				Lecture-w	ise Breakuj)			
Course Co	Course Code 19M21PH113		5	Semester: EVEN				Session: Jan to June	
Course Name Classical Elec		ctrodyna	amics						
Credits		4		Contact I	Hours		3+	-1	
Faculty (N	Names)	Coordinato	r	Dr Manoj Kun	nar				
		Teacher		Dr Manoj Kun	nar				
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS
CO1	Recall	basics of elect	rostatics	s, magnetorstatic	s and electr	odynamic	es	Remembe	ring (C1)
CO2				nomena and wor			h	Understan	ding (C2)
CO3	Apply	the laws of ele	ectrostati	ics and Maxwell I problems relate	's equation	to solve		Applying	(C3)
CO4		ze complex phy odynamics	ysical pr	oblem of relativ	istic and no	nrelativis	tic	Analyzing	(C4)
Module No.	II	Title of the Module Module			No. of Lectures for the module				
1.	bound proble	ostatics and lary value ems in ostatics	Coulomb's law, Gauss's law, Laplace and Poisson equations, Method of Images, Boundary value problems (in spherical and cylindrical coordinates), multipole expansion and Dielectrics (energy and forces in dielectric systems), minimum energy theorem, applications of electrostatic fields (e.g., electrostatics particle precipitators, photo duplication or Xerography and electrostatic lenses).				9		
2.	Farad	etostatics, ay's law and static fields	Ampei potenti	avart law, differ e's law, Farada ial, multipole ex tic field in matte	y's law of in xpansion of	nduction, the vect	Magno or pot	etic vector ential and	6
3.	Electr	odynamics	magnetic field in matter, energy in the magnetic field Time varying field, continuity equation, Maxwell's equations, Pointing theorem, Gauge transformations, gauge invariance, Electromagnetic waves in free space, dielectrics and conductors, Fresnel's equations,				12		
4.	specia	Radiation and special theory of relativity Retarded potentials, Lienard-Wiechert Potentials, fields due to a Point charge moving with constant velocity, Fields due to accelerated point charge, Recollection of the ideas of special theory of relativity, Four-vector and Lorentz transformation in four dimensional space; Lorentz invariants of electromagnetic fields; Transformation of electric and magnetic field vectors.			13				
					T	otal nun	ber of	f Lectures	40
Evaluation	n Criter	ia							
Componer T1	nts		Maxim 20	um Marks					
1 1			∠∪						

T2		20					
End Semester Examination		35					
TA		25 [2 Quiz (10 M), Attendance (7 M) and a small project and class					
		performance (8 M)]					
Tota	1	100					
	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	J D Jackson, Classical Elec	etrodynamics, Wiley, New Delhi 2017					
2.	2. D. J. Griffiths, Introduction to electrodynamics, Pearson (Prentice Hall), New Delhi 2008						
3.	T L Chow, Introduction to New Delhi, 2014	Electromagnetic Theory: A modern perspective, Jones and Bartlett Learning,					

Course Code	19M21PH116	Semester: Even		Semester: II Session 2020 -2021 Month from: January to June		
Course Name	Atomic, Molecular and Laser Physics					
Credits 4			Contact H	lours	3+1	

Faculty (Names)	Coordinator	Dr Papia Chowdhury
	Teacher	Dr Papia Chowdhury

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Recall basics of one, two and many electron systems. Normal & anomalous Zeeman, Paschen-Back and Stark effects; L-S and J-J coupling schemes. Hartree-Fock approximation	Remembering (C1)
CO2	Explain Born-Oppenheimer approximation. States for hydrogen molecule and molecular ion (H ₂ , H ₂ +). Term symbol for simple molecules	Understanding (C2)
CO3	Apply concepts of rotational spectra, vibrational spectra, electronic spectra of diatomic molecules; Franck-Condon principle. Raman spectra. Electron Spin Resonance. Nuclear Magnetic Resonance	Applying (C3)
CO4	Analyze spontaneous and stimulated emissions in laser; optical pumping population inversion, rate equations. Different laser systems like Ruby, He-Ne, CO ₂ and Nd:YAG lasers	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Atomic Physics	Hydrogen atom and other one electron systems, two electron systems, many electron systems, spin-orbit term, intensity of fine structure lines. Effect of magnetic and electric fields: Normal and anomalous Zeeman, Paschen-Back and Stark effects. Interaction energy in L-S and J-J coupling schemes, Lande interval rule. Hartree-Fock approximation.	10
2.	Molecular Structure	Molecular electronic states, Born-Oppenheimer approximation. States for hydrogen molecule and molecular ion (H ₂ , H ₂ +). Spectroscopic terms, term symbol for simple molecules.	8
3.	Molecular Spectra	Rotational spectra of diatomic molecules-rigid and non-rigid rotors, isotope effect, Vibrational spectra of diatomic molecules- harmonic and anharmonic vibrators, Intensity of spectral lines, dissociation energy, vibration-rotation spectra, Electronic spectra of diatomic molecules-vibrational structure of electronic transitions. Rotational structure of electronic bands (Fine structure)-P,Q,R branches, Fortrat diagram. Intensities in electronic bands-The Franck-Condon principle. Raman spectra, X-ray emission spectra. Electron Spin Resonance. Nuclear Magnetic Resonance.	14
4.	Lasers	Introduction to Laser and Maser, spontaneous and stimulated emissions, Einstein A & B coefficients, optical	8

	pumping, population inversion, rate equations, modes of resonators and coherence length, Ruby, He-Ne, CO ₂ and Nd:YAG lasers.						
	Total number of Lectures	40					
Evaluation Criteria	Evaluation Criteria						
Components	Maximum Marks						
T1	20						
T2	20						
End Semester Examination 35							
TA	25 [2 Quiz (10 M), Attendance (10 M) and Cass performance	$(5 \mathrm{M})]$					
Total	100						

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Physics of Atoms and Molecules by B. H. Bransden and C. J. Jochain (2 nd Ed., Pearson Education, 2003)					
2.	Atomic Spectra and Atomic Structure by G. Herzberg (Dover Publications, 2003)					
3.	Atoms, Molecules and Photons by W. Demtroder (Springer, 2006)					
4.	Fundamentals of Molecular Spectroscopy by C. N. Banwell (McGraw Hill, 1983)					
5.	Basic atomic & Molecular Spectrocopy by J. M. Hollas(Royal Society of Chemistry, 2002)					
6.	Principles of Lasers by O. Svelto (5 th Ed., Springer, 2010)					

Course Code	19M21PH117 Semester: Ev		en	Semester: 2020-2021 Session Month from: January to June		
Course Name	Statistical Mechanics					
Credits	3-1-0	3-1-0		Hours	4	

Faculty (Names) Coordinator		Dr. Navendu Goswami
	Teacher	Dr. Navendu Goswami

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Define the basic laws and parameters related to Thermodynamics and Statistical Mechanics.	Remember Level (C1)
CO2	Explain the concepts of different Thermodynamic and Statistical Systems and Ensembles.	Understand Level (C2)
СОЗ	Apply the concepts of Thermodynamics and Statistical ensembles to conclude its properties.	Apply Level (C3)
CO4	Evaluating the behavior of equilibrium, non-equilibrium or a random process on the basis of suitable thermodynamic parameters, distribution functions and phase transition.	Evaluate Level (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module			
1.	Evaluation of Energy States	Micro- and Macro-states, Degenerate and Non-degenerate states, Two State Systems, Harmonic Oscillators, Einstein's Model of Crystalline Solid, Density of States, Particle in a box.	6			
2.	Classical Statistical Mechanics	Classical Phase space, Number of Microstates, Ideal gas, Entropy: Gibbs' Paradox, Liouville's Theorem in Classical Statistical Mechanics,	5			
3.	Ensembles and Distribution Functions	Micro-canonical, canonical and grand-canonical ensembles and partition functions; Free energy and its connection with thermodynamic quantities; Classical and quantum statistics. Boltzmann Limit, Sackur-Tetrode equation.	10			
4.	Applications of Distribution Functions	Degenerate Fermi gas; Ideal Bose and Fermi gases; Principle of detailed balance. Blackbody radiation and Planck's distribution law; Bose-Einstein condensation, Diamagnetism, paramagnetism, and ferromagnetism, White Dwarf Stars, Saha-Ionsization Equation.	10			
5.	Phase Transition and Stochastic Processes	First- and second-order phase transitions. phase equilibria, critical point. Introduction to nonequilibrium processes, Ising model. Diffusion equation. Random walk and Brownian motion.	9			
		Total number of Lectures	40			
Evaluatio	Evaluation Criteria					
Compone T1	nts	Maximum Marks 20				

T2	20	
End Semester Examination	35	
TA	25 [2 Quiz (10 M), Attendance (10 M) and Cass performance (5 M)]	
Total	100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Frederick Reif, Fundamentals of Statistical and Thermal Physics, Waveland Pr Inc, 2008.				
2.	Kerson Huang, Statistical Mechanics, Wiley, 2 nd Ed., 1987.				
3.	R K Pathria, Paul D. Beale, <i>Statistical Mechanics</i> , Academic Press, 3 rd Ed., 2011.				
4.	Statistical Mechanics, Richard P. Feynman, Westview Press, USA, 2008				
5.	Statistical Mechanics: An Elementary Outline (Rev.Ed.), Avijit Lahiri, Universities Press, 2015				

Course Code	19M21PH118	Semester: Sec	cond	Semeste Month f	er: Even Sem 2020 from:	
Course Name	Condensed Matter Ph	Condensed Matter Physics				
Credits	04		Contact Hours		04	

Faculty (Names)	Coordinator	Prof. R.K. Dwivedi
	Teacher	Prof. R.K. Dwivedi

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	To recall the basic concept of space lattice, lattice type and crystal structure, Bonding, band diagrams, heat capacity, thermal expansion, thermal and electronic conduction in solids like metals, semiconductors,, dielectrics, magnetics and superconductors.	Remembering (C1)
CO2	To Illustrate the Lattice vibrations, Debye and Einstein's model, Croning-Penny model and various physical phenomena with interpretation based on the mathematical expressions involved.	Understanding (C2)
СОЗ	Apply the concepts/principles to solve the problems related to Solid State Physics.	Applying (C3)
CO4	Analyze and examine the crystal structure of solids, thermal, electrical and electronic properties and establish a correlation between structure and properties	Analyze level

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Crystal Physics	Concept of space lattice, basis and primitive cell, bravais lattices, Crystal Symmetry, intercepts of plane and miller indices, lattice type, packing efficiency, reciprocal lattice, structure factor, crystal structures (NaCl, CsCl, Diamond and cubic ZnS) and Brag's law and X-ray diffraction methods. Bonding in solids, ionic bonding, Cohesive energy and Madelung Constant in ionic crystals.	12
2.	Thermal Properties	Phonon heat capacity, specific heat, Density of states in one dimension, Density of states in three dimension, Debye's model for density of space, Debye T³ Law, Einstein model density of states, Thermal conductivity, A brief introduction to Imperfections.	10
3.	Band theory of solids	Free electron model, Origin of energy gap, Bloch theorem, Croning-Penney model, Wave function of electron in a periodic potential, Energy band formation in solids, Classification of solids into metals, semiconductors and insulators.	8
	Electrical properties in solids	Electrical conduction in metals and semiconductors, Intrinsic and Extrinsic semiconductors, mobility, Intrinsic carrier concentration, impurity diffusion, Carrier concentration of n-type and p-type semiconductors.	5

4.	Superconductivity	Occurrence of superconductivity, Meissner effect, Type –I and Type-II superconductor, Heat capacity, Energy gap, Isotope effect. Microwave and Infrared properties. London equations and BCS theory.	5	
		Total number of Lectures	40	
Evaluation	n Criteria			
Componer	nts	Maximum Marks		
T1		20		
T2		20		
End Semester Examination 35		35		
TA 25 [2 Quiz (1		25 [2 Quiz (10 M), Attendance (10 M) and Cass performance	(5 M)]	
Total		100		

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Solid State Physics by A. J. Dekker				
2.	Solid State Physics by Charles Kittel, Wiley Publication, Eight Edition (2017)				
3.	Solid State Physics by N. W. Ashcroft & N. D. Mermin				
4.	Solid State Physics by S.O. Pillai, New Age Publications (Revised sixth Ed. (2007)				

Course Code	19M25PH112	Semester: EVI			r: 2 nd Session: 2020 -2021 From: Jan to June
Course Name	Laboratory-2				
Credits	4		Contact H	ours	8

Faculty (Names)	Coordinator(s)	Dinesh Tripathi
	Teacher(s) (Alphabetically)	B. C. Joshi and Anuraj Panwar

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Recall components of electronic circuits used in the experiments.	Remembering (C1)
CO2	Explain key applications of electronic circuits and devices used in the experiments.	Understanding (C2)
CO3	Model the circuits using electronic components and perform the experiments.	Applying (C3)
CO4	Analyze the data obtained and calculate the error.	Analyzing (C4)
CO5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	
1.	Electronics	 To assemble a two stage common emitter RC coupled amplifier and to measure the gain as a function of frequency and hence find the gain band width Design and realize Inverting and Non-inverting amplifier using 741 Op-amp. To design and test the performance of an integrator using 741 OP AMP To study and calculate the frequency of oscillations of Colpitts oscillator. To study and calculate frequency of oscillations of OP-AMP based Hartley Oscillator. Design of an RC Phase Shift Oscillator (Using IC 741 OP AMP) and calculation of its frequency of oscillation. To design and set up (a) half adder & half subtractor and (b) full adder & full subtractor using NAND gate. To study the single stage amplifiers; using BJT in common emitter (CE) configuration and to learn its application as a small signal amplification. 	1-5

	9. To use the operational amplifier as filers of different frequency	
	range.	
	10.Design and study of regulated power supply.	
	11.FET and MOSFET characteristics and its applications as	
	amplifier.	
	Besides above experiments, students will be trained in mechanical	
	workshop. (Training on lathe and grinding, drilling and threading	
	etc.)	

Evaluation Criteria

Components	Maximum Marks
Mid Term Viva (V1)	20
End Term Viva (V2)	20
D2D	60
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Experiment hand-outs.