Jaypee Institute of Information Technology

Integrated M.Tech. Biotechnology

Semester II

Course Descriptions

Course Code	18B15BT111	Semester Even		Semeste	er II Session 2018-2019
		semester		Month f	from January to June
		(specify Odd/I	Even)		
Course Name	Basic Bioscience Lab				
Credits	1		Contact H	Iours	2 hours

Lab-wise Breakup

Faculty (Names)	Coordinator(s)	Ekta Bhatt
	Teacher(s) (Alphabetically)	Dr. Indira P. Sarethy Dr. Priyadarshini
		Ms. Ekta Bhatt

COURSE	OUTCOMES	COGNITIVE LEVELS
C177.1	Demonstrate good laboratory practices and documentation.	Understand Level
C177.1	Demonstrate good faboratory practices and documentation.	(C2)
C177.2	Show working of equipments& instruments.	Understand Level
	Show working of equipments& instruments.	(C2)
C177.3	Apply knowledge of essential concepts related to biomolecules.	Apply Level(C3)
C177.4	Analyze experimental data and drawing valid conclusion.	Analyze Level(C4)

Module No.	Title of the Module	List of Experiments	CO	
1.	Laboratory safety guidelines	Good and bad laboratory practices. Safety handling of instruments,equipments and documentation.	Understand Level (C2)	
2.	Concept of ph and pKa	Basic principle of ph and pka. Preparation of stock buffers	Apply Level (C3)	
3.	Essential concept of biomolecules	Qualitative and quantitative estimation of Carbohydrates and Proteins.	Apply Level (C3)	
4.	Analyze experimental data	Analyze experimental data and drawing valid conclusion.	Analyze Level (C4)	
		Total No. of Labs-12		
Evaluatio	Evaluation Criteria Evaluation Criteria			

Components	Maximum Marks
Mid-Semester lab-viva/ test	20
End-Semester lab-viva/ test	20
Day to Day performance	45
(Learning laboratory Skills and handling Laboratory	
Equipments, attendance)	
Laboratory record	15
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Introductory practical book of Biochemistry by S.K.Sawhney, Randhirsingh (Narosa Publishing House)		
2.	Rex M. Heyworth, Procedural and conceptual knowledge of expert and novice students for the solving of a basic problem in chemistry, <i>International Journal of Science Education</i> , 21 , 2, (195), (1999).		
3.	Boyer R.F. Modern Experimental Biochemistry. Massachusetts: Addison-Wesley Publishing Co., 1986		
4.	Strong, F. C. (1952) Theoretical basis of the Bouguer-Beer law of radia-tion absorption. Anal. Chem. 24, 338–342		
5.	Ninfa, A. J., Ballou, D. P., and Parsons, M. B. (2010) Fundamental Labo-ratory Approaches for Biochemistry and Biotechnology, Alexander J.Ninfa, David P. Ballou, Marilee Benore, Eds., Wiley, Hoboken, NJ		

Course Code	18B11CI121	Semester Even	Semester II Session 2018-2019 Month from January to June
Course Name	Fundamental of Con	Computer Programming II	
Credits	4	Contact Hours 3L+1T	
Faculty	Coordinator(s)	Mradula Sharma	
(Names) Teacher(s) (Alphabetically) Mradula Sharma		na	

COUR	SE OUTCOMES	COGNITIVE LEVELS
CO1	Define basics of C programming language like its data types, operators, control flow and loop control.	Remember (C3)
CO2	Develop C programs using Controls flows like while, do while, for loops, if else , switch case, etc.	Apply (C3)
CO3	Experiment with single and multi dimensional arrays, structure and functions in C programming Language.	Apply (C3)
CO4	Explain basic features of object-oriented design such as encapsulation, polymorphism, inheritance, and abstraction and compare it with function oriented programming.	Understand(C2)
CO5	Develop a simple web application with client and server side scripting using JavaScript and PHP and connect with a given relational database	Apply (C3)

Module No.	Subtitle of the Module	Topics in the module	Number of lectures for the module
1	C Programming	Syntax and semantics, data types and variables, expressions and assignments, array and struct, simple I/O, conditional and iterative control structures Programs on unit conversion, approximating the square root of a number, finding the greatest common divisor, average, sum, min, max of a list of numbers, common operations on vector, matrix, polynomial, strings, programs for pattern generation.	16
2	Functions in C Programming	Functions and parameter passing (numbers, ,characters, array, structure), recursion, e.g. factorial, Fibonacci, Scope of variable	10
3	functions oriented programming Vs object oriented programming	comparison between FOP and OOP, OOPs Concepts	7
4	HTML forms, Introduction to client and servers side scripting, introduction to PHP	HTML forms, creating dynamic web pages with database connectivity using Mysql	9
		Total Number of lectures	42
	on Criteria		
Compon		aximum Marks	
T1	20		
T2	20		
End Sem	ester Examination 35		
TA	25	(Attendance :10, Assignment :10, quiz:5)	
	10	00	

1	H. Cooper and H. Mullish, Jaico Publishing House. "Spirit of C", 4th Edition, Jaico Publishing
	House,2006
2	Herbert Schildt. "The Complete Reference C", 4th Edition, TMH, 2000
3	Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition,
	Prentice-Hall India, New Delhi, 2002
4	User manuals supplied by department for C, PHP, html and sql
-	

Course Code	18B15CI121	Semester Even	Semester II Session 2018-2019 Month from January to June
Course Name	Computer Programming lab II		
Credits	1	Contact Hours	2

Faculty	Coordinator(s)	Mradula Sharma
(Names)	Teacher(s) (Alphabetically)	Mradula Sharma

COURSE	OUTCOMES	COGNITIV E LEVELS
CO1	Demonstrate basic programs of different data types and operators in C.	Understand (C2)
CO2	Develop C programs using Controls flows like while, do while, for loops, if else , switch case, etc.	Apply (C3)
CO3	Make use of single and multi dimensional arrays, structure and functions in C programming language.	Apply (C3)
CO4	Demonstrate basic features of object-oriented programming such as objects and classes in C++.	Understand (C2)
CO5	Develop a simple web application with client and server side scripting using Javascript and PHP and connect with a given relational database	Apply (C3)

Module No.	Title of the Modula	List of Experiments	СО
1.	Basic Programming In C	Data types, Declaring Variables, Initializing Variables, Type Conversion	CO1
2.	Operators and Expressions And Input Output In C	Conditional operators, Arithmetic, Relational, Assignment, Logical and Bitwise operators, Formatted Functions, Flags, Widths and Precision with Format String, Unformatted Functions	CO1

3	Decision Statements	If statement, IF- else, If-else-if, break, continue, go to, switch case	CO2
4	Loop Control	The for loops , nested for loop, the while loop, do while loop	CO2
5	Data Structure: Array and structure	Array, 2 D array, Matrix operations, structure and functions	CO3
6	C++ programming	Programs based on class and objects	CO4
7	PHP, Java Script and HTML Forms	Develop a simple web application with client and server side scripting using Javascript and PHP and connect with a given relational database	CO5
Evaluation Cr	riteria		
Components	Maximum Mark	SS .	
Evaluation 1	15		
Evaluation 2	15		
Evaluation 3	15		
Lab Test 1	20		
Lab Test 2	20		
ТА	15		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1 H. Cooper and H. Mullish, Jaico Publishing House. "Spirit of C", 4th Edition, Jaico Publishing House,2006
- 2 Herbert Schildt. "The Complete Reference C ", 4th Edition, TMH, 2000
- 3 Brian W. Kernighan and Dennis M. Ritchie ,"The C Programming Language", 2nd Edition, Prentice-Hall India, New Delhi, 2002
- 4 User manuals supplied by department for C , PHP, html and sql

Lecture-wise Breakup

Course Code		15B11MA21	2	Semester Eve (specify Odd/				Session 2 January to 3	
Course N	ame	BASIC MA	THEMA		Lven)				
Credits		4			Contact I	Hours	3-1-()	
		Coordinato	r(s)	Dr. SheetalDes				-	
	,	Teacher(s) (Alphabetica		Dr. SheetalDes	shwal				
COURSE	OUTCO	OMES						COGNIT	TIVE LEVELS
C108.1	Explai	n different test	s for the	convergence of	sequence a	and series		Understa	nding Level(C2)
C108.2	Explai	n the basic cor	ncept of	vectors and coor	dinate geor	metry.		Understar	nding Level(C2)
C108.3	Apply function		and inte	egration in vecto	or & scalar	valued		Understar	nding Level(C2)
C108.4	Classif coeffic		e ordina	ry differential ec	quations wi	th constar	nt	Applying	level(C3)
C108.5	5 Explain the measures of central tendency and apply the method of least squares for curve fitting. Applying Level(C				Level(C3)				
C108.6		ply basic numerical methods for finding roots, differentiation and Applying Level(C3) gration.				Level(C3)			
Module No.	Title o Modu		Topics	s in the Module					No. of Lectures for the module
1.		Series andLimits of sequence, ratio test for sequence of real numbers, comparison test for series of real numbers, absolute convergent and conditional convergent.		04					
2.	Fourie	Fourier Series Concept of Fourier series of periodic functions, half range series, Fourier series for odd and even function.			05				
3.	Vector AlgebraIntroduction of vectors , unit vectors, normal vectors, dot and cross product of vectors. Projection of vectors on another, direction ratios and direction cosines.		06						
4.	CoordinateDistance between two points, equation of a line , plane,Geometrysphere. Shortest distance between two lines.			05					
5.	Calculus of two or more variables Partial differentiation, Taylor's series for two variables, tangent to curve, double integral, change of order of integration.			05					
6.	Introdu ordina differe equatio	ential	Conce	tion of order and pt of linear and r on. Solution of fr ons.	non linear o	ordinary d	ifferen	tial	03
7.	Higher differe equation		comple	differential equa ementary function series of different	on and parti	cular inte			04
8	Basic	Statistics	Classif fitting.	fication of data, I	Mean, med	ian, mode	and c	urve	05

9.	Numerical analysis	Newton-Raphson method, linear and quadratic	05				
۶.	ivumencai anarysis		05				
		interpolation. Numerical integration by Simpson's rule.					
		Solution of ordinary differential equation by Runge-Kutta					
		method.					
Tota	l number of Lectures		42				
Eval	uation Criteria						
Com	ponents	Maximum Marks					
T1		20					
T2		20					
End	Semester Examination	35					
TA	TA 25 (Quiz, Assignments, Tutorials.)						
Tota	Total 100						
Reco	mmended Reading materi	al: Author(s), Title, Edition, Publisher, Year of Publication etc	. (Text books,				
Refe	rence Books, Journals, Repo	rts, Websites etc. in the IEEE format)					
1	Thomas, G. B. & Finney, R. L., Calculus and analytical geometry, 9 th Ed., Pearson Education Asia						
1.	(Adisson Wesley), New Delhi, 2000.						
2.	NCERT. Mathematics Textbook for class XI and XII, 2009.						
3.	Sharma, R.D., Mathematics, Dhanpat Rai Publications, New Delhi, 2011.						
4.	Kreyszig, E., Advanced En	ngineering Mathematics, 8 th Ed., John Wiley, 2002.					

Lecture-wise Breakup

Course Code	15B11PH212	Semester Even		Semester Even		2 Semester Even		Semeste	r II Session 2018-2019
				Month f	from January to June				
Course Name	BIO-PHYSICAL TE	CHNIQUES							
Credits 4			Contact H	Iours	4				

Faculty (Names)	Coordinator(s)	Prof. S. P. Purohit
	Teacher(s) (Alphabetically)	S. P. Purohit

COURSE	OUTCOMES	COGNITIVE LEVELS
C104.1	Select biophysical spectroscopic technique(s) for their application(s) in determining structural details and properties of molecules.	Remembering (C1)
C104.2	Explainunderlying principles of different biophysical techniques at atomic and molecular level and working principles of related spectrometers/microscopes.	Understanding (C2)
C104.3	Apply different biophysical techniques and choose appropriate technique(s) for investigating structural details and properties of a molecular sample.	Applying (C3)
C104.4	Analyse spectroscopic/microscopic data obtained from different biophysical techniques.	Analyzing (C4)
C104.5	Evaluate numerical values of different physical parameters involved in the modelling of different biophysical techniques at atomic and molecular level.	Evaluating (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Principles and Applications	Biophysical techniques and their applications, Quantization of energy levels in atoms and molecules, Concept of matter waves, uncertainty principle and Schrödinger wave equation, Rigid rotor, non- rigid rotor, Harmonic Oscillator, and anharmonic oscillator, Regions of the electromagnetic spectrum, Types of spectra – absorbance, Beer-Lambert's law, emission, and fluorescence Width and intensity of spectral lines, Optically allowed and forbidden transitions.	8
2.	Microwave Spectroscopy	Microwave active molecules, Rotation of molecules, Rotational spectra of di-atomic molecules, Rigid rotor and non rigid rotor, Microwave spectroscopy technique, Example of molecular microwave spectra.	3

3.	Infrared Spectroscopy	IR active molecules, Vibration spectra of diatomic molecules, Vibration rotation spectra of diatomic molecules, FTIR, Example of molecular IR spectra.	3
4.	Raman Spectroscopy	Raman effect, Molecular polarizability, Rotational and vibrational Raman Spectra, Raman spectrometry technique, example of molecular Raman spectra.	3
5.	UV Visible Spectroscopy	UV Visible spectroscopy of molecules, Electronic transitions in molecules, Frank-Condon principle, Dissociation energy, UV Visible spectroscopic technique, Example of molecular UV- Visible spectra.	3
6.	Mass Spectrometry	Working principle of mass spectrometer, Mass spectrum and the base peak, Nitrogen rule, Identifying compounds and isotopes, Determination of molecular formula, Mass spectrometer, Example of molecular mass spectra.	4
7.	NM R	Interaction between spin and magnetic field, Nuclear Magnetic Resonance (NMR), PMR and C NMR, Chemical shift, NMR technique and applications, Example of molecular NMR spectra.	5
8.	Crystallography	Bonding in solids, Types of crystals, Miller Indices, Reciprocal lattice, X-ray diffraction, Bragg's law and its application, Energy dispersive X-ray spectroscopy (EDX) Example of X-ray diffraction from molecular structure.	5
<i>9</i> .	Electron Microscopy	Electron Microscopy – basic principle, Scanning Electron Microscope (SEM), Example of some SEM images. Transmission Electron Microscope (TEM), Example of some TEM images, Scanning Probe Microscopy (STM and AFM)	6
		Total number of Lectures	40
Evaluati	ion Criteria		
Compon T1 T2 End Sem TA Total	ents	Maximum Marks 20 20 35 25 [2 Quiz (10 M), Attendance (10 M) and Cass performance 100	(5 M)]

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	•	Text 1: Fundamentals of Molecular Spectroscopy, C. N. Banwell and E. M. McCash, Tata McGraw-Hill, 4 rd Edition 1995.			
2.	•	Text 2: Crystallography applied to Solid State Physics, A R Verma, O N Srivastava, New Age International Publishers			

3.	Text 3: Electron Microscopy and Analysis, P. J. Goodhew, J. Humphreys, R Beanland, 3 rd Edition, 2000.			
4.	Reference 1. Conformation of Biological Molecules.Govil G. and Hosur R.V. (1982), Springer Verlag, Berlin, Heidelberg, New York.			
5.	Reference 2. Practical Biochemistry, K. Wilson and J. Walker, Cambrige Press, 5 th edition.			

Lecture-wise Breakup

Course Code	15B11EC111	Semester - Even	Semester II	Session 2018 - 2019
			Month from	n JanuarytoJune
Course Name	Electrical Science -1			
Credits	4	C	ontact Hours	4

Faculty (Names)	Coordinator(s)	Ms Monika (JIIT – 62), Dr Ashish Gupta (JIIT – 128)
	Too al art(a)	Dr Ankit Garg, MrAtul Kumar Srivastava, Mr Gopal Rawat, Dr
	Teacher(s)	Variation D.M. (a Lati D.D. Las Clark D.D.
	(Alphabetically)	Kaushal Nigam, DrNeetu Joshi, DrRachna Singh, DrReema
		Budhiraja, MrRitesh Sharma, DrSajaivir Singh, DrShrutiKalra, Dr
		Vijay Khare, DrVimal Kr. Mishra

COURSE	OUTCOMES	COGNITIVE LEVELS
	Recall the concepts of voltage, current, power and energy for different	Remembering
CO1	Recan the concepts of voltage, current, power and energy for different	Kemembering
	circuit elements.	(Level I)
~~~	Apply the Kirchhoff laws to identify the node voltages and branch	Applying
CO2		
	currents, apply different network theorems in the complex networks.	(Level III)
	Demonstrate the physical model for given Sinusoidal AC signal and	Applying
CO3		
	construct the phasor diagrams.	(Level III)
	Explain V-I characteristics of Diodes and Illustrate the construction	Analyzing
<b>CO4</b>	and operation of Bipolar Junction Transistor (BJT) for different	(Level IV)
1	configurations.	

Module	Title of the	Topics in the Module	No. of
No.	Module		Lectures for

			the module
1.	Basic Concepts	Voltage, Current, Power and Energy analysis for Circuit elements (R, L, C), Independent and Dependent Sources,	6
		Kirchhoff's Laws, Voltage Divider rule, Current Divider rule, Star-Delta Transformation, Source transformation,	
2.	DC Circuit Analysis	Mesh and Supermesh Analysis, Nodal and super nodal Analysis, .	4
3.	Network Theorems	Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
4.	Sinusoidal Steady State Analysis	Physical Model for a Sinusoid, Average Value, Effective Value, Phasor presentation, Addition of Phasor using Complex Numbers, Concepts of impedance and admittance. Network Analysis and Theorems: Mesh and Nodal analysis, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	8
5.	Diodes & Applications	PN Junction, Biasing the PN Junction, Current–Voltage Characteristics of a PN Junction, PN Junction Diodes, Half Wave Rectifier & Full Wave Rectifier, Clipper & Clamping Circuits, Zener Diodes and applications, Line and load regulations	8
6.	Bipolar Junction Transistor	Transistor Construction and Basic Transistor Operation, Transistor Characteristics (CE, CB, CC), Transistor Biasing	11

		& Stability, Small Signal BJT Amplifier (using h- parameter model)	
		Total number of Lectures	43
Evaluatio	n Criteria		
Compone	nts	Maximum Marks	
T1		20	
T2		20	
End Seme	ster Examination	35	
ТА		25 (Assignment = 12, Quiz = 5, Attendance = 8)	
Total		100	

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. ( Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", sixth edition, John Wiley & Sons.

2.	Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 7th Edition, Prentice Hall of India.

### Lab-wise Breakup

Course Code	15B17EC171	Semester Even (specify Odd/Even)			r II Session 2018-2019 From January to June	
Course Name	Electrical Science La	Electrical Science Lab-1				
Credits	1		Contact I	Iours	2	

Faculty (Names)	Coordinator(s)	Ritesh Kr Sharma (sec-62), Vimal Kumar Mishra (sec-128)
	Teacher(s)	Jitendra Mohan, Ankit Garg, Ankur Bhardwaj, Atul Kumar
	(Alphabetically)	Srivastava, Jasmine Saini, Neetu Joshi, Ritesh Kumar Sharma,
		Shamim Akhter ShradhaSaxena, shrutikalra, VikramKarwal,
		Vishal NarainSaxena, Vijay Khare

COURSE	EOUTCOMES	COGNITIVE LEVELS
CO1	Show the working of different electronic apparatus and to identify the electronic components.	C1
CO2	Demonstrate the electrical circuits using Kirchhoff's law	C2
CO3	To acquire the knowledge of network theorems for analysis of electrical circuits	C3
CO4	Explain the characteristics of PN junction, Zener diode and analyze the behavior of full/half wave rectifier, clippers, clampers and voltage regulator circuits.	C4
CO5	Explain and analyze the input and output characteristics of BJT.	C4

Module No.	Title of the Module	List of Experiments	CO
1.	Introduction of active and passive	Introduction to various components (Resistor, Capacitor, inductor, diode, Transistor and IC) and instruments (CRO,	1

	components	Multimeter, Bread board, Regulated D.C. power supply).	
2.	AnalysisandverificationsofKirchoff's Laws	Verification of KVL and KCL using a given circuit	2
3.	Analysis and verification of Superposition Theorem	Verification of Superposition Theorem for a given circuit	3
4.	Analysis and verification of Thevenin's Theorem	Verification of Thevenin'sTheorem for a given circuit	3
5.	Analysis and verification of Maximum Power Transfer Theorem	Verification of Maximum Power Transfer Theorem	3
6.	Study of P-N Junction diode	To observe the V-I characteristics of a P-N junction diode in forward bias. Also determine forward resistance of the diode	4
7.	Study and analysis of Rectifier	To observe the output waveform of full wave rectifier and calculate it's ripple factor and efficiency	4
8.	Wave-shaping using Clipper and Clamper circuits	Realization of desired wave shapes using clipper and clamper circuits.	4
9.	Study and analysis of Zener diode	To study forward and reverse bias volt-ampere characteristics of a Zener diode. Also determine the breakdown voltage, static and dynamic resistance	4
10.	Analysis of Zener regulator for line regulation	To study Zener voltage regulator and calculate percentage regulation for line regulation	4
11.	Analysis of Zener regulator for load regulation	To study Zener voltage regulator and calculate percentage regulation for load regulation	4
12.	Study and analysis of input characteristics of	To plot input characteristics of BJT for Common Emitter Configuration	5

	CE amplifier			
13.	Study and analysis of output characteristics of CE amplifier	To plot output characteristics of BJT for Common Emitter Configuration	5	
14.	Study and analysis of input characteristics of CB amplifier	To plot input characteristics of BJT for Common Base Configuration	5	
15.	Study and analysis of output characteristics of CB amplifier	To plot output characteristics of BJT for Common Base Configuration	5	
Evaluation	Evaluation Criteria			
ComponentsMaxMid Sem. Viva20End Sem. Viva20Day to Day Work60		20		
Total		100		

Reco	Recommended Reading Material:			
1.	Boylestad, R.L., Nashelsky, L. and Li, L., 2002. <i>Electronic devices and circuit theory</i> (Vol. 11). Englewood Cliffs, NJ: Prentice Hall.			
2.	Dorf, R.C. and Svoboda, J.A., 2010. Introduction to electric circuits. John Wiley & Sons.			

#### Lab-wise Breakup

Course Code	18B15GE111	Semester Even (specify Odd/Even)			emester II nd Session 2018-2019 Ionth from January	
Course Name	Engineering Drawing and Design					
Credits	1.5		Contact H	ours	3Hrs	

Faculty (Names)	Coordinator(s)	Rahul Kumar
	Teacher(s) (Alphabetically)	Deepak Kumar, Rahul Kumar

COURSE O	UTCOMES	COGNITIVE LEVELS
CO1	Recall the use of different instruments used in Engineering Drawing	Remembering
	and Importance of BIS and ISO codes.	(Level I)
CO2	Illustrate various types of mathematical curves and scale.	Understanding
	indstrate various types of mathematical curves and scale.	(Level II)
СОЗ	Classify different types of projection and Construct Orthographic projection of Point, Line, Plane and Solid.	Applying
		(Level III)
CO4	Construct Isometric Projection and Conversion of Orthographic view	Applying
	to Isometric view and vice-versa.	(Level III)
CO5	Construct Engineering model in Drawing software(AutoCAD) and	Analyzing
	Compare it with conventional drawing.	(Level IV)

Module No.	Title of the Module	List of Experiments	со
1.	Introduction to Engineering Drawing	<ul> <li>Principles of Engineering Drawing and their significance, Usage of Drawing Instruments</li> <li>Single stroke Vertical and Inclined Gothic</li> </ul>	CO1

		Lettering		
2.	Conic Sections	Conic sections and Special Curves		
3.	Orthographic Projections	<ul><li>Projection of Point</li><li>Projection of Line</li><li>Projection of Plane</li></ul>		
4.	Projections of Regular Solids	<ul> <li>Projection of Solid having axis perpendicular to Principal Plane</li> <li>Projection of Solid having axis inclined to Principal Plane</li> </ul>		
5.	<ul> <li>Sections and</li> <li>Sectional Views of Right Angular Solids</li> <li>Section of Polyhedron Parallel to Principal plane</li> <li>Section of Polyhedron inclined to Principal plane</li> </ul>		CO3	
6.	Isometric         • Isometric View of Solids           5.         Projections		CO4	
7.	Overview of Computer Graphics         • Demonstrating knowledge of theory of CA software		CO5	
8.	Annotations, layering & other functions	• Draw a Solid structure using Layer command	CO5	
Evaluation Criteria				
ComponentsI.TA (Attendance + D2D)II.Mid Sem ExamIII.End Sem ExamTotal		Maximum Marks 60 (10+50) 20 20 100		

	<b>Recommended Reading material:</b> Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	1. N.D. Bhatt, V.M. Panchal & P.R. Ingle, Engineering Drawing, Charotar Publishing House		
2.	B. Agrawal & C.M. Agrawal, Engineering Graphics, TMH Publication		
3.	K.L. Narayana & P. Kannaiah, Text book on Engineering Drawing, Scitech Publishers		
4.	M.B. Shah & B.C. Rana, Engineering Drawing and Computer Graphics, Pearson Education		