Jaypee Institute of Information Technology

Integrated M.Tech. Biotechnology

Semester IX

Course Descriptions

Detailed Syllabus

Lecture-wise Breakup

Course Code	15B1NBT833	Semester Odd (specify Odd/E	Even) Mor	ester Summer th from June t	Session to July	2018-2019
Course Name	Plants Diseases & Bi	ntechnology	I			
Credits	3		Contact Hours		3	

Faculty (Names)	Coordinator(s)	1. Prof. S Krishna Sundari
	Teacher(s) (Alphabetically)	1. Prof. S Krishna Sundari

COURSE	OUTCOMES	COGNITIVE LEVELS
CO833.1	Comprehend different types of plant diseases, classification of pathogens and host responses.	Understand Level(C2)
CO833.2	Compare different disease control mechanisms and Risks involved	Apply Level(C3)
sssCO83	Examine advances in the field of plant biotechnology to develop	Analyze Level(C4)
3.3	disease resistant plants	
CO833.4	Apply modern tools for disease management and achieve sustainable agricultural productivity	Analyze Level(C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Agriculture productivity & Global food prospects, Impact of disease on crop productivity, existing methods (chemical	3

		pesticides, insecticides) of plant disease control	
2.	Plant Physiology & plant genome	Plant physiology, Genetic basis of Plant genes, growth and development, response to disease/infection in plants, plant signaling pathways	8
3.	Plant diseases	Plant pathology and disease cycle, principle groups of plant pathogens belonging to: Bacteria, fungus, virus, nematodes, insect pests, other factors, diseases with major impact on plant productivity	10
4.	Molecular plant pathology	Molecular basis of genetic modification and crop improvement, RNAi technology, Baculovirus mediated bio- control and other tools to generate disease resistance	5
5.	Plant disease control	Classical breeding to modern genetic engineering tools for plants, plant secondary metabolites and their role in systemic acquired resistance (SAR)	5
6.	GM plants	Enhancing resistance with plant genes, developing genetically modified plants with improved disease resistance	5
7.	Bio-control methods	Integrated pest management, Pathogen derived resistance, Antimicrobial proteins, Plant bodies, PGPR (plant growth promoting rhizobacteria) and their role in disease control	6
		Total number of Lectures	42
Evaluation	n Criteria		
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25 () 100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 Plants, genes and crop biotechnology. Maarten Chrispeels, David Sadava, 2nd edition, published by American society of plant biologists & ASPB foundation.
 Molecular Biotechnology: principles and Applications, Bernard Glick, Jack J Pasternack, Cheryl Patten, 4th edition, ASM press

Detailed Syllabus

Lecture-wise Breakup

Course Code	15B1NBT834	Semester Sum	imer	Semeste 2019	er Summer	Session	2018 -
				Month	f rom May to	July	
Course Name	Aquaculture						
Credits	4		Contact I	Hours		9	

Faculty (Names)	Coordinator(s)	Dr. Priyadarshini
	Teacher(s) (Alphabetically)	 Dr. Priyadarshini, Dr. Ashwini Mathur

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Explain scope & significance of aquaculture at global and Indian scenario	Understand level (C2)
CO2	Compare different cultivation techniques for aquatic organism	Understand level (C2)
CO3	Apply sustainable aquaculture practices related to environment, community, business and farm management	Apply Level (C3)
CO4	Identify hatchery and cultivation technology	Analyze level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	History, definition, scope and significance of aquaculture, comparison of aquaculture with agriculture and commercial fisheries. Different aquaculture systems. Aquaculture - Global and Indian Scenario.	2
2.	Pond ecology	Ecology of culture ponds. Nutrient cycles, Laws of limiting factor. Fertilizations and manuring. Liming and application of fertilizers and manures. Significance and important groups of phytoplankton, zooplankton and benthos in culture ponds. Nutrient dynamics, algal blooms.Management of water and soil quality parameters.	4

		Correction of pH, measures for increasing the concentration of oxygen and reducing the concentration of ammonia and hydrogen sulphide.	
3.	Cultivable Freshwater fishes	Criteria for the selection of species, Cultivable freshwater fishes- carps, airbreathing fishes, tilapia, trout, freshwater prawn, frogs.	4
4.	Brackishwater culture and mariculture	Brackishwater resources and fishes of commercial importance – Milk fish, mullet, pearl spot, seabass, shrimps, crabs; selection of site. Major brackish water culture systems in India, prawn filtration, Basabhanda, kharlands – Different organisms in Mariculture – mussel, edible oyster, pearl oyster and sea weeds. Scope of open sea farming in India. Important fin fishes cultured in the open seas and the culture systems. Present status and recent developments in mariculture.	4
5.	Culture of Prawns, Molluscs and Frog	Cultivable species of freshwater prawns and their biology – culture of <i>Macrobrachiumrosenbergii</i> , Freshwater pearl culture – Present status of freshwater pearl culture and production in India. Prospects of culturing frog in India.	4
6.	Aquaculture for stable environment	Sewage fed fish culture, sewage treatment, Sewage cum fish culture in India. Fish in relation to public health, Larvivores fishes and mosquito eradication usingfishes.	4
7.	Reservoir fisheries	Major reservoirs in India, measures for increasing production from reservoirs in India and abroad, Game fishery.	2
8.	Integrated Farming	Recent development in integrated farming, Rice cum fish culture, Duck cum fish culture, Poultry cum fish culture and Pig cum fish culture. Organic aqua farming. Fish culture in cages and pens. Running water fish culture.	6
9.	Systems in freshwater Aquaculture	Fish culture in cages and pens, race way, indoor tanks, canals, silo culture, Aquaponics. Monoculture, polyculture, composite fish culture.	4
10.	Hatchery technology, design and managment	Criteria for site selection of hatchery and nursery, design and function of incubators, hatchery system-design and operation, hatchery protocols, rearing technology.	4

11.	Culture of aquatic plants	Cultivation of different aquatic plants.	2		
12.	Economics	Marketing and economics of fish seed and fish.	2		
	<u>"</u>	Total number of Lectures	42		
Evaluation	Evaluation Criteria				
Components Maximum Marks					
T1		20			
T2		20			
End Semester Examination		35			
ТА		25 (Asignment1, Assignment2)			
Total		100			

Reco Refe	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	T.V.R. Pillay, Aquaculture: Priciples& Practices, Fishing News Books, New Book, Cambridge University Press, Cambridge, UK
2.	New M B, Freshwater prawn farming, 2000, CRC Publication.
3.	R. L. Welcomme: Inland Fisheries: Ecology & Management, 2001, Fishing News Books.
4.	S De Silva (ed): Reservoir and culture based Fisheries: Biology & Management, 2001, ACAIR Proceedings.
5.	M. C. M. Beveridge and B. J. McAndrew: Tilapias: Biology & exploitations, 2000, Kluwer Academic Publishers, London.

Detailed Syllabus

Lab-wise Breakup

Course Code	17M15BT112	Semester Even	Sem	nester II Session 2018-2019
		(specify Odd/Ev	ven) Mon	nth from January to June
Course Name	Biotechniques Lab-	Π		
Credits	3	0	Contact Hours	6

Faculty (Names)	Coordinator(s)	Prof. Pammi Gauba	
	Teacher(s) (Alphabetically)	Dr. Indira P. Sarethy, Prof. PammiGauba, Dr.ReemaGabrani, Dr. Shweta Dang, Dr.Vibha Rani	

COURSE OUTCOMES		COGNITIVE LEVELS
CO1	Experiment with high end analytical techniques in biotechnology	Apply (Level C3)
CO2	Develop basic and applied skills in cell culture	Apply (Level C3)
CO3	Examine and analyse disease-specific drug targets	Analyze (Level C4)
CO4	Analyse bioactive compounds from plant and microbial systems	Analyze (Level C4)

Module No.	Title of the Module	List of Experiments	CO
1.	Analytical techniques	To learn andperform High-performance liquid chromatography (HPLC); Prepration and characterization of plant extracts using HPLC; To learn and perform Gas chromatography	3
2.	Cell culture techniques	Preparation and sterilization of media for cell culture; subculture of animal cell lines; analysis and counting of adherent cells; cell cytotoxicity determination	3
3.	Drug target analyses	Analyze drug targets by biochemical and fluorescent assays	3
4.	Natural product	Extraction of antioxidant compound from in vitro grown	3

	analyses	plant and bacteria; purification of compound; antioxidant capacity analyses of extracts	
		Total	12
Evaluation Criteria			
Components		Maximum Marks	
Mid-Term V	Viva	20	
Day-to-Day (Lab record,			
attendance, performance)		60	
Final Viva		20	
Total		.00	

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Biotechnology Procedures and Experiments Handbook http://site.iugaza.edu.ps/mwhindi/files/BIOTECHNOLOGY-PROCEDURES-AND-EXPERIMENTS- HANDBOOK.pdf		
2.	J.M. Davis, "Basic Cell Culture – A Practical Approach", 2 nd edition Oxford University Press, 2002		
3.	Lab manual on Biotechniques http://inpressco.com/lab-manual-on-biotechniques/		
4.	Methods standardized in lab		