Mathematics-2 (15B11MA211)

Course Description

Course Code		15B11MA2	11	Semester E	ven	Semester Month fr		2020-2021 21- June 2021
Course Name		Mathematic	es 2					
Credits		4			Con Hou	tact irs	3-1-0	
Faculty		Coordinat	or(s)	Prof. Loken	dra K	umar, Dr.	DCS Bisht	
(Names)		Teacher(s)	, ,	Prof. Loke	ndra	Kumar, D	r. DCS Bis	sht, Prof. Alka
(Alphabetic			cally)		Dr.	Trapti Nee	r, Dr Pankaj	sh Gupta, Prof. Srivastava, Dr.
COURSE	E O U'	TCOMES			· · · ·			COGNITIVE LEVELS
After purs	suing	the above me	entione	ed course, the	stude	ents will be	able to:	
C106.1		ly different nations of second		s for solving of	ordina	ary differer	ntial	Applying Level (C3)
C106.2		lain different		nethods of co	nverg	gence for in	ıfinite	Understanding Level (C2)
C106.3	finc	the series so		of differentia	-			Applying Level (C3)
C106.4	classify the partial differential equations and apply Fourier Applying			` ′				
C106.5	_	plain Taylor's & Laurent's series expansion, singularities, sidues and transformations. Understanding Level (C2)						
C106.6	apply the concept of complex variables to solve the problems Applying							
Module	-	e of the Topics in the Module No. of						
No.		dule	-			Lectures for the module		
1.	Line Dif	ond Order ear ferential lations	Linear Differential Equations of Second Order with constant coefficients and with variable coefficients, Change of Variable, Variation of Parameters.			5		
2.	Cor	Alternating Series, Absolute & Conditional Convergence, Uniform Convergence.			7			
3.	and	les Solution Special ctions	olution Series Solutions, Bessel Function, 7 cial Recurrence Relations and Orthogonality.					
4.	<mark>and</mark> Dif	rier Series Partial ferential aations	Fourier Series. Classification and Solution of PDE, Equation of vibrating string, Solution of one dimensional wave & heat equations.					
5.	II.	nplex iables	Limit, Continuity and Differentiability of Functions of Complex Variables, Analytic Functions, Cauchy's Riemann Equations.				3	

(6. Complex Cauchy Integral Theorem, Cauchy Integral 4					
	Integration	Formula and Applications.				
,	7. Series	Taylor and Laurent Series Expansion, Poles	4			
	Expansion and Singularities.					
	8. Contour	Residues, Cauchy's residue theorem and its	5			
	Integration	applications.				
9	9. Conformal	Bilinear transformation	2			
	Mapping					
Tot	al number of Lectures		42			
Eva	luation Criteria					
Con	nponents	Maximum Marks				
T1		20				
T2		20				
	Semester Examination	35				
TA		25 (Quiz, Assignments, Tutorials)				
Tot	Total 100					
Recommended Reading material:						
1. Jain, R. K. & Iyenger, S. R. K., Advanced Engineering Mathematics, 5 th Ed., Narosa Publishing House, New Delhi, 2016.						
	2. Brown, J.W. & Churchill, R.V., Complex Variables and Applications, 6th Ed.,					
2.	McGrawHill, 1996.					
3.	Prasad, C., (a) Mather	matics for Engineers (b) Advanced Mathematics	for Engineers,			
3.	Prasad Mudranalaya, 1982.					
4.	Kreysizg, E., Advanced Engineering Mathematics, 10th Edition, John Willey & Sons,					
4.	4. Inc., 2015.					
5	5. Simmons, G. F., Differential Equations with Applications and Historical Notes, 2nd					
J.	Ed. McGraw Hill, 1991.					
6.	6. Spiegel, M.R., Complex Variables, Schaum's outline series, Mac Graw-Hill, 2009.					
7.	Grewal,B.S., "Higher Engineering Mathematics" 44th Edition, Khanna Publisher,					
/•	New Delhi, 2018.					

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B1NHS435	Semester: Even	Semester Session:2020-21 Month from: Jan-June 2021
Course Name Financial Accounting		5	
Credits	3	Contact Hours	3 (2,1,0)
Faculty (Names)	Coordinator(s)	Dr. Mukta Mani (Sec-62), Dr. Sakshi Varshney (Sec-128)	
	Teacher(s) (Alphabetically)	y) Dr. Mukta Mani, Dr. Sakshi Varshney	

COURSE	OUTCOMES	COGNITIVE LEVELS
C206-8.1	Understand the basic concepts of Accounting.	Understanding level (C2)
C206-8.2	Apply accounting concepts for recording of business transactions.	Applying level (C3)
C206-8.3	Compare and reconcile the accounting records with other sources of information	Analyzing level (C4)
C206-8.4	Evaluate the accounting records to identify and rectify the errors made during accounting process.	Evaluating level (C5)
C206-8.5	Construct the final accounts and cash flow statement of a business	Creating (C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Accounting	Meaning of Accounting, Objectives of Accounting, Understanding Company Management, Stakeholders versus Shareholders, Financial Reporting Standards, Financial Reporting	2
2.	Understanding Accounting Elements	Elements of Financial Statements- Assets, Current assets, Liabilities, Current liabilities, Equity, Income, Expenses, Accounting Equation	2
3.	Accounting Concepts	Business entity concept, Money measurement concept, Going concern, Consistency, Matching concept, Cost concept, Dual aspect concept, Materiality,Full disclosure,Generally Accepted Accounting Principles (GAAP)	
4.	Journal Transactions Journal, Rules of Debit and Credit, Compound Journal entry, Opening entry		2
5.	Ledger Posting and Trial Balance	Ledger, Posting, relationship between Journal and Ledger, Rules regarding Posting, Trial balance	3
6.	Rectification of Errors	Different types of errors, their effect on trial balance, rectification and preparation of suspense account	5

7.	Bank Reconciliation Statement Meaning of Bank Reconciliation Statement, technique of preparing BRS, Causes of difference		2	
8.	Final Accounts	Trading account, Profit and Loss account, Balance sheet, Adjustment entries		
9.	Cash Flow Statement	Introduction of Cash Flow Statement, Classification of Cash inflows and Cash Outflows Activities, prepare the statement of cash flows using direct and Indirect method	4	
		Total number of Lectures	28	
Evaluation	n Criteria			
Componer	nts	Maximum Marks		
T1		20		
T2		20		
End Semester Examination		35		
TA		25 (Project+ Class test/Quiz+Class Participation)		
Total		100		

<u>Project Based learning:</u> Students form a group of 4-5 students. Each group is required to choose a company listed in Indian stock exchange and download its latest annual report. Students are required to describe the company, composition of board of directors, number of company's executives, independent directors, background of independent directors. They are required to find outfinancing, investing and operating activities and examines the change in total assets, sales and net profit of the company. As per auditor's report, company's position and future plans for growth of the company is also analyzed.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Maheshwari S. N., Financial and Management Accounting, 5 th Ed., S. Chand & Sons Publication, 2014. ISBN No.: 978-81-8054-529-0				
2.	Ghosh, T.P., Financial Accounting for Managers, 4 th Ed., Taxmann Publications, 2009				
3.	Tulsian,P., Financial Accounting,1st Ed., Pearson Education India,2002				
4.	Bhattacharya, A., Financial Accounting for Business Managers, 4 th Ed., Prentice Hall of India,2012				
5.	Weygandt.J., Kimmel, P., Kieso,D., Accounting Principles, 12th Edition, John Wiley & Sons,2015				
6.	Barton, M., Bhutta, P., S. O'Rourke, J., Satyam Computer Services Ltd: Accounting fraud in India, London, SAGE Publications Ltd, 2017,				

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Subject	15B11HS111	Semester: EVEN	Semester IV Session 2020-2021	
Code			Month from Jan to June	
Subject	LIFE SKILLS			
Name				
Credits	2	Contact Hours	2 (1 1 0)	
Faculty	Coordinator(s)	Dr. Praveen Sharma & D	r. Deepak Verma	
(Names)	Teacher(s) Dr.Akarsh Arora, Dr. Amandeep Kaur, Dr. Badri Bajaj, Dr.			
	(Alphabetically)	Kanupriya Bakhru, Dr Praveen Sharma, Dr. Anshu Banwari, Dr.		
		Deepak Verma, Dr. Ekta Shrivastava, Dr. Nilu Choudhary		

COURSE O	DUTCOMES	COGNITIVE LEVELS
C209.1	Understand Life Skill required to manage self and one's environment	Understand (C2)
C209.2	Apply comprehensive set of skills for life success for self and others	Apply (C3)
C209.3	Analyze group dynamics for its effective functioning	Analysing (C4)
C209.4	Evaluate the role of women leadership and gender issues	Evaluate (C5)

Module No.	le No. Subtitle of the Module Topics in the module		No. of Lectures
			for the module
1.	Introduction	Introduction to Life Skills; basic Concepts	1
		and Relevance for Engineers	
2.	Individual-1	Emotional Intelligence, Stress Management,	4
		Goal Setting	
3.	Individual-II	Dimensions of Personality, Values and	3
		Attitudes, Assertiveness, Well being,	
4.	Group Dynamics	Group, Group types, Group Relationship,	3
		Social Loafing, Social Facilitation	
5.	Women Leadership	Gender Sensitization, Women Leadership.	3
Total number	of Hours		14
Evaluation Cri	iteria		
Components	Maximum	Marks	
T1			
T2	20		
End Semester E		ment & Project)	
Total	25 (Assign 100	inent & Project)	
I otal	100		

Project Based Learning: Students are supposed to form a group (Maximum 5 students in each group) and identify a Women leader of their choice. They are supposed to do the in-depth study on the leadership style of their identified

leader and explain it. They are also supposed to explain identified women leader's personality traits by referring the Big five personality traits model. The project provides understanding to students on Women leadership and personality traits.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,					
Reference Book	Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Stephen P. Robbins, Organizational Behaviour, 9 th Edition, Prentice-Hall India 2001				
2.	Smith, E., Hoeksema, S., Fredrickson, B., & Loftus, G. Introduction to Psychology.				
	Thompsons and Wadsworth Co, 2003				
3.	Daniel Goleman, Working With Emotional Intelligence, Bantom Books 1998				
4.	Sue Bishop, Assertiveness Skills Training, Viva Books, New Delhi, 2004				
5.	Adele B. Lynn 50 Activities for Developing Emotional Intelligence, Ane Books, 2003				
6.	Sivasailam Thiagarajan, Glenn M. Parker; Teamwork and Teamplay, Games and Activities for				
	Building and Training Teams., Jossey-Bass, 1999				
7.	Kaul A.& Singh M., "New Paradigms for Gender Inclusivity", PHI Pvt Ltd 2012				

Software Development Lab - II

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B11CI271	Semester: Even (specify Odd/Even)		Semester: II Session: 2020-21 Month from: Jan to June	
Course Name	Software Developme	Software Development Lab - II			
Credits 1			Contact Hours	2 hrs	

Faculty (Names)	Coordinator(s)	Anita Sahoo, Niyati Aggrawal, Himani Bansal (J128)		
	Teacher(s) (Alphabetically)	(J62) Adwitiya Sinha, Anita Sahoo, Ankita Verma, Arpita Yadav, Bhawna Saxena, Chetna Dabas, Deepti, Hema N., K Vimal Kumar, K.Rajalakshmi, Manju, Megha Rathi, Mradula Sharma, Neetu Sardana, Niyati Aggrawal, Prantik Biswas, Shardha Porwal (J128) Ambalika Sarkar, Anubhuti Mohindra, Arti Jain, Avinash Pandey, Devpriya Soni, Himani Bansal, Kritika Rani, Mukesh Saraswat, Nitin Shukla, Rashmi Kushwah, Shailesh Kumar, Shariq Murtuza, Shilpa Budhkar, Swati Gupta.		

COURS	SE OUTCOMES	COGNITIVE LEVELS
C173.1	Write programs in C++ to implement OOPs concepts related to objects, classes, constructor, destructor, and friend function.	Apply Level (Level 3)
C173.2	Write programs in C++ using OOPs concept like encapsulation, inheritance, polymorphism and abstraction.	Apply Level (Level 3)
C173.3	Write programs in C++ using Standard Template Library.	Apply Level (Level 3)
C173.4	Perform exception handling in C++ programs.	Apply Level (Level 3)
C173.5	Write MySQL queries to perform operations like ADD, DELETE, UPDATE, SELECT on relational databases.	Apply Level (Level 3)

Module No.	Title of the Module	List of Experiments	No. of Labs for the module
1.	OO Concepts using C++	Write output based C++ programs to implement the concepts of Objects, Classes, Internal representations of Objects, encapsulation, Constructors, Destructors, Function and Operator Overloading, Static and Friend Functions.	3
2.	Inheritance using C++	Write programs in C++ to implement concepts of Base Class, Derived class, Method Overriding, Private and Public Inheritance, Multiple Inheritance.	2
3.	Polymorphism using C++	Write programs in C++ using Virtual Functions, Pure Virtual Functions, Abstract Classes, Dynamic Dispatch, Internal representations of method tables, RTTI, operator overriding.	2
4.	UML/Relationship Implementation in C++	Write programs in C++ using based on Class diagram, Relationships of Association, Aggregation, Composition, and Inheritance	1
5.	Exceptions, Templates, and	Write programs in C++ using Exceptions, Try, Catch and Throw, Re-throwing exceptions, Exception and Inheritance,	2

	STL in C++	Function Templates, Overloading Functions Template, Class Templates, Collection classes and iteration protocols (STL)	
6.	Introduction to Database	Design simple SQL queries using MYSQL to apply various operations on single table like create, insert, delete, update, alter, etc., Queries on single table using select statement with or without where/group by clause, etc.	2
		Total number of Labs	12

Evaluation Criteria		
Components	Maximum Marks	
Evaluation 1	15	
Lab Test1	20	
Evaluation 2	15	
Lab Test 2	20	
Mini Project	15	
Attendance	15	
Total	100	

Project based leaning: Groups of 3-4 students will choose a project topic. They will use the concepts of OOP and/or database to execute their project. In a team, they will learn how to apply the concepts for problem solving in a meaningful way.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 Herbert Schildt, C++: The Complete Reference, McGraw-Hill Osborne Media, 4th Edition, 2017
 Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Pearson, 7th Edition, 2016
 Stroustrup B., The C++ Programming Language, Addison Wesley, 4th Edition, 2013
 Avi Silberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6th edition, McGraw-Hill, 2010.
 Robert Lafore, Object Oriented Programming in C++, SAMS, 4th Edition, 2002
 John Hubbard, Schaum's Outline of Programming with C++, McGraw-Hill, 2nd Edition, 2000

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11PH211	Semester: 2			2020-21
				Month 1	from: January to June
Course Name	PHYSICS-2				
Credits	4 Conta		Contact H	Iours	4

Faculty (Names)	Coordinator(s)	Prof. R.K. Dwivedi & Dr. Suneet Kumar Awasthi
	Teacher(s)	Alok Pratap Singh Chauhan (ALC)
	(Alphabetically)	Anshu D. Varshney (ADV)
		Anuj Kumar (AK)
		Ashish Bhatnagar (ABH)
		Dinesh Tripathi (DT)
		Himanshu Pandey (HP)
		Manoj Kumar (MKC)
		Navendu Goswami (NG)
		R. K. Dwivedi (RKD)
		S C Katyal (SCK)
		Suneet Kumar Awasthi (SKA)
		Vikas Malik (VM)

COURSE	OUTCOMES	COGNITIVE LEVELS
Recall the basic concepts relating to electromagnetic theory, statistical physics, lasers, fiber optics and solid state physics.		Remembering (C1)
C102.2	Illustrate the various physical phenomena with interpretation based on the mathematical expressions involved.	Understanding (C2)
C102.3 Apply the basic principles in solving variety of problems related to lasers, electromagnet theory, fiber and solid state physics.		Applying (C3)
C102.4	Analyze and examine the solution of the problems using physical and mathematical concepts involved in the course.	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Electromagnetism and Optical Fiber	Coulomb's law, Gauss law and its applications, Treatment of electrostatic problems by solution of Laplace and Poisson's equations, Biot-Savartlaw, Ampere's law, Maxwell's equations in freespace and dielectric media. Electromagnetic waves, Derivations of expressions for energydensity and energy flux (Poynting vector) in an electromagnetic field, Radiation pressure. Propagation of EM waves through boundary-Reflection, Refraction, Absorption and Total Internal Reflection. Light propagation in fibersand Graded Index fibers, Numerical Aperture and Attenuation, Single and Multimode.	18
2.	Statistical Distributions and Lasers	Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac distributions and their applications. Principle and working of laser, Einstein A and Bcoefficients, Ruby Laser.	08

3.	Solid State Physics	Basic ideas of bonding in solids, Crystalstructure, Bragg's law X-ray diffraction, Bandtheory of solids, Distinction between metals, semiconductors and insulators. Electronic conduction in metals, Intrinsic and extrinsic (nandp-type) semiconductors and their electrical conductivity. p-njunction and Hall effect insemiconductors.	14
		Total number of Lectures	40
Evaluation	1 Criteria		
Componer	nts	Maximum Marks	
T1		20	
T2		20	
End Semes	ter Examination	35	
TA	25		
(a) Quizes	/class tests (07M),		
(b) Attendance (07M)			
(c) Internal	Assessment (05)		
(d) Assig	gnments in PBL mode	(06M)	
Total		100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 D. J. Griffiths, Introduction to electrodynamics, Pearson India.
 G. Keiser, Optical Fiber Communications, Tata Mc Graw Hill Education.
 A. Beiser, Concepts of Modern Physics, Mc Graw Hill International.
 S. O. Pillai, Solid State physics, New Age International (P) Limited.
 B. G. Streetman & S. Banerjee, Solid State Electronic Devices, Prentice-Hall India.

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17PH271	Semester: Ever Semester			r:II Session 2020 -2021 from June-July
Course Name	Physics Lab-2				
Credits	1		Contact H	Hours	2

Faculty (Names)	Coordinator(s)	Prof. Navendu Goswamiand Dr. Vikas Malik.
	Teacher(s) (Alphabetically)	Ashish Bhatnagar, B.C. Joshi, Dinesh Tripathi, Manoj Kumar, Manoj Tripathi, Navendu Goswami, Sandeep Chhoker, Suneet Kumar Awasthi, Vikas Malik,

COURSE	OUTCOMES	COGNITIVE LEVELS
C171.1	Recall laser, fibre optics, semiconductor and solid state physics principles behind the experiments.	Remembering (C1)
C171.2	Explainthe experimental setup and the principles involved behind the experiments performed.	Understanding (C2)
C171.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C171.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C171.5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	СО
1.	Semiconductor Physics	 1(a). To determine the band gap in a semiconductor using its p-n junction diode. 1(b). To draw the I-V characteristic of Solar cell and find maximum power and fill factor. 2(a). To measure resistivity of semiconductor at different temperatures by Four Probe Method. 2(b). To determine Band Gap of the semiconductor. 3. To study the Hall effect in semiconductor and to determine its allied coefficients. 	1-5
2.	Solid State Physics	 4. To study the Magnetostriction in metallic rod with the help of Michelson interferometer arrangement. 5. To find the susceptibility of a paramagnetic substance (FeCl₃) in the form of liquid or a solution. 6.Study of dielectric (constant) behavior and determination of Curie's temperature of ferroelectric ceramics. 	
3.	Modern Physics	 7.To study the magneto resistance of given semiconductor material. 8(a). To determine the value of specific charge (e/m) of an electron by Magnetron method. 8(b). To determine the velocity of ultrasonic wave in the medium of liquid using ultrasonic interferometer and to determine the compressibility of the given liquid. 9(a). To determine Planck"s Constant using LEDs of known wavelength. 9(b). To study the photovoltaic cell and hence verify the inverse square law. 	1-5

4.	Optical Fiber	 10(a). To determine the numerical aperture of a given multimode optical fiber. 10(b). To measure the power loss at a splice between two multimode fibers and tostudy the variation of splice loss with Longitudinal and Transverse misalignments of thegiven fibers. 	1-5
Evaluation	Criteria		
Components	s M	aximum Marks	
Mid Term V	iva (V1)20		
End Term Viva (V2)20			
D2D 60	0		
Total	1	00	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Dey and Dutta, Practical Physics

2. Lab Manuals

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11EC111	Semester Events (specify Odd			er 2 nd Session 2020 -2021 from Jan-June
Course Name	Electrical Science -1	e -1			
Credits	4		Contact	Hours	3+1

Faculty (Names) Coordinator(s)		Vimal Kumar Mishra, Neetu Joshi	
	Teacher(s) (Alphabetically)	Archana Pandey, Bhagirath Sahu, Jyoti Vyas, Mandeep Narula, Megha Agarwal, Nisha, Rachna Singh, Sajaivir Singh, Shraddha Saxena.	

COURSE	OUTCOMES	COGNITIVE LEVELS
C113.1	Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws and different analyzing techniques to identify the different circuit parameters.	Apply Level (C3)
C113.2	Define and apply the networks theorems in the complex AC and DC circuits, networks. Demonstrate the physical model for given Sinusoidal AC signal and construct the phasor diagrams.	Applying Level (C3)
C113.3	Demonstrate the concept of resonance and operate different instrumental and measurement equipments.	Understanding Level (C2)
C113.4	Demonstrate the construction and working of single phase transformer.	Understanding Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic Concepts	Voltage, Current, Power and Energy analysis for Circuit elements (R, L, C), Independent and Dependent Sources, Kirchhoff's Laws, Voltage Divider rule, Current Divider rule	6
2.	DC Circuit Analysis	Star-Delta Transformation, Source transformation, Mesh and Supermesh Analysis, Nodal and super nodal Analysis	6
3.	Network Theorems	Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
4.	Sinusoidal Steady State Analysis	Physical Model for a Sinusoid, Average Value, Effective Value, Phasor presentation, Addition of Phasor using Complex Numbers, Concepts of impedance and admittance.	4
5.	AC Network Analysis and Theorems	Mesh and Nodal analysis, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
6.	Resonant Circuits	Series and Parallel resonance, frequency response of Series and Parallel resonance, Q-Factor, Bandwidth	4
7.	Electrical Instruments	Essentials of an Instrument, Permanent Magnet Moving Coil (PMMC) Instruments, voltmeter, ammeter, Ohmmeter, Meter Sensitivity (Ohms-Per-Volt Rating); Loading Effect; Multimeter; Cathode Ray Oscilloscope: Construction,	6

		Working and Applications. Function Generators		
8.	Single Phase Transformer	Principle of operation, construction, e.m.f. equation, equivalent circuit, power losses, efficiency (simple numerical problems), introduction to auto transformer.	4	
		Total number of Lectures	42	
Evalua	ntion Criteria			
Compo	onents	Maximum Marks		
T1 •		20		
T2		20		
End Se	mester Examination	35		
TA 25 (Assignment, quiz, attendance)				
Total 100				

Project based learning component: Students will learn fundamental concepts, working and applications of Permanent Magnet Moving Coil (PMMC) Instruments, voltmeter, ammeter, Ohmmeter, Cathode Ray Oscilloscope and Function Generators that develop aptitude among students to design minor and major projects. They will also develop knowledge about step-up and step-down transformer which can be further used to design advanced circuits in communication and robotics. It will also help develop concepts about instrumentation in electrical/electronics/biotech/communication based industries.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 9th ed, John Wiley & Sons, 2013.
- 2. Charles K. Alexander (Author), Matthew N.O Sadiku, "Fundamentals of Electric Circuits", 6th ed, Tata Mc Graw Hill, 2019.
- Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 11th ed, Prentice Hall of India, 2014.
- 4. D.C. Kulshreshtha, Basic Electrical Engineering, Revised 1st ed, Tata Mc Graw Hill, 2017.

Course Description

Course Code	15B17EC171	Semester -: Figure 1		Session Month-	: 2020 -21 : January - May
Course Name	Electrical Science Lab-1				
Credits 1		Contact I	Hours	2	

Faculty (Names)	Coordinator(s)	Bhagirath Sahu & Shradha Saxena
	Teacher(s)	Archana Pandey, Ashish Gupta, Atul kumar Srivastav, Bhagirath Sahu, Garima Kapur, Gaurav Verma, Juhi Gupta, Kaushal Nigam, Kirmender Singh, Mandeep Singh Narula, Neetu Singh, Pankaj Kumar Yadav, Parul Arora, Raghvenda Kumar Singh, Sajai Vir Singh, Shivaji Tyagi, Shradha Saxena, Vijay Khare, Vivek kumar Dwivedi

COURSE O	UTCOMES	COGNITIVE LEVELS
C176.1	Understand various active and passive components and instruments (Multimeter, Bread board, Regulated D.C. power supply).	Understanding (Level II)
C176.2	Acquire the knowledge of electrical network and circuit such as branch, node, loop and mesh in networks and circuits.	Analyzing (Level IV)
C176.3	Study and verification of reduction technique using different network theorem.	Remembering (Level I)
C176.4	Study and verification of series and parallel AC circuits as well as Open & Short Circuit Test in single phase transformer.	Applying (Level III)

Module No.	Title of the Module	List of Experiments	COs
1.	Introduction of active and passive components	Introduction to various components (Resistor, Capacitor, inductor, and IC) and instruments Multimeter, Bread board, Regulated D.C. power supply and CRO.	C176.1
2.	Analysis and verifications of Mesh and Node	Verification of KVL and KCL using a given circuit.	C176.2
3.	Analysis and verification of Transform Network	Realization of Equivalent Resistance of Star to Delta and Delta to Star Transformation.	C176.2
4.	Analysis and verification of	Verification of Super Node using Voltage Source.	C176.2

	of Super Node		
5.	Analysis and verification of Divider rules for Current and Voltage	To verify the voltage divider rule (VDR) and the current divider rule (CDR).	C176.2
6.	Study and Analysis of Superposition Theorem	Verification of Superposition Theorem.	C176.3
7.	Analysis and verification of Thevenin's/ Norton Theorem	Verification of Thevenin's Theorm and Norton Theorm.	C176.3
8.	Analysis and verification of Maximum Power Transfer Theorem	Verification of Maximum Power Transfer Theorem.	C176.3
9.	Study and Verification of AC Signal in term of RMS and PP Value	To study the Root-Mean-Square(RMS), Peak, and Peak-to-Peak Values, Measurements with Oscilloscope.	C176.4
10.	Study and Analysis of Resonance Circuit	To study the behavior of Series-Parallel RLC Circuit at Resonance.	C176.4
11.	Study of open Circuit Test	Open Circuit Test in Single Phase Transformer using Vlab.	C176.4
12.	Study of Short Circuit test	Short Circuit Test in Single Phase Transformer using Vlab.	C176.4
Evaluati	on Criteria	JL	<u></u>
Compon Viva1 Viva2 Report fil	ents le, Attendance, and		20 20 0 (15+15+30)
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Nilsson Riedel, Electric Circuits," Pearson, 11th Edition, 2019			
2.	Abhijit Chakrabarti, "Circuit Theory Analysis and Synthesis," Dhanpat Rai & Co.; 7th Edition, 2018			

3.	U. S. Bkashi A.U. Bakshi S. Ilaiyaraja,, "Circuit Theory Technical Publications; 3 rd Edition, 2019
4.	Roman Malaric, "Instrumention and Measurement in Electrical Engineering, "Universal Publisher, 3 rd Edition, 2011.
5.	DP Kothar and I J Nagrath, "Electric Machine," TMH; 4 th Edition, 2010

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15GE111	Semester : Even (specify Odd/Even)		Semester: II nd Session 2020-2021 Month from: Jan to June	
Course Name	Engineering Drawing	ving and Design			
Credits	1.5		Contact Ho		3

Faculty (Names)	Coordinator(s)	Mr. Chandan Kumar, Mr. Rahul Kumar	
Teacher(s) (Alphabetically)		Mr. DeepakKumar, Mrs. Madhu Jhariya, Mr. Nitesh Kumar, Dr. Prabhakar Jha, Mr. VimalSaini	

COURSE	OUTCOMES	COGNITIVE LEVELS
C178.1	Recall the use of different instruments used in Engineering Drawing and Importance of BIS and ISO codes.	Remembering (Level I)
C178.2	Illustrate various types of mathematical curves and scale.	Understanding (Level II)
C178.3	Classify different types of projection and Construct Orthographic projection of Point, Line, Plane and Solid.	Applying (Level III)
C178.4	Construct Isometric Projection and Conversion of Orthographic view to Isometric view and vice-versa.	Applying (Level III)
C178.5	Construct Engineering model in Drawing software (AutoCAD) and Compare it with conventional drawing.	Analyzing (Level IV)

Module No.	Title of the Module	List of Experiments	CO
1.	Introduction to Engineering Drawing	 Principles of engineering graphics and their significance, usage of drawing instruments. Technical vertical capital letters which includes English alphabets and numeric. 	C178.1
2.	Engineering Curves	Constructing a pentagon and hexagon; engineering curves: Parabola, Ellipse, Hyperbola, Cycloids and Involutes.	C178.2
3.	Orthographic Projections	 Projection of points: Point on VP, HP, in space. Projection of straight lines: Lines inclined or parallel to any one of the planes; lines inclined to both HP and VP with traces. Projection of planes: Plane on VP, HP, inclined to any one of the planes; plane inclined to both HP and VP. 	C178.3
4.	Projections of Regular Solids	Projections of solids in simple position inclined to one/both the planes.	C178.3
5.	Sections and Sectional Views of Right Angular Solids	Sections of solids: Section of standard solids and true shape section of standard machine elements for the section planes perpendicular to one plane and parallel or inclined to other plane.	C178.3

6.	Isometric Projections	• Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa.	C178.4	
7.	Overview of Computer Graphics	• Demonstrating knowledge of the theory of CAD software; Dialog boxes and windows; Shortcut menus; the Command Line; the Status Bar; Isometric Views of lines, Planes, Simple and compound Solids.	C178.5	
8.	Customization & CAD Drawing	• CAD Drawing along with customization tools, Annotations, layering & other functions. Orthographic Projections; Model Viewing; Co-ordinate Systems; Multi-view Projection; Surface Modeling; Solid Modeling.	C178.5	
9.	Demonstration of a simple team design project	• Technical 2D/3D orthographic and Isometric projections; Demonstration of a simple team design project.	C178.5	
Evaluation CriteriaComponents Maximum Marks				
Mid Viva				
End Viva TA	60			
Total		100		

Project based learning: AutoCAD is a computer-aided software used for creating blueprints for bridges, buildings, interior & exterior designs etc. The software is widely used by designers and drafters for creating 2D and 3D computer drawings. Each student will opt an Automobile or Manufacturing Industry of India and learn more about their projects and latest designs

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 Bhatt N.D., Panchal V.M. & Ingle P.R., Engineering Drawing, Charotar Publishing House, 2014.
 Shah, M.B. &Rana B.C., Engineering Drawing and Computer Graphics, Pearson Education, 2008.
 Agrawal B. &Agrawal C. M., Engineering Graphics, TMH Publication, 2012.
 Narayana, K.L. & P Kannaiah, Text book on Engineering Drawing, Scitech Publishers, 2008