	Lecture (file Di cultur					
Subject Code	16M3NEC361	Semester: Even (specify Odd/Even)	Semester II Session 2019-20 Month from July 19 to Dec 19			
Subject Name	Estimation over Distr	ributed Networks				
Credits	3	Contact Hours	3			

Faculty	Coordinator(s)	1. Vikram Karwal
(Names)	Teacher(s) (Alphabetically)	Vikram Karwal

S.No	Course Outcome	Cognitive levels/Blooms taxonomy
C121.1	To course aims to familiarize students with the importance of distributed adaptation, optimization and learning by multi-agent systems over distributed networks	Understanding Level (C2)
C121.2	The course aims to help student analyze efficient processing of Massive data using Distributed Networks.	Analyzing Level (C4)
C121.3	The course helps students understand, Importance and Need of distributed Networks.	Analyzing Level (C4)
C121.4	The course helps students to analyze local information available at individual nodes in a distributed manner.	Applying Level (C3)
C121.5	The students will be able to compute the computational complexity and compare various distributed algorithms.	Evaluating Level (C5)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction and Background Material	Important matrix and Linear Algebra results, Convexity criterion, computation of complex Gradients and Hessian, Lipschitz conditions, regression, log-logistic cost function, mean- value theorems	6
2.	Single-Agent	Stochastic-gradient optimization,	6

	Adaptation and Learning	convergence and stability properties, constant and variable step size conditions, Mean-square error performance	
3.	Centralized Adaptation and Learning	Batch and centralized processing, convergence, stability and performance	5
4.	Multi-Agent Network Model	Importance of Distributed Networks vs. Centralized processing, distributed adaptation over networks, distributed learning over networks, optimization over distributed networks, importance of localized interactions among agents, their applications in social networks, biological networks.	9
5	Stability & Performance	Performance analysis of various estimation algorithms their convergence analysis, learning curves and their stability, robustness and resilience to failure, privacy and secrecy considerations among agents.	8
6.	Advanced Network Topologies	Benefits of co-operation, combination strategies, Role of Informed Agents, Adaptive Combination strategies, Asynchronous strategies, clustering	6
		Total number of Lectures	40
Evaluation (
Components	S Max	imum Marks	
T1	20		
T2	20		
End Semeste	r Examination 35		
	25		
Total	100		

Recommend	Recommended Reading material:				
1.	A. H. Sayed, <i>Adaptation, Learning, and Optimization over</i> <i>Networks,</i> NOW Publishers, 2014.				
2.	S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.				
3.	T. Kailath, A. H. Sayed, B. Hassibi, Linear Estimation, Prentice Hall, 2000				

Course		18M11GE11	Semest	er	Odd	Seme	ster I	Session 20	19 -2020
Code		1				Mont	h from	July to Dece	mber
Course Name		Research Meth	odology	&	Intellect	ual Proj	perty Right	S	
Credits		2	Contact 2-0-0 Hours						
Faculty (Names)		Coordinator(s	Prof.	Prof. B. P. Chamola					
		Teacher(s) (Alphabeticall)	y Prof.	B	. P. Cha	mola			
COURSE	OU	TCOMES:						COGNITIVE LEVELS	
After purs able to:	suing	; the above mer	ntioned c	cou	irse, the	studen	ts will be		
C101.1	und	lerstand the basi	c concep	ts a	and types	s of res	search	Understandin (C2)	g Level
C101.2	defi met	ine a research pr thodologies and	oblem, it analyze i	ts f res	formulati earch rel	on, ated in:	formation	Analyzing Le	vel (C4)
C101.3	foll filin	ollow research ethics, understand IPR, patents and their Understanding Level iling related to their innovative works. (C2)					g Level		
C101.4	und the pro	derstand and analyze the statistical data and apply e relevant test of hypothesis in their research oblems					vel (C4)		
Module No.		Title of the Module	Topics	Topics in the Module				No. of Lectur es for the modul e	
1.	Res	search	What i researc	is 1 2h?	research? ' How to	' Types read a	s of researc Journal pap	h. What is not per?	3
2.	Rep	port writing	How to write report? Use of Mendeley in report 4 writing. How to write a research paper? Problem identification and solving.						
3.	Eth Res met	ics, IPR and search thodologies	Resear rights, researc attemp	Research ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in research process and common methodologies to attempt solution to research paper.				8	
4.	Bas and dist	ics of statistics probability ributions	Basic s Some	sta coi	tistical co mmon pr	oncepts obabili	. Handling ty distribut	of raw data, ions.	7
5.	Tes	t of hypothesis	Hypot	nes	sis testing	g. Parai	metric and 1	10n-	8

		and regression analysis	parametric data, Introduction to regression analysis.	
			Total number of Lectures	30
	(Co	ourse delivery method	: open ended discussion, guided self-study, lectures)	
Eva	luatio	on Criteria		
Cor	npone	ents	Maximum Marks	
Mid	l Term	Examination	30	
End	l Seme	ster Examination	40	
Ass	ignme	nts	30 (Viva, Quiz, Assignments)	
Tot	al		100	
Rec etc.	commo (Text	ended Reading mater books, Reference Bo	rial: Author(s), Title, Edition, Publisher, Year of Publoks, Journals, Reports, Websites etc. in the IEEE form	lication nat)
1.	Stua Scier	rt Melville and Wa nce & Engineering Stu	yne Goddard, Research Methodology: An Introduc idents, Kenwyn, South Africa : Juta& Co. Ltd., 1996.	ction for
2.	Kotł Inter	nari, C.R., Researc national, New Delhi, 2	h Methodology: Methods and Techniques, Ne 2009.	w Age
3.	Kun Editi	har, Ranjit, Research on, Sage Publications	n Methodology: A Step by Step Guide for Beginn Ltd., 2005.	ers, 2nd
4.	Ram	appa, T., Intellectua	l Property Rights Under WTO, S. Chand, New Delhi,	2008.
5.	Way Kenv	ne Goddard and S wyn, South Africa : Ju	Stuart Melville, Research Methodology: An Intro ta& Co, 2001.	duction,

Course Code	19M12EC112	Semester Odd semester (specify Odd/Even)		Semester Odd semester Session 2019-20 Month from July 2019 to Dec 2019.	
Course Name	Dr.VijayKhare				
Credits	3	Contact		Hours	45
Faculty	Coordinator(s)	Dr. Vijay Kha	are		

(Names)	Teacher(s) (Alphabetically)	Dr. Vijay Khare

COURSE	OUTCOMES	COGNITIVE LEVELS
CO120.1	Explain soft computing techniques and their roles in building	Understanding(Level II)
	intelligent machines	
CO120.2	Apply neural networks to pattern classification and regression	Applying (Level III)
	problems	
CO120.3	Apply fuzzy logic and reasoning to handle uncertainty and solve	Applying(Level III)
	engineering problems	
CO120.4	Apply genetic algorithms to combinatorial optimization	Applying (Level III)
	problems	
CO120.5	Evaluate and compare solutions by various soft computing	Evaluating (Level V)
	approaches for a real time problem use existing software tools.	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Introduction of soft computing .evolution of computing, hard computing and soft computing, soft computing methods.	2
2.	Fundamental of neural network	Introduction of neural network , Neuron models and n/w architecture Learning in Artificial Neural Networks; Supervised, Unsupervised and Competitive Learning paradigms, perceptron neural network: Adaline and Madaline	7
3.	Feed forward neural networkand applications	Multi layer Feed forward neural network, back propagation algorithms and radial basis neural network, Application of neural network	8
4.	Associated Memory	Auto associative memory, Hetro associated memory bidirectional associated memory	5
5.	Unsupervised learning	LVQ(Learning Vector Quantization) Self organization map, Adaptive resonance theory	6
6.	Fuzzy logic	Introduction, classical and Fuzzy sets & operations	9

		crisprelation and fuzzy relation			
7. Genetic		Fuzzy rules based system, Fuzzy Controller Design			
		Introduction of Genetic Algorithms, Genetic	8		
	Algorithms	Operators, Crossover and mutation properties, Genetic			
		Algorithms in Problem Solving,			
		Total number of Lectures	45		
Evaluatio	n Criteria				
Compone	nts	Maximum Marks			
T1		20			
T2		20			
End Semester Examination		35			
ТА		25			
Total		100			
Recomme	ended Reading mat	erial: Author(s) Title Edition Publisher Year of Publicat	tion etc. (Text		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1	Jacek M. Zurada, Introduction to Artificial Neural Systems, Jaico Publishing House, 1994
2	Martin T. Hagan, Howard B. Demuth, Mark Beale, Neural Network Design-Martin Hagan, 2014
3	.SimonHykins, Neural Networks-A Comprehensive FoundationPrentice Hall, 1999
4	S. N. Sivanandam& S. N. Deepa, Principles of Soft Computing, Wiley - India, 2007
5	M. Mitchell, An Introduction to Genetic Algorithms, Prentice-Hall, 1998
6	Rajasekharan and Rai, Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications, PHI-2003

Lecture wise Dreakup				
Subject	17M21EC111	Semester Odd	SemesterI Session2019-20	
Code			Month from Julyto December	
Subject Name	Microelectronic Devices Technology and Design Interface			
Credits	3	Contact Hours	3	

Faculty	Coordinator(s)	Dr Saurabh Chaturvedi
(Names)	Teacher(s) (Alphabetically)	Dr Saurabh Chaturvedi

COURSE	OUTCOMES - At the end of the course, students will be able to:	COGNITIVE LEVELS
C111.1	-Relate and recall the concepts of semiconductor physics, devices and technology	Remembering Level (C1)
C111.2	-Understand the MOS structure and explain the operation of MOS transistors	Understanding Level (C2)
C111.3	-Apply the knowledge of MOSFET scaling, short-geometry effects and fabrication techniques in advanced nanoscale devices and circuits	Applying Level (C3)
C111.4	-Analyze the device layout and characteristics -Analyze design flow and design interface	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures
1.	Semiconductor physics	Semiconductor materials, Energy bands, Intrinsic carrier concentration, Doping, Carrier drift and diffusion, Generation and recombination processes, Continuity equation, Thermionic emission process, p-n junction	11
2.	MOS capacitor	MOS structure, MOS system under external bias	7
3.	MOS transistor	Physical structure of MOS transistor, Types, Threshold voltage, MOSFET operation, Layout, MOSFET capacitances, SPICE models	11
4.	Scaling of MOS transistor	Types of scaling, Short-geometry effects, Introduction to SPICE model parameters	4
5.	Fabrication of MOS transistor	Basic steps, n-well CMOS process, Twin-tub technology	3

6.	Overview of CMOS/VLSI technology	CMOS technology, VLSI design methodologies, VLSI design flow, Design hierarchy, VLSI design styles	3
7.	Design interface	CMOS lambda-based design rules, Foundry interface	3
		Total number of lectures	42
Evaluation C	riteria		
Components	Maximum	n Marks	
T1	20		
T2	20		
End Semester	Examination 35		
ТА	25		
Total	100		

Recommended Reading Material:			
1.	S. M. Sze, Semiconductor devices: Physics and technology, 2nd ed., John Wiley & Sons, 2009.		
2.	A. B. Bhattacharyya, <i>Compact MOSFET models for VLSI design</i> , 1st ed., Wiley-IEEE Press, 2009.		
3.	Y. Tsividis, <i>Operation and modeling of the MOS transistor</i> , 2nd ed., Oxford University Press, 2009.		

Course Code	13M1NEC338	Semester Odd (specify Odd/Even)	SemesterIst Session2019-20Month fromJuly toDecember
Course Name VLSI Physical		sign	
Credits	3	Contact Hours	3-0-0

Faculty	Coordinator(s)	Dr. Shruti Kalra
(Names)	Teacher(s) (Alphabetically)	

COURSE	OUTCOMES	COGNITIVE LEVELS
C141.1	Recall the basics of IC design	Remembering Level (C1)
C141.2	Understand the process of VLSI layout design	Understanding Level (C2)
C141.3	Applying the basic physical design algorithms for VLSI circuits.	Applying Level (C3)
C141.4	Analyze the physical design automation techniques used in the best-known academic and commercial layout systems.	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	VLSI Design Flow, Understanding VLSI design problem, Different Design Domains, Design Actions, Design Methods, Technology used, Full custom, Semi Custom, Introduction to FPGA, ASIC, IP Cores, Importance of CAD in VLSI with	3
2.	Physical Design process	Physical Design cycle, Physical Design cycle for ASICs and FPGA, Concept of translation of circuits into geometry, Types of algorithms used to achieve physical design stages, Problems associated with physical design process (parasitic delay, interconnect delay, noise/cross talk, process shifting etc), Understanding timing issues in digital circuits and systems (set up time, hold time, clock skew, jitter, slack)	8
3.	Algorithms and Data Structures	Algorithm Analysis – Complexity of algorithms, Asymptotic notation (big O), Basic Algorithms - sorting	8

		algorithms, Binary search algorithms,Graph Algorithms- shortest	
		path algorithms, Steiner Tree	
		Algorithm,Computational Geometry	
		Algorithms -plane sweep technique	
		,Data Structures- Binary Search trees,	
		AVL trees, Range trees, Graphs, stacks	
		Size mla concertion mla coordination	
4.	Design Rule Checking	size rule, separation rule, overlapping	3
		perform design rule checking	
-		Problem formulation K-I algorithm	
5.	Partitioning Algorithms	F-M algorithm. Simulated Annealing	5
6	Floor Planning and	Problem formulation, simulation based	1
0.	Placement Algorithms	algorithms	
7.	Routing Algorithms	Problem Formulation, global routing	7
		algorithms and detailed fourning	
0		Problem Formulation classification of	
8.	Compaction Algorithms	compaction analysis, one and two	4
		dimensional compaction algorithms.	
		Total number of Lectures	41
Evaluation C	riteria		
Components	Maximum	n Marks	
T1	20		
T2	20		
End Semester	Examination 35		
ТА	25		
Total	100		

Recommended Reading material: (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)

1.	Naveed Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic, 1998.
2.	Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", Mc-Graw Hill, 1994.
3.	"The Best of ICCAD: 20 Years of Excellence in Computer-Aided Design", Andreas Kuehlmann editor, Kluwer Academic Publishers, 2002.
4.	Michael T. Goodrich and Roberto Tamassia, "Algorithm Design" Wiley
5.	Sabih H. Gerez, "Algorithms for VLSI Design Automation" Wiley

Course Code	17M21EC112	Semester O (specify Od	DD d/Even)	Semes 2020 Month	ster ODD Session 2019 - from July - December
Course Name	Digital Integrated Circuit Design				
Credits	3		Contact	Hours	3
Faculty	Coordinator(s)	Dr Amit Kum	nar Goyal		
(Names)	$\mathbf{T}_{\mathbf{a}}$				

(Names) Teacher(s) (Alphabetically) Dr Amit Kumar Goyal			
OUTC	OMES		COGNITIVE LEVELS
Develop an understanding of exiting challenges in digital IC design, and analysis of CMOS inverter performance.			Understanding (Level II)
Identify and estimate the delay and power consumption in CMOS based gates and choosing best design configuration via logical effort.			Analyzing (Level IV)
Design and analyze combinational and sequential logic circuits effectively.			Applying (Level III)
Design different types of semiconductor memories and test integrated circuits for fault tolerance.		Evaluating (Level V)	
	OUTCO Develo and a Identif based Desig effect Desigr circui	Teacher(s) (Alphabetically)OUTCOMESDevelop an understanding of and analysis of CMOS in Identify and estimate the de based gates and choosing beDesign and analyze combi effectively.Design different types of sem circuits for fault tolerand	Teacher(s) (Alphabetically)Dr Amit Kumar GoyalOUTCOMESDevelop an understanding of exiting challenges in digital IC design, and analysis of CMOS inverter performance.Identify and estimate the delay and power consumption in CMOS based gates and choosing best design configuration via logical effort.Design and analyze combinational and sequential logic circuits effectively.Design different types of semiconductor memories and test integrated circuits for fault tolerance.

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to CMOS digital integrated circuits	Digital integrated circuit basic: cost, reliability, yield and performance, Challenges in DIC design, CMOS devices and manufacturing technology and design rules, CMOS inverters and gates, Propagation delay calculation of CMOS inverter, noise margins, power dissipation, and regenerative logic circuits	10
2.	Delay Estimation and Power consumption in CMOS gates	Delay Definitions, Switch-level RC Delay Models, Effective Resistance and Capacitance calculations, Elmore Delay Model, Linear Delay Model, Switching Activity of logic gates	7
3.	Logical Effort	Delay in a Logic gate, Multistage Logic Networks, Gate sizing, Choosing the best No. of stages, Limitation of logical effort	6
4.	Designing Arithmetic Building Blocks	Complex CMOS circuit design, Static and dynamic logic, Adders, Multipliers and Shifters	8
5.	Sequential Circuit Analysis	Timing Metrics for Sequential Circuits, Bi-stability principle, Static latches and Registers, Flip flops,	7

		Dynamic Sequential Circuit, Schmitt Trigger			
6. Designing Memory and S Array Architecture C		Semiconductor Memories, Memory peripher Circuitry	ral 4		
7.	Testing Introduction to testing and various concepts				
		Total number of Lectures	46		
Eval	uation Criteria				
Com	ponents Maxim	um Marks			
T1	20				
T2	20				
End	Semester Examination 35				
TA	TA 25 (Two Assignment and One Quiz)				
Tota	Total 100 ,				
Rec	ommended Reading material:	Author(s), Title, Edition, Publisher, Year of P	Publication		
etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1	J. M. Rabaey, A. Chandrakasan, B. Nikolic: Digital Integrated Circuit: A design perspective, 2 nd Edition				
1.	1. Pearson Education, Delhi-2005				
2.	Weste, Neil HE, and David Money Harris. CMOS VLSI Design. Pearson/Addison Wesley, 2005. Geiger,				

Randall L., Phillip E. Allen, and Noel R. Strader. VLSI design techniques for analog and digital

3. circuits. Vol. 90. New York: McGraw-Hill, 1990.

4. www.ieeexplore.ieee.org

Course Code	17M25EC111	Semester Odd (specify Odd/Even)		Semest Monthf	er Ist Session 2019 -2020 from July 2019 to Dec 2019
Course Name	VLSI Design and S	d Simulation Lab-I			
Credits	3	Contact		Hours	6
Faculty Coordinator(s) Rachna Singh					
(Names)	Teacher(s) (Alphabetically)	Gaurav Verma, Rachna Singh, Saurabh Chaturvedi, Shamim Akhter			

COURSE	COURSE OUTCOMES: At the end student will be able to		
C170.1	Understanding the fundamental concepts of C programming, architecture and interfacing of on chip and external peripherals with AT89C51 micro controller	Understanding (Level II)	
C170.2	Apply the concept of embedded 'C' programming & interfacing in designing embedded application around various sensors and Actuotors.	Applying (Level III)	
C170.3	Experiment the embedded system designs on simulator & development board.	Analyzing (Level IV)	
C170.4	UseEDA tool for VLSI circuit design	Understanding (Level II)	
C170.5	Apply the MOS device theory to obtain the MOS I-V characteristics and perform parameter extraction	Applying (Level III	
C170.6	Analyze the static and switching characteristics of MOS-based circuits	Analyzing (Level IV)	

Module No.	Title of the Module	List of Experiments	CO
1.	Familiarization with 8051 Kit and related software like Keil &ProgISP	To get acquainted with the board, peripherals and subsequently write the programs like i) Blinking of LED ii) Control of LED using tactile/momentary switch.	CO1
2.	Concept of PWM	Generate a Square wave of 50% duty cycle and test on scope.	CO1
3.	Token Display system	Design a Token display system that has seven segment display and switches. Whenever any switch is pressed corresponding number is displayed on the segment.	CO2
4.	Traffic Light Controller	Design a traffic light controller system that has four LEDs- RED, YELLOW. GREEN and ADVANE	CO2

		GREEN. The sequence in which the LEDs are turned on is as follows: RED for 1 min, YELLOW for 15 sec,GREEN for 1 min, ADVANE GREEN for the last 10 sec of GREEN.Interface a light dependent resistor(LDR) to select manual and automatic mode.	
5.	Real Time Clock/Date Display	Design a digital clock display using LCD and a mode switch. The clock, normally displays the time in hr-min- sec format. It updates the time automatically using the timer interrupt of the microcontroller. On pressing the mode switch, the display changes to date in dd-mm-yy format On pressing the button, the display returns to show time.	CO2
6.	DC motor interfacing using relay with IR sensor interface	Interface a DC motor with the microcontroller. The system will have two IR sensors. Initially, the motor is at zero speed. With every flash of the IR, the speed will increase by a fixed amount. After eight such flashes, it returns to zero speed. The other IR sensor is used to toggle the direction of rotation of the motor.	CO2
7.	Wave form Generation using DAC	Interface a DAC0808 chip with microcontroller and generate different waveforms, such as i) sinusoidal ii) triangular iii) saw-tooth.	CO3
8.	ADC Interfacing	Design a temperature monitoring and control system consist of a temperature sensor, dc fan, relay and a heating coil. If temp>higher cutoff, coil should be turned off & fan should be on. If temp <lower coil<br="" cutoff,="">should be turned on & fan should be off.</lower>	CO3
9.	Interfacing of DTMF Module	Do the following task using your mobile phone wired/wireless. i) Display " JIIT NOIDA" on LCD on pressing 1 ii) Rotate stepper motor clockwise on pressing 2 iii) Rotate stepper motor anticlockwise on pressing 3.	CO3
10.	Serial/Wireless communication between kits two kits	Interface two 8051 kits using UART/Zigbee for data transfer.	CO3
11.	Introduction to CAD/EDA tool	Introduction to Tanner tools: T-Spice, S-Edit and L-Edit.	CO4
12.	Analysis of MOS transistors	To study the I-V characteristics of MOS transistors and perform parameter extractions.	CO5
13.	DC analysis of MOS inverters	To analyze the voltage transfer characteristics (VTC) of MOS based inverters and then calculate critical points	CO6
14.	Transient analysis of MOS-based	To analyze and calculate the propagation delay, rise time and fall time of a CMOS inverter.	CO6

	combinational circuits	Simulate the logic gates and verify the truth tables:Two- input NAND, two-input NOR. Simulation of a logic circuit with the given Boolean expression. Implementation of a two-input XOR gate and 2X1 multiplexers using CMOS transmission gates. Implementation of a two-input multiplexer using sub-		
		circuit technique.		
Evaluation	Evaluation Criteria			
Component	ts	Maximum Marks		
Viva1		20		
Viva2		20		
Day to Day		60		
Total		100		

Rec bool	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	SM. Kang and Y. Leblebici, "CMOS digital integrated circuits: Analysis and design," 3rd edition, Tata McGraw-Hill, 2003.			
2.	N. H. E. Weste and D. M. Harris, "CMOS VLSI design: A circuits and systems perspective," 3rd edition, Addison-Wesley, 2005.			
3.				
m.				