					

Course C	Course Code 17M25EC111 Semester Odd Semester Ist Session 2018 - (specify Odd/Even) Month from June to Dec		2019					
Course Name VLSI Design and		Simulation Lab						
Credits		2	2	Contact	Hours		5	
Faculty		Coordinator(s	Kirmender Si	ngh				
(Names)		Teacher(s) (Alphabetically)	Shamim Akht	Shamim Akhter				
COURSE	OUTCO	OMES: At the end	student will be ab	le to			COGNITIVE LEV	/ELS
CO1		e IC design tool an c first-order RC circ		ey and trans	ient respo	nse	Remembering (Lev	el I)
CO2	Use en	nbedded software to	simulate basic em	bedded syst	tem progra	ams.	Remembering (Lev	el I)
СОЗ	MOSF	stand the output and ET using level-1 and t level-1 MOS mode	d BSIM4 model pa			nel	Understanding (Lev	vel II)
CO4		level-1 MOS mode teristics of CMOS i		ating static	and transi	ent	Applying (Level III)
CO5	-	e and simulate the schematic of combinational and sequential Analyzing (Level IV ircuits and make their layout.						IV)
CO6	Analyz	ze combinational and sequential circuits using Hardware ption Language and synthesis them on FPGA tool. Analyzing (Level I'					IV)	
Module No.	1					CO		
1.		duction to Circuit ilator tool.	To familiarize wit frequency and tran	•			•	CO1
2.		duction to ware KEIL	To use embedded light controller.	l software	KEIL to	verify	program of traffic	CO2
2. Characteristics of MOSFET		To plot current versus voltage transfer and output characteristics of n and p channel MOSFET using Level-1 and level-54 model parameters.			CO3			
3. Extraction of MOSFET Model parameters			Extract Level-1 model parameters VT0, GAMMA and PHI of n- channel MOSFET.			CO3		
4.	CMOS Inverters To plot voltage transfer characteristics of CMOS inverter, determine switching point and noise margins.			CO4				
5.		sient analysis of binational circuits	To Implement Na perform its transie		-	e using	g CMOS logic and	CO5
6.	Creat Mod	tion of Subcircuit el					CO5	
7.		adder and Full er Circuits	Design a 2: 1 mul half adder circuit			cuit m	odel and implement	CO5

8	Combinational circuits using transmission Gates	To design XNOR and XOR gate using transmission gate.	CO5		
9	Layout and DRC of CMOS process	To make a layout of CMOS inverter and perform the DRC	CO5		
10	Layoutversusschematicandparasitic extraction	To perform post layout simulation of CMOS inverter taking into effect area of source and drain regions.	CO5		
11	Hardware Description Language	Introduction to modelsim tool and implement HDL code of Half adder, full adder, 2:1 multiplexer, D flipflop	CO6		
12.	Introduction to FPGA	To Synthesize HDL code on Field Programming Gate Array kit and validate the functions of combinational circuits	CO6		
Evaluation	Criteria				
ComponentsMaximum MarksViva120Viva220Day to Day60					
Total	100				

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	SM. Kang and Y. Leblebici, "CMOS digital integrated circuits: Analysis and design," 3rd edition, Tata McGraw-Hill, 2003.
2.	N. H. E. Weste and D. M. Harris, "CMOS VLSI design: A circuits and systems perspective," 3rd edition,

2. Addison-Wesley, 2005.

Lecture-wise Breakup

Course Co	de	18M11GE111	Se	emester C	Odd	Semes Month		ter I Session 2018 - from July to December		
Course Na	Course Name Research Methodology & Intellectual Property Rights									
Credits		2			Contact 2-0-0 Hours					
Faculty		Coordinator(s))	Prof. B. I	P. Chamo	ola				
(Names)		Teacher(s) (Alphabetically	7)	Prof. B. I	P. Cham	ola				
COURSE	OUT	COMES:						COGNITIVE I	LEVELS	
After pursu	ing t	he above mention	ned o	course, the	e student	s will be	e able to:			
CO111.1	und	erstand the basic	con	cepts and	types of	researc	h	Understanding (C2)	g Level	
CO111.2		Tine a research problem, its formulation, methodologies Analyzing Level 1 analyze research related information Analyzing Level							vel (C4)	
CO111.3		ow research ethics, understand IPR, patents and theirUnderstandingng related to their innovative works.(C2)						g Level		
CO111.4		erstand and analy want test of hypot	-			-		Analyzing Lev	vel (C4)	
Module No.	Tit	le of the Module	Τ	Copics in (the Mod	lule			No. of Lectur es for the module	
1.	Res	earch	What is research? Types of research. What is not3research? How to read a Journal paper?					3		
2.	Rep	oort writing	How to write report? Use of Mendeley in report writing. How to write a research paper? Problem identification and solving.					4		
3.	Res	ics, IPR and earch hodologies	p a	Research ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in research process and common methodologies to attempt solution to research paper.					8	

	4. Basics of statistics and probability distributions		Basic statistical concepts. Handling of raw data, Some common probability distributions.	7			
	5.	Test of hypothesis and regression analysis	Hypothesis testing. Parametric and non-parametric data, Introduction to regression analysis.	8			
		1	Total number of Lectures	30			
		(Course delivery me	ethod: open ended discussion, guided self-study, lectures)				
Eva	luatior	n Criteria					
Mid End	Semes gnmen	Examination ter Examination	Maximum Marks 30 40 30 (Viva, Quiz, Assignments) 100				
		0	1: Author(s), Title, Edition, Publisher, Year of Publication rnals, Reports, Websites etc. in the IEEE format)	etc. (
1.		•	e Goddard , Research methodology: An Introduction for So yn, South Africa : Juta& Co. Ltd., 1996.	cience &			
2.	Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, New Delhi, 2009.						
3.	Kumar, Ranjit, Research Methodology: A Step by Step Guide for Beginners, 2nd Edition, Sage Publications Ltd., 2005.						
4.	Ramappa, T., Intellectual Property Rights Under WTO, S. Chand, New Delhi, 2008.						
5.	Wayne Goddard and Stuart Melville, Research Methodology: An Introduction, Kenwyn, South Africa : Juta& Co, 2001.						