Course Code		17M11CS121		Semester ODD (specify Odd/Even)		Semester IInd DD VIII Session 2018 - 2019 Month from January 2019 – June 2019			Session 2018 - 9 – June 2019
Course Na	me	Cloud and W	Cloud and Web Services Software Engineering						
Credits			3-0-0	Conta	act l	Hours			
Faculty (N	ames)	Coordinato	r(s)	Dr. Sandeep Kumar Sing	gh				
		Teacher(s) (Alphabetica	ally)						
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS
CO1	Demor service	nstrate role of S es computing p	Software aradign	e engineering in combin ns for application develo	iing opm	cloud and ent.	l web	Understand	Level (Level 2)
CO2	Analyz applica	ze the requirer ations to Cloud	nents fo Service	r developing web serv s.	ices	and mig	rating	Analyzing	Level (Level 4)
CO3	Catego applica	orize various of ation, analytics	cloud se , netwoi	ervices into compute, k, and deployment.	stoi	age, data	abase,	Analyzing	Level (Level 4)
CO4	Make implen based	Make use of cloud and service engineering process to design, Apply Level (Level 3) implement, and test, deploy and execute reusable restful and soap based web services.							
CO5	Utilize GOOG	Utilize some of the real world web services Apply Level (Level 3) GOOGLE, AMAZON, EBAY, PAYPAL, FEDEX ETC.							
CO6	Appra: perform	ise different mance metrics,	desig testing	n patterns, Referen tools and design pattern	ce ns fo	Architec or Cloud.	tures,	Evaluate I	Level (Level 5)
Module No.	Title o Modul	f the le	Topics	in the Module					No. of Lectures for the module
1.	Distribu Enginee	uted Software ering	Distribu Patterns	ated Systems, Client and S s for distributed systems Development Life Cyc Design Strategies for Cl	Servo , So le fo oud	er Comput ftware as or Cloud F Adoption	ing, Arc Service Platform	chitectural , Software , Software	4
2.	Service softwar	-oriented e engineering	Service (SOA), Compo	-Oriented Computing, Restful Services, Ser sition.	Ser vice	vice-Orien Engineer	ited A ing an	rchitecture d Service	6
3.	Introdu and Wed Se	ction to XML ervices	XML T XML P	echnology Family, Struct rocessing, DOM,SAX, X	urin ML	g with XM in Practice	IL- DTI	D, Schema,	4
4.	Designi Implem Service	ing and nenting Wed s	Web Se	Services and Web Service Technologies-SOAP, WSDL, 6				6	
5.	Introdu Service	ction to Cloud s	Cloud S and Op Scaling Challer	bud Services, Cloud Deployment Models, Cloud Technologies 1 Open Source Software, Challenges - Scaling Computation, aling Storage, Multi-Tenancy, Availability, Limitations and hallenges in Cloud-Based Applications Development				6	
6.	Require Engined Amazo service	ements ering for on Web	Compu Analyti Manage Apps, A etc	te, Storage, Database, cs, Deployment and Ma ement, Salesforce.com, M Amazon Web Services, C	App anag icros	lication, (ement, Ide soft Office ur, Zendes	Content entity a 365, B k, Drop	Delivery, nd Access ox, Google box, Slack	2

7.	Cloud Services from Amazon	IAM services-users, groups, policy and roles, Elastic Compute Cloud, Databases on Amazon, Storage on Amazon services,	6			
8.	Address SE in Web services	Web Services Design Pattern, Metrics to Measure Web Service Performance.	3			
9.	Address SE in Cloud Cloud Services Design Pattern, Metrics to Measure Cloud Service services Availability, elasticity, Scalability, Load balancing, Auto scaling. Performance. Performance.					
		Total number of Lectures	43			
Evaluation	n Criteria					
Componen T1 T2 End Semes TA Total	nts ter Examination	Maximum Marks 20 20 35 25 (To be mapped from Assignment 1,2 and 3) 100				
Recommen	nded Reading materia	d • Author(s) Title Edition Publisher Vear of Publication etc.	(Text books			
Reference 1	Books, Journals, Repor	ts, Websites etc. in the IEEE format)	(10xt 000x3,			
1.	Software Engineering Frameworks for the Cloud Computing Paradigm Zaigham Mahmood and Saqib Saeed					
2.	Cloud Computing and Software Services Theory and Techniques Syed A hson and Dr. Mohammad Ilyas					
3.	Engineering Long-Last 0.9.0 Armando Fox and	ing Software: An Agile Approach Using SaaS and Cloud Computing I David Patterson	Beta Edition			
4.	Cloud Computing: A H	ands-On Approach Book by Arshdeep Bahga and Vijay K. Madisetti				
5.	Cloud Computing Desi	gn Patterns Book by Amin Naserpour, Robert Cope, and Thomas Erl				
6.	XML, Web Services, and the Data Revolution Book by Frank P. Coyle					
7.	Software Engineering H	Book by Ian Sommerville				
8.	Engineering Software As a Service: An Agile Approach Using Cloud Computing Textbook by Armando Fox and David Patterson					
9.	Design Patterns: Elements of Reusable Object-Oriented Software with Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the Unified Process by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, 2003					
10.	Cloud-Based Software	Engineering PROCEEDINGS OF THE SEMINAR NO. 58312107				

Subject Code	17M11CS122		Semester: Even (specify Odd/Even)	Semester Even Session 2018-2019 Month from Jan'19 to June'19		
Subject Name	Performance Evalu	valuation of Computing Systems				
Credits	3-0-0		Contact Hours	3		
Faculty	Coordinator(s)	Dr.	Kavita Pandey			
(Names)	Teacher(s) (Alphabetically)	Dr.	r. Kavita Pandey			

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Demonstrate the ability to describe the correct tools and techniques for computer system performance evaluation	Understand (level 2)
CO2	Identify the probability distribution in a given stream of data that corresponds to a source of randomness in a system.	Apply (level 3)
CO3	Design the appropriate model of a discrete, dynamic, stochastic system using the theory of random processes.	Apply (level 3)
CO4	Inspect the mathematical modeling techniques, Markov chains, queuing theory for analyzing the system.	Analyze (level 4)
CO5	Select the appropriate experiments and perform a simulation study of the given system.	Evaluate (level 5)

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Overview of Performance Evaluation	Need for Performance Evaluation, Systematic approach to Performance Evaluation, Selection of evaluation techniques and performance metrics	5
2.	Random Variables and Probability distributions	Discrete and continuous random variable, Expectation and variance, Bernoulli random variable, Binomial distribution, Poisson distribution, Geometric distribution, Normal and Exponential distribution, Normal approximation and Poisson approximation to binomial distribution, hazard rate function, , Comparing systems using sample data, Confidence interval	10
3.	Markov Process	Introduction and classification of stochastic processes, Discrete time and Continuous time markov chains, Birth and death processes, Transition probabilities, Steady state solution, Performance measure in terms of time spent and expected reward	6
4.	Queuing models	Basics of Queuing theory, Kendall notation, Little's Law, Analysis of a single queue	8

			with one server and multiple servers,				
5.		Simulation modeling	Intoduction to simulation, Types of simulation, Random number generation, a	6			
			survey of random number generators, seed				
			selection, testing random number generators				
(The art of data presentation Ratio Games	2			
6.		tools	The art of data presentation, ratio Games	2			
7.		Experimental design and analysis	Types of Experimental designs, 2^2 factorial	5			
			designs, General 2" factorial designs, 2" ^P fractional factorial designs				
			Total number of Lectures	12			
				72			
Eval	uation Crite	eria					
	ponents	Maximum Marks					
T2		20					
End	Semester Ex	amination 35					
TA		25 ()					
Tota	ıl	100					
Reco Book	ommended I ks, Journals,	Reading material: Author(s), Title, Reports, Websites etc. in the IEEE f	Edition, Publisher, Year of Publication etc. (Te format)	ext books, Reference			
	Raj Jain, "7	The Art of Computer Systems Perfor	rmance Analysis: Techniques for Experimental	Design,			
1.	Measureme	ent, Simulation, and Modeling", Wil	ley, 1991.				
2.	2. K.S. Trivedi, "Probability and Statistics with Reliability, Queueing and Computer Science Applications", John Wiley and Sons, 2001.						
3.	3. Ross, Sheldon M. "A First Course in Probability". Upper Saddle River, N.J.: Pearson Prentice Hall, 2006						
4.	Obaidat, Boudriga, "Fundamentals of Performance Evaluation of Computer and Telecommunication Systems", 2010, Wiley, ISBN 978-0-471-26983						
5.	Ross, Sheldon M. "Introduction to Probability Models". Amsterdam: Academic Press, 2010.						
6.	Fortier, Mi 5	chel, "Computer Systems Performa	nce Evaluation and Prediction", 2003, Elsevier,	ISBN 1-55558-260-			

Subject Code	17M17CS121	Semester: EVEN (specify Odd/Even)	Semester 2 nd , Session 2019 Month from JAN to MAY
Subject Name	PBL-II		
Credits	2	Contact Hours	0-0-4

Faculty (Names)	Coordinator(s)	1. Dr. VikasSaxena
	Teacher(s) (Alphabetically)	Dr. VikasSaxena

S.No	Course Outcome		Bloom's Level	
CO1	Develop a project software developm	on research based topic by Applying ent lifecycle processes	Level-6, Create	
CO2	Identify the issues	elated to development of project which	Level-	
CO3 CO4	Includes team work Prepare technical r specification, desig Will be able to crit peers.	Ides team work, test driven design, data collections etc2,0pare technical report detailing the softwareLeification, design, test plan, and implementation detailsAprbe able to critically review the projects developed byLes.S.		
Module-1	Feasibility & Team making	Making a team as suggested in PBL Guideline, Study team Sprit, peer review ethics, Literaturesurvey and selection and reporting a problem statement, Understanding PSP and TSP, Open Source based development	12	
Module-2	Analysis	Defining Scope, Domain study, Defining performance parameter, SRS and Peer review, Scheduling, Planing, define input and output	9	
Module-3	Design	TDD, Metrics and measurement, Design document, peer review, Validation,	9	
Module-4 Implementation and Testing		Demonstration, Test case developmen Optimizing Code	t, 18	
Module-5	Reprting	Prepare a user manual, Deplymentissue,Make installer,	12	

Total Evalu (i) Eac (First semes giving 6 x 8 = (ii) Re (iii) So (iv) Vi (v) Pe to the (vi) So instru TOTA	Critices, Calculate FT – MTTF,MBTF,MTTR etc d in Ordinance-PG) d week from the beginning of the ssment. A total of six assessments 0 udents - 10 - 16 n by the fellow students not belonging erned (can be - 8 moderated by the	60				
1.	Technol	logy specific reference book	c (#Net,Android, Java, Matlav, Python, M	angoDB, Scala		
	etc.			C		
2.	SWEBC	OK, https://www.computer.o	org/education/bodies-of-knowledge/softwa	re-engineering		
3.	ACM C	omputing Survey, csur.acm	l.org			
4.	IEEE Access, ieeeaccess.ieee.org					
5.	PSP(sm SEI Seri), A Self-Improvement Proc ies in Software Engineering	cess for Software Engineersby Watts S. Hu	Imphrey, Series:		

Course Code		17M21CS12	1	Semester Even Ser (specify Odd/Even) Ser Me		Semester II sem (M.Tech -DA) Session 2018 -2019 Month from Jan'19 to June'19			1 -DA) June'19
Course Na	me	CLOUD BAS	SED BIO	G DATA SYSTE	EMS II				
Credits			3-0-0		Contact H	Iours		3	3
Faculty (N	ames)	Coordinator	r(s)	Dr Rajalakshm	i				
		Teacher(s) (Alphabetica	ally)	Dr Parmeet Ka Dr. Rajalakshn	ur 1i				
COURSE	OUTCO	OMES						COGNIT	TIVE LEVELS
CO1	Outlin feature	ne and classify es and applical	v cloud ł bility	based big data s	ystems on I	basis of tł	neir	Unde	erstand (C2)
CO2	Apply analyz	MongoDB co e big data.	mmand	s to define, que	ry, manipu	late and		Apply (C	C3), AnalyzeC4
CO3	Manag queryi	ge Big Data an ng data using	d perfo Hive	rm data analysis	s by loading	g and		Ana	alyze (C4)
CO4	Utilize	HBase for rat	ndom, r	ealtime read/wr	ite access t	o big data	ì.		C3
CO5	Desigr databa	n a real-world se	applicat	tion by using M	ongoDB or	r HBase a	s the	Cro	eate (C6)
Module No.	Title o Modul	Title of the ModuleTopics in the Module					No. of Lectures for the module		
1.	Introdu Cloud Stores	action to Based Data	to d Data Cloud database architecture, Review of NoSQL systems: classification and applications, CAP Theorem				stems:	4	
2.	Cloud for Big Applic	Computing 5 Data ations	Iputing a hsFeatures of CC, Virtualization for Cloud databases, Amdahl's & Gustafson's law, Transactional models for Cloud Based Applications4				4		
3.	Docum Stores	nent Data	Characteristics of big data applications, Need for document 8 based data stores, MongoDB: documents, CRUD operations, aggregation operations, indexes, replication and sharding				8		
4.	Hadoo	p Framework	Archite Hadoo Bucket	ecture, Key Com p Hive: File For ting, Indexing et	ponents, D mats, Hive(c	ata Analy QL, Partiti	tics wi loning	th and	6
5.	Map re Progra Model	educe mming	Map R	educe programn	ning, MR w	vith Mong	oDB		3
6.	Colum Value Databa	nar, Key and Graph uses	Overvi	ew and use of H	Base, Red	is and Neo	o4j Da	tabases	6
7.	Multi-t Cloud	tenancy in Computing	Multi- Shared	tenant Database I Databases, Scho	Architectur ema mappir	re, Schema ng techniq	a Evolu ues fo	ution for r shared	3

		database and shared tables				
8.	DBaaS	Database As a Service, Using Mongo Atlas Service	2			
9. Big Data Programming models		Map reduce vs vertex centric vs data flow models	2			
10.	Interoperability and Monitoring of cloud environment	Interoperability of Cloud Storage Systems, Monitoring and Control of Cloud/Big Data solutions	4			
Total number of Lectures						
Eval	uation Criteria					
Com T1 T2 End S TA Tota	aponents Semester Examination	Maximum Marks 20 20 35 25 (Assignments (10), Quiz (5), Attendance (10)) 100				
Reco Refe	ommended Reading materi rence Books, Journals, Repo	al: Author(s), Title, Edition, Publisher, Year of Publication etc. rts, Websites etc. in the IEEE format)	(Text books,			
1.	Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.					
2.	David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph", Morgan Kaufmann/El sevier Publishers, 2013					
3.	Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2015					
4.	Kim H. Pries and Robert D 2015	unnigan, "Big Data Analytics: A Practical Guide for Managers	" CRC Press,			
5	Jimmy Lin and Chris Dye Human Language Technol	er, "Data-Intensive Text Processing with MapReduce", Syntheogies, Vol. 3, No. 1, Pages 1-177, Morgan Claypool publishers,	esis Lectures on 2010			

Empirical Research and Performance Evaluation

Subject Code	17M21CS122	Semester: EVEN (specify Odd/Even)	Semester 2 nd , Session 2019 Month from JAN to MAY
Subject Name	Empirical Research and Per	rformance Evaluatio	n
Credits	3	Contact Hours	L-T-P (3-0-0)

Faculty	Coordinator(s)	1. Dr. Vikas Saxena
(Names)	Teacher(s) (Alphabetically)	1. Dr. Vikas Saxena, 2. Dr. Manju

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Critically analyze the published research papers and Summarize literatures on a chosen topic.	Level-4
CO2	Analyze gaps in existing knowledge base & formulate research problems	Level-4
CO3	Develop research proposals, stating its context, scope, input data, standardization, and research methodology.	Level-6
CO4	Will be able to evaluate adequacy of the chosen performance metrics of their as well as peer's research project	Level-5

1.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
2.	Introduction	Meaning, purposes and methods of research, Ethics of research. Article Review. Introduction to The Process of Conducting Research. Reviewing literature, Framing the Research Problem.	10
3.	Basic Research	Introduction to Research Methodology,	10

	Methodology	Identifying research design and Creating Hypotheses, Design theories for given research problem. How novel and interesting is the theory developed?	
4.	Project Based Learning	Introduction to Performance-based learning. Introduction to various strategic methods to evaluate the performance. How to choose the performance measurement model. Introduction to Qualitative Research, inter- disciplinary approach.	10
Total number of Lectures	Performance Evaluation	Identifying the dependent and independent performance parameters/variables, for CSE & IT related developments, as well as specific to chosen domain, Identifying relations between the performance and variables, ideal values, its impact, TDD.	10
Evaluation (Criteria	n • · ·	40
Components T1 T2 End Semeste TA Total	r Examination 35 25 (Att 100	m Marks endance, Assignments, peer review, report and ubmission & demonstration)	
Recommend	ed Reading material:		

1.	C. R. Kothari, Research Methodology: Methods and Techniques, New Age Intl., 1985.
2.	Paul R. Cohen, "Empirical Methods for Artificial Intelligence", 1995, Cambridge, Mass:
	The MIT Press.
3.	Delbert C. Miller & Neil J. Salkind, "Elements of Research Design", 2002, 6th Edition,
4.	Andrew A. Chien, "Communications of the ACM", 1957, Association for Computing
	Machinery
5.	P. Bourque and R.E. Fairley, eds., Guide to the Software Engineering Body of Knowledge,
	Version 3.0, IEEE Computer Society, 2014; www.swebok.org

Large Scale Graph Algorithms & Analytics <u>Detailed Syllabus</u> Lecture-wise Breakup

Course Co	ode	17M22CS11	5	Semester Even (specify Odd/l	er EvenSemester M.Tech (II)Session 2018-19Odd/Even)Month from Jan-Jun					
Course Na	me	Large Scale (Graph A	lgorithms & Ana	alytics					
Credits			3		Contact I	Hours		3-0-0 (3 hrs per week)		
Faculty (Names)		Coordinato	r(s)	Dr. Adwitiya Sinha						
	Teacher(s) (Alphabetically)Dr. Adwitiya Sinha									
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS	
CO1	Extrac crawlin	t real-world laı ng, etc.	ge-scale	e data sets throug	gh streamin	g, scrappi	ng,	Understan (Level 2)	id Level	
CO2	Apply	large scale gra	phs spai	nning over comp	lex structur	res		Apply Lev (Level 3)	vel	
CO3	Design	1 methods to yi	eld requ	ired information	from large	e data sour	ces	Creation I (Level 6)	Level	
CO4	Model	game theoretic	e approa	ch to large netw	ork creation	n		Apply Lev (Level 3)	vel	
CO5	Analyz	ze the evolution	n proces	s of social web f	rom randor	n graph		Analyze L (Level 4)	Level	
CO6	Analyt	ically discover	pattern	and perform ran	king algori	thms		Analyze L (Level 4)	Level	
CO7	Compa algorit	Compare performance study of indexing, clustering and classification Evaluation Level (Lev algorithm 5)				n Level (Level:				
CO8	Propos	Propose framework for massive graphs				Creation I (Level 6)	Level			
CO9	Assess behavior of social network using power law distribution Evaluation Level (Leve 5)			n Level (Level:						
Module No.	Title o Modu	f the le	Topics	s in the Module					No. of Lectures for the module	
1.	Introduction to Introduction & Application of Large-scale Graph, Large-scale Graphs Characteristics, Challenges, Hyper Graphs, Multi Graphs,			4						

1.	Introduction to Large-scale Graphs	Characteristics, Challenges, Hyper Graphs, Multi Graphs, Graph Duals	4
2.	Data Sources & Categorization	Complex Data Sources , Categories – Social graphs (Facebook, Twitter, Google+), Endorsement graphs (Web Link Graph, Paper Citation Graph), Technological graphs (Map, Power Grid, Telephone Network), Recommendation Graphs (feedback analysis, product recommendation), Interest graphs, Biological graphs (neural network, food web)	6
3.	Basic Large-scale Graph Analysis	Basic Large-scale Graph Analysis (Efficient Search – Graph Traversal and Search Algorithms; Pattern Discovery -Matching Algorithms, Centrality Computing Algorithms, List Ranking Algorithms; Partitioning – Connected Component Algorithms, Graph-Cut Algorithms)	6

4	Ac sca Ar	7			
5	5. Di Co Ma	5			
6	5. Re Im	arge Graph epresentation & plementation	Adjacency Matrix Representation, Adjacency List Representation, V-Graph Representation (segmented vectors, storing graph topology), Graph Implementation Strategies & Software (RStudio, Python, Gephi, Pajek, SNAP, NetLogo, etc.)	7	
7	7. Advanced Research Topics Power Law Distribution in Social Networks, Models of Power Law Random Graphs, Game-Theoretic Approach to Modeling Network Creation, Rank Aggregation and Voting Theory, Recommendation Systems			7	
			Total number of Lectures	42	
Eval	uation Cr	riteria			
Com	ComponentsMaximum MarksTest-120Test-120End Semester Examination35TA25 (Quiz + Evaluative Assignment + Class Test + Attendance)Total100				
Test- Test- End S TA Tota	-1 -1 Semester I	Examination	20 20 35 25 (Quiz + Evaluative Assignment + Class Test + Attendance 100	2)	
Test- Test- End S TA Tota Reco	Ponents -1 -1 Semester I I Dommended rence Boo	Examination d Reading materia oks, Journals, Repor	20 20 35 25 (Quiz + Evaluative Assignment + Class Test + Attendance 100 II: Author(s), Title, Edition, Publisher, Year of Publication etc. ts, Websites etc. in the IEEE format)	e) (Text books,	
Test- Test- End S TA Tota Reco Refer	Ponents -1 -1 Semester I I Dommended rence Boo Narsingh Learning	Examination d Reading materia oks, Journals, Repor n Deo, Graph Theor g Private Limited, 1	20 20 35 25 (Quiz + Evaluative Assignment + Class Test + Attendance 100 al: Author(s), Title, Edition, Publisher, Year of Publication etc. ts, Websites etc. in the IEEE format) ry with Applications to Engineering and Computer Science, Pro 979	e) (Text books, entice Hall India	
Test- Test- End S TA Tota Reco Refer 1. 2.	Ponents -1 -1 Semester I I Ommendee rence Boo Narsingh Learning Douglas	Examination d Reading materia oks, Journals, Repor n Deo, Graph Theor g Private Limited, 1 B. West, Introducti	20 20 35 25 (Quiz + Evaluative Assignment + Class Test + Attendance 100 al: Author(s), Title, Edition, Publisher, Year of Publication etc. ts, Websites etc. in the IEEE format) ry with Applications to Engineering and Computer Science, Pre 979 ion to Graph Theory, Pearson Education India, 2015	e) (Text books, entice Hall India	
Test- Test- End S TA Tota Reco Refer 1. 2. 3.	Ponents -1 -1 Semester I I Ommendee rence Boo Narsingh Learning Douglas Matthew	Examination d Reading materia oks, Journals, Repor n Deo, Graph Theor g Private Limited, 1 B. West, Introducti 7 O. Jackson, Social	20 20 35 25 (Quiz + Evaluative Assignment + Class Test + Attendance 100 II: Author(s), Title, Edition, Publisher, Year of Publication etc. ts, Websites etc. in the IEEE format) ry with Applications to Engineering and Computer Science, Pre 979 ion to Graph Theory, Pearson Education India, 2015 I and Economic Networks, Princeton University Press, 2010	e) (Text books, entice Hall India	
Test- Test- End 3 TA Tota Reco Refer 1. 2. 3. 4.	Ponents -1 -1 Semester I I Ommendee rence Boo Narsingh Learning Douglas Matthew Santanu	Examination d Reading materia oks, Journals, Report of Deo, Graph Theor g Private Limited, 1 B. West, Introduction O. Jackson, Social Saha Ray, Graph T	20 20 35 25 (Quiz + Evaluative Assignment + Class Test + Attendance 100 al: Author(s), Title, Edition, Publisher, Year of Publication etc. ts, Websites etc. in the IEEE format) ry with Applications to Engineering and Computer Science, Pre 979 ion to Graph Theory, Pearson Education India, 2015 1 and Economic Networks, Princeton University Press, 2010 theory with Algorithms and its Applications, Springer India, 20	e) (Text books, entice Hall India	

Dieter Jungnickel, Graphs, Networks and Algorithms, Springer-Verlag Berlin Heidelberg, Reinhard Diestel, Graph Theory, Springer-Verlag Berlin Heidelberg, 2017 6.

Course Co	Code 17M25CS121 Semester Even (specify Odd/Even) Semester M 7 Session 2018 Month from J		Fech (DA) 2 nd sem -2019 Fan-May 2019					
Course Na	urse Name Cloud Based Big Data Systems Lab-II							
Credits		1 Contact Hours 2						
Faculty (N	ames)	Coordinator(s)	Dr Parmeet Ka	ur				
		Teacher(s) (Alphabetically)	Dr Parmeet Ka	ur				
COURSE	OUTCO	OMES					COGNITIVE LEV	VELS
CO1	Outline feature	e and classify clouessify and applicability	d based big data s	systems on	basis of	their	Classify Level 2	
CO2	Apply	MongoDB comman	ds to define and qu	ery big dat	a.		Apply Level 3	
CO3	Analyz Mongo	e big data with ag DB.	gregation and Ma	p Reduce 1	framewor	ks of	Analyze Level 4	
CO4	Analyz	e big data by loadin	g and querying ope	erations of l	Hadoop H	live	Analyze Level 4	
CO5	Assess access	performance of Ha to big data. [Level 5	doop HBase for ra	ndom, realt	time read/	write	Assess Level 5	
CO6	Develo databa	op a real-world appl se	ication by using M	longoDB o	r HBase a	is the	Develop Level 6	
Module No.	Title	of the Module		List of	Experim	ents		СО
1.	Revie Base Syste	ew of Cloud d Big Data ems	 Investigate the of Setup a Mongol 	concept of l DB Atlas da	Database a atabase cl	as a Se uster.	rvice.	CO1
2.	GUI Anal	based Big Data ytics platforms	3. Set up a data an	alytics wor	kflow on	KNIM	E platform.	CO1
3.	Intro Mon	duction to goDB	4. Install MongoD	B, Perform	MongoD	B CRI	UD operations	CO2, CO6
4.	Aggregation with MongoDB5. Perform data analysis with MongoDB aggregation operators 6. Perform data analysis with MongoDB Map Reduce frameworkCC CC				CO3, CO6			
5.	Intro Hado	oduction to 7. Load big data into Hive warehouse CO4, 8. Perform queries on data in Hive CO6				CO4, CO6		
6.	Scali	ng with Hive	9. Partition big dat 10. Cluster big dat	ta present in a present ir	n Hive Wa n Hive Wa	arehou arehou	se se	CO4, CO6
7.	Worl	king with HBase	11. Insert data in r 12. Query data in r	eal time int real time fro	o HBase om HBase	9		CO5
Evaluation Componen 1. Lat	Evaluation Criteria Components Maximum Marks 1. Lab Test1 20							

2.	Lab Test 2	20
3.	Lab Assignments	25
4.	Project	25
5.	Attendance	10
Total		100

Reco Refe	pmmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Zikopoulos, Paul, and Chris Eaton. Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media, 2011.
2.	Banker, Kyle. MongoDB in action. Manning Publications Co., 2011.
3.	Chodorow, Kristina. Scaling MongoDB: Sharding, Cluster Setup, and Administration. " O'Reilly Media, Inc.", 2011.
4.	Holmes, Alex. Hadoop in practice. Manning Publications Co., 2012.
5.	Lam, Chuck. Hadoop in action. Manning Publications Co., 2010.

Advanced Machine Learning Lab

		Lab-wise Br	<u>nabus</u> eakup			
Course Code	17M25CS112	Semester : E	Semester : Even Semester II Session Month from Jan- May		ession 2018 -2019 May	
Course Name	Course Name Advanced Machine Learning Lab					
Credits		1	Contact Hou	ırs	2	
Faculty (Name	es) Coordinator(s) Satish Chand	Ira			
	Teacher(s) (Alphabetical	y) Satish Chand	Ira			
COURSE OU	TCOMES			COGNITIV	E LEVELS	
CO1 Use Pyt	thon for implementin	ng fundamental mach	ine learning	Understandi (Level-2)	ng	
CO2 Deploy underst	Neural Network wit	h TensorFlow by acc make up a trained mo	cessing and odel.	Apply (Level-3)		
CO3 Apply I video ta	Deep Leraning Neura agging, music genre	al networks to model detection etc.	l object detection	n, Apply (Level-3)		
CO4 Evaluat perform	te different deep lear nances	ning models on the b	asis of their	Evaluate (Level-5)		
Module T No.	ïtle of the Module	List of Experiments			СО	
1. P:	ython undamentals	To write a program for writing the pixel values of an image			1	
2. Pr	ython undamentals	Write programs for	Data Sampling a	nd Visualizatior	n 1	
3. P:	FundamentalsPythonFundamentalsUse IPython (a web version provided by Jupyter nootbook) to to write a word count program. Your program should read a text document (download from https://raw.githubusercontent.com/python/cpython/master/				ibook) 1 11d aster/	
4. P: Fi	Python Implement neural networks for Classification of <i>four</i> Fundamentals character patterns				1	
5. To	TensorFlow For the data based on 1990 census data from California.Evaluate the accuracy of a model's predictions using RMSE.			ions 2		
	TensorFlow Improve the accuracy of a model of 6 above, by tuning its			ng its 2		
<i>6</i> . ¹⁰	hyperparameters CNN Implement CNN using TensorFlow for classifying MNIST 3					
6. 10 7. C.	NN	hyperparameters Implement CNN us images	ing TensorFlow	for classifying M	NIST 3	

9.	Deep Learni	ng	Implement AlexNet, GoogleNet and VGGNet and report their relative performance on same dataset.	4
Evaluation	Criteria			
Componen	ts]	Maximum Marks	
Mid Term E	Evaluation	20		
Periodic Ev	aluations	20		
End Term T	Test	20		
Viva		10		
Mini Projec	t	30		
Total			100	

Reco	Recommended Reading material:						
1.	Martin C. Brown, Python: The Complete Reference Paperback, Mc.Grow Hill, 2001						
2.	Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Orielly, 2018.						

Data Science Programming Lab-II Detailed Syllabus Lab-wise Breakup

Course Code	17M25CS213	Semester: Even		Semester: II Session 2018 -2019 Month from: Jan-May		
Course Name	Data Science Progra	Data Science Programming Lab-II				
Credits	1		Contact Hours		2	
Faculty (Names)	Coordinator(s)	Bharat Gupta				
	Teacher(s) (Alphabetically)	Bharat Gupta				

COURSE	COGNITIVE LEVELS	
CO1	Applying the basic syntax used for data manipulation in Python	Apply Level (C3)
CO2	Apply different methods for Exploratory Data Analysis	Apply Level (C3)
CO3	Apply different metrics for distance calculation	Apply Level (C3)
CO4	Apply and Compare different classification techniques, e.g., k-Nearest Neighbours, Logistic Regression, Support Vector Machine, Ensemble etc.	Apply Level (C3)
CO5	Apply Artificial Neural Network techniques i.e. Feed forward Network, etc. for solving classification problems.	Apply Level (C3)
CO6	Analyse the real world problem to identify the appropriate data science techniques for classification, clustering and Association rules	Analyse Level (C4)

Module No.	Title of the Module	List of Experiments	СО
1.	Python fundamentals	 Write a python program that displays the sum of all digits for a user entered number. Write a program that outputs all possible strings formed by using the characters a, c, t, o, and g. a particular character can appear only once and all the characters should be used in the formation of string. Write a python script that takes input from file representing a paragraph, and writes to a file named out.txt with all the stop words (a, an, the) removed. In an M.Tech. Program, 10 students register for 5 courses. Write a python program to first display and then plot the highest and average marks in each subject using NumPy 	CO1
2.	Python for Data	Write python scripts for the following:	CO1

Science To get the word count by using dictionary i.e. how many	
times each word has appeared in the given text	
Storing and accessing data of movie ratings given by a	
user by using dictionaries in a dictionary	
Creation and manipulation of tuples	
Creation and manipulation sets	
Creation and manipulation list	
Creating a list from another list - list comprehension	
Generating an iterator and a generator	
Passing a function as a variable	
Embedding functions in another function	
Passing a function as a parameter	
Creating anonymous functions with lambda	
Creating Using the map function	
Working with filters	
Using zip and izip	
Processing arrays from the tabular data	
Sorting lists	
3. Exploratory Data Write python scripts for the following:	CO2
Analysis Analyzing univariate data graphically	
Grouping the data and using dot plots	
Using scatter plots for multivariate data	
Using heat maps	
Performing summary statistics and plots	
Using a box-and-whisker plot	
Imputing the data	
Performing random sampling	
Scaling the data	
Standardizing the data	
Performing tokenization	
Removing stop words	
Stemming the words	
Performing word lemmatization	
Representing the text as a bag of words	
tracupation frequencies and inverse document	
Working with different distance measures	CO2
4. Distance Metrics Coloulate Menhatten distance measures	COS
Calculate Fuelidean distance	
Calculate Minkowski distance	
Calculate Chebyshev distance	
Working with similarity measures in data points	
Calculate Cosine similarity	
Calculate Jaccard similarity	
Finding outliers in univariate data	
Discover outliers using the local outlier factor methods	
Classification-I Download the User Modeling Dataset data and galit in	
$\mathbf{x} = \mathbf{x}$	CO4
5. Examination - 1 Evolution and the User Modeling Dataset data and split in training and testing dataset-	CO4
5. Download the oser Modeling Dataset data and split in training and testing dataset- 70% for training	CO4

		Implement a classification model using logistic regression	
		and k-NN algorithms.	
		Find out the accuracy of classification Model.	
		Perform 5-fold cross- validation.	
		Compare the result of both techniques using graph.	
6	Classification-II	Download the tic-tac-toe dataset and split in training and	CO4
0		testing dataset-	
		70% for training	
		30% for testing	
		Implement a classification model using logistic regression	
		and Support Vector Machine (SVM) algorithms.	
		Find out the accuracy of classification Model.	
		Perform leave-one-out validation method.	
		Compare the result of both techniques using graph.	
7	Artificial Neural	1. Download the User Modeling Dataset and split in	CO5
-	Network	training and testing dataset	
		70% for training	
		30% for testing	
		2. Implement a classification model using 2-layer neural	
		network.	
		Using sum-of-square error as loss function.	
		Using Sigmoid activation function.	
		3. Find out the accuracy of classification Model.	
		4. Visualize the result using graph.	
			001
8	Ensemble Modeling	1.Download the tic-tac-toe and split in training and testing	CO4
8	Ensemble Modeling	1.Download the tic-tac-toe and split in training and testing dataset-	CO4
8	Ensemble Modeling	1.Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing	CO4
8	Ensemble Modeling	 1.Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing 2 Implement an ensemble model using logistic regression 	CO4
8	Ensemble Modeling	 1.Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing 2.Implement an ensemble model using logistic regression, SVM and k-NN algorithms. 	CO4
8	Ensemble Modeling	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. 	CO4
8	Ensemble Modeling	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. 	CO4
8	Ensemble Modeling	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. 	CO4
8	Ensemble Modeling	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and 	CO4
8	Ensemble Modeling	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. 	CO4
8	Ensemble Modeling	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. 	CO4
8	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on 	CO4 CO6
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. 	CO4 CO6
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. Study minimum 8 quality research papers based on the 	CO4 CO6
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. Study minimum 8 quality research papers based on the selected topic. 	CO4 CO6
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. Study minimum 8 quality research papers based on the selected topic. Do the SWOT analysis of selected research 	CO4 CO6
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. Study minimum 8 quality research papers based on the selected topic. Do the SWOT analysis of selected research papers/reports. 	CO4
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. Study minimum 8 quality research papers based on the selected topic. Do the SWOT analysis of selected research papers/reports. Identify the research problem. 	CO4
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. Study minimum 8 quality research papers based on the selected topic. Do the SWOT analysis of selected research papers/reports. Identify the research problem. Propose your novelty/improvement in terms of algorithm/naw feature 	CO4
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. Study minimum 8 quality research papers based on the selected topic. Do the SWOT analysis of selected research papers/reports. Identify the research problem. Propose your novelty/improvement in terms of algorithm/new feature. Design the architecture for the proposed problem 	CO4
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. Study minimum 8 quality research papers based on the selected topic. Do the SWOT analysis of selected research papers/reports. Identify the research problem. Propose your novelty/improvement in terms of algorithm/new feature. Design the architecture for the proposed problem. 	CO4
8 9	Ensemble Modeling Mini Project	 Download the tic-tac-toe and split in training and testing dataset- 70% for training 30% for testing Implement an ensemble model using logistic regression, SVM and k-NN algorithms. Apply Bagging technique to ensemble. Find out the accuracy of classification Model. Perform 5- cross validation method. Compare the result of both techniques (accuracy and cross validation) using graph. Specify the broad topic of your mini project based on the Data Science. Study minimum 8 quality research papers based on the selected topic. Do the SWOT analysis of selected research papers/reports. Identify the research problem. Propose your novelty/improvement in terms of algorithm/new feature. Design the architecture for the proposed problem. Design the test bed. 	CO4

	9.	Perform the experimental analysis (in Python language					
	on	ly).					
	10	. Prepare your report.					
	11	. Write a short research paper based on your					
	CO	ntribution (10-20 pages).					
		Evaluation Criteria					
Components Maximum Marks							
	Lab Test1 20						
	Lab T	Fest2 20					
	Mini	Project 30					
	Regul	larity and performance 30					
	Total	100					

Reco Refe	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Jiawei Han, Micheline Kamber, Data Mining, Morgan Kaufmann Publishers, Elsevier, 2005
2.	Kimball R. and Ross M, The Data Warehouse Toolkit", Wiley
3.	Pujari, Arun K,Data mining and statistical analysis using SQL, Universities press
4.	Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining
5.	Soumen Chakrabarti, Mining the Web: Discovering knowledge from hypertext data", Morgan Kaufmann, Elsevier
6.	Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall,2003
7.	Mattison R., Web Warehousing and Knowledge Management", Tata McGraw-Hill.
8.	David Hand, Heikki Mannila and Padhraic Smyth ,Principles of Data Mining,PHI
9.	Transactions on Database Systems (ACM)
10.	IEEE Transactions on Knowledge & Data Engineering
11.	The VLDB Journal The International Journal on Very Large Data Bases

Detailed Syllabus Lab-wise Breakup

[<u></u>					<u>Dieakup</u>	, 					
Course Code 17M27C			1	Semester Od (specify Odd/	d Even)	Semeste Month f	er II From J	Session 20 an to July	18 -2019		
Course Na	ame	Project Base	d Learni	ng I (Open Data	Centric Ser	rvices Dev	elopn	nent)			
Credits			2		Contact I	Hours		4			
Faculty (N	lames)	Coordinato	r(s)	Tribhuwan Ku	ımar Tewari	i					
		Teacher(s) (Alphabetic	ally)	y) Monali Mavani, Shilpa Bubhkar							
COURSE	OUTCO	OMES						COGNITI	VE LEVELS		
CO.1	Conduct work in and fac	et literature revie the area and pr ulty members	ew to con repare a p	mpare and contras roject proposal to	st their project	et with exis	ting eers	Understandir II)	ng Level (Level		
CO.2	Develo respons	p an ability to fo sibilities to build	unction in l a projec	task oriented tea t on open data	m, divide rol	e		Understandir III)	ng Level (Level		
CO.3	Unders commu	tand professionanicate effective	al and eth ly among	ical responsibility st team members,	/ & acquire a peers & eva	bility to luators		Analyzing L	evel (Level II)		
CO.4	Analyz applica API, in	e and identify C tions over the la plementation; p	pen Sour test techr blan & su	rce framework for nologies:, .Net Co bmit project deve	writing data re, C# 7.3, A lopment time	-centric SP.NET W eline	/eb	Applying Le	vel (Level IV)		
CO.5	Apprais their cu	se by giving mil rrent progress.	estone pr	esentations to the	ir peers and f	faculty abo	ut	Evaluating L	evel (Level V)		
CO.6	Prepare method details.	e technical repor ology, software	t detailing specifica	g the problem stat ation, design, test	tement, propo plan, and imp	osed plementatio	on	Creating Lev	el (Level VI)		
Module No.	Title of	f the Module		Li	ist of Exper	riments			СО		
1.	Conduct review	duct literatureConduct literature review to compare and contrast their project with existing work in the area and prepare a project proposal to be delivered to their peers and faculty membersCO.					CO.1				
2.	Divide r responsi build a p open dat	Divide role Develop an ability to function in task oriented team, divide role CO.2 responsibilities to build a project on open data CO.2 popen data					CO.2				
3.	Commu effective team me & evalu	nicate ely amongst embers, peers ators	te Understand professional and ethical responsibility & acquire ability CO.3 to communicate effectively amongst team members, peers & evaluators						CO.3		
4.	Plan & s develop	submit project ment timeline	Analyze Python	e and identify vari libraries for proje	ous open dat	ta framewo tation; plan	rks, RF & sub	ESTful APIs, mit project	CO.4		

Appraise by giving milestone presentations to their peers and faculty

CO.5

development timeline

about their current progress.

Presentations

5.

6	Prepare technical	Prepare technical re	Prepare technical report detailing the problem statement, proposed methodology, software specification, design, test plan, and			
	lepole	implementation deta				
Evaluatio	n Criteria					
Compone	nts	Max	ximum Marks			
Fortnigh	tly assessment		48			
Peer gro	up evaluation		8			
Self asses	ssment by the stude	ent	8			
Viva-voc	e at the end of the	semester	16			
Semester	end presentation b	by the students	10			
Report a	t the end of the sem	nester	10			
Total		100				

Internet of Things

Course Code	18M12CS115	Semester (Ev	en)	Semeste Month f	r II Session 2018 -2019 From Jan to June, 2019
Course Name	Internet of Things				
Credits	3		Contact H	Iours	3 Lectures
Faculty (Names)	Coordinator(s)	Dr. Prakash Kumar			
	Teacher(s) (Alphabetically)	1. Dr. K. 2. Dr. Pr.	Rajalakshn akash Kuma	ni ar	

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Identification of purpose, requirements and description of various components and specifications of IoT devices, applications and protocols.	Understand (level 2)
CO2	Develop the Process Model, Domain Model, Information Model and Service Model specifications using IoT communication protocols.	Apply (level 3)
CO3	Analyze the characteristics and functioning of various IoT specific communication protocols used in different layers of IoT devices.	Analyze (level 4)
CO4	Evaluate various IoT protocols and components for building IoT applications for real world problems and sustainable solutions.	Evaluate (level 5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Internet of Things	Introduction to Internet of Things, Layers in IoT, IoT Communication Protocols at different layers, Design steps for IoT, IoT Enabling Technologies, IoT Levels.	5
2.	IoT platforms design methodology	IoT Design methodology, Purpose and requirement specifications, Process, Domain, Information Model specifications, Service specifications and application development.	5
3.	IEEE 802.15.4	The Physical Layer, MAC Layer, MAC Layer Frame Format and their uses.	4
4.	ZigBee	ZigBee Architecture, Association, ZigBee Network Layer, APS Layer, ZDO, Security, ZCL etc.	4
5.	Design Principles for Web Connectivity	Web Communication Protocols for Connected Devices, Message communication Protocols, Web connectivity : SOAP, REST, HTTP RESTFUL, Web Sockets	7

6.	Internet Connecting Principles	Inter Connectivity, Internet Based Communication, IP addressing in IoT, Media Access Control, and Application	4	
		Layer Protocols: HTTP, HTTPS, FTP, Telnet, etc.,		
7.	Data Acquiring,	Data Acquiring and Storage, Organizing the data,	4	
	Organizing,	Transactions, Business Processes, Integration and		
	Processing and	Enterprises Systems, Analytics, Knowledge Acquiring,		
	Analytics	Managing and Storing process		
8.	Data Collection,	Cloud computing paradigms for Data Collection, Storage	6	
0.	Storage and	and Computing, Cloud Service Models, IoT Cloud-based		
	Computing using	Services.		
	Cloud Computing			
9	IoT Applications	Energy Savings in IoT, Green IoT Applications	3	
	for Sustainable	developments for sustainability.		
	developments.			
		Total number of Lectures	42	
Evaluation	ı Criteria			
Components		Maximum Marks		
T1		20		
T2		20		
End Semester Examination		35		
ТА		25 (Assignments, Presentations of assigned topics)		
Total		100		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,
Reference Books, Journals, Reports, Websites etc. in the IEEE format)1.Internet of Things: A Hands-On Approach, Arshadeep Bagha and Vijay Madisetti.

2	The Internet of Things: Key Applications and Protocols, Oliver Hersent, David Boswarthick, Omar Elloumi, Wiley.
3.	Internet of Things: Architecture and Design Principles, Raj Kamal, McGrawHill
4.	6LoWPAN: The Wireless Embedded Internet, Zach Shelby, Carsten Bormann, Wiley
5.	Building the internet of things with ipv6 and mipv6, The Evolving World of M2M Communications, Daniel Minoli John Wiley & Sons
т.	

L

Nature Inspired Computation and Applications

Detailed Syllabus

Subject Code	19M12CS211	Semester Even	Semester Session 2018-2019 Month from Jan to June
Subject Name	Nature Inspired Computation and Applications		
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	Dr. Anuja Arora
(Names)	Teacher(s) (Alphabetically)	Dr. Anuja Arora

SNO	Description	Cognitive Level (Bloom Taxonomy)
CS211.1	Identify the need of computational complexity, evolutionary, and approximate algorithms.	Apply Level (Level 3)
CS211.2	Understand nature inspired algorithms, its strength, weakness, and suitability	Understand Level (Level 2)
CS211.3	Make use of nature-inspired algorithms to design, learn and optimize problem	Apply Level (Level 3)
CS211.4	Evaluate performance of Nature inspired algorithm in context of problem solving in optimized manner	Evaluate Level (Level 5)
CS211.5	Create a real environment effective artificial system with the use of properties exhibited from nature.	Create Level (Level 6)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Nature Inspired Computation Fundamental	Computational Complexity, NP- Hardness, Reductions, Approximation	5
		Algorithms vs. Heuristics, Newton Raphson Method, Characteristics of Natural Systems/Algorithms	

		Total number of Lectures	42
11	Case Studies and Applications	World Wide Web, Social Network, Image Processing, Earthquake, routing & scheduling	5
5	Modeling and problem solving	Artificial Neural network, , Artificial Immune System,Self-organizing Maps, Pattern Recognition and Binding, Forest's Algorithm, Harmony Search, Hebbian Learning, Boltzmann Machines	7
4	Swarm Intelligence	Particle Swarm Optimization, PSO Sample Problems, Ant Colony Optimization and real life case study solutions, Artificial Bee Colony Algorithm, Gravitational Search Algorithm, Diffusion Search	12
3	Evolutionary Algorithms	Genetic Algorithm, GA Encoding Techniques, Selection techniques, Variation(Crossover and Mutation) Techniques, Genetic Programming Differential Evolution Algorithm, sample problems, DE-Crossover and Mutation techniques	8
2.	Empirical and Evolutionary Algorithms	Empirical Algorithms, Empirical hardness. Evolutionary Algorithms, optimization Fitness landscape Analysis, EA Theory	5

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Evolutionary Optimization Algorithms, D. Simon (2013), Wiley.	
2.	Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies, D.Floreano and C. Mattiussi (2008), MIT Press.	
3.	Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications, L. N. de Castro (2006), CRC Press.	
4.	Leandro Nunes de Castro, "Fundamentals of Natural Computing, Basic Concepts, Algorithms and Applications", Chapman & Hall/CRC, Taylor and Francis Group, 2007	
5.	Marco Dorrigo, Thomas Stutzle," Ant Colony Optimization", PHI,2005	
6.	Albert Y.Zomaya, "Handbook of Nature-Inspired and Innovative Computing", Springer, 2006	