Jaypee Institute of Information

Technology M.Sc. Microbiology

Semester III

Course Descriptions

Detailed Syllabus

Course Code	19M21BT211	Semester : OD	Sessi	ester: III on: 2020 -2021 th from: July to December
Course Name	Food and dairy Microbiology			
Credits	4	(Contact Hours	3-1-0

Faculty (Names)	Coordinator(s)	Dr. Smriti Gaur
	Teacher(s) (Alphabetically)	Dr.Smriti Gaur

Sl. No.	DESCRIPTION	COGNITIVE LEVEL (BLOOM's TAXONOMY)
CO1	Explain the interactions between microorganisms and food environment.	Understanding level (Level 2)
CO2	Illustrate the role of microorganisms in spoilage of food and dairy products with associated diseases.	Understanding level (Level 2)
CO3	Analyze the effects of fermentation on quality of the dairy and non-dairy products.	Analyzing level (Level 4)
CO4	Examine food preservation, safety and quality control.	Analyzing level(Level 4)
CO5	Identify applications of food and dairy Microbiology	Applying level (Level 3)

	Title of the Module	Topics in the Module	No. of Lectures for the module
--	------------------------	----------------------	---

1.	Food and microorganism	Food as substrate for microorganism, Microorganisms important in food and dairy microbiology; Mold yeast and bacteria, Factors influencing microbial activity	05
2.	Food Spoilage and Food borne diseases	Contamination of food, general principles underlying spoilage, Spoilage of various foods and food products; cereals and cereal products, bakery products, dairy products, meat poultry and sea foods, Eggs, vegetables and fruits, sugar and sugar products, Microbiological examination of milk and milk products, source of their contamination and control, Food borne diseases: Staphylococcal, <i>E.coli</i> , Salmonellosis, Shigellosis, Listerial infections, Mycotoxins.	10
3.	Food	General principles of food preservation, pasteurization of milk, Preservation by use High Temperature,Low	10

Preservation & Principles	temperature, drying, food additives, radiation, High Pressure Processing Pulsed Electric Fields, Aseptic Packaging, Manothermosonication,	
------------------------------	---	--

4.	Fermented food	Microbiology of fermented food products, traditional fermented food items like beverages (cereal and fruit juice based), bakery, fermented Vegetables and dairy products (cheese, yoghurt, fermented milk, cultured buttermilk, Kefir)	06
5.	Food safety and control	Microbiological quality standards of food, FDA, HACCP, ISI.	05
6.	Applications of Food Microbiology	Functionl food, Intestinal Beneficial Bacteria- Concept of Prebiotics and Probiotics, Genetically modified foods, Biosensors in food, Milk as a source of bioactive peptides	06

	Total number of Lectures	42
Evaluation Criteria		
Components Maximum Marks		
T1 20		
T2 20		
End Semester Examination 35		
TA 25 (presentation and viva)		
Total 100		

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Food Science & Food Biotechnology, G.F.G Lopez and GVB Canovas CRC Press, Florida(2003)			
2.	Bioprocess and Biotechnology for functional foods and Nutraceuticals, J.R Neeser, J.Bruce German Marcel and Dekker, New York (2004)			
3.	Food Microbiology, Frazier W C, Westoff DC, Vanitha NM, Mc Graham Hill Education (2013)			

4.	Fundamental Food Microbiology, 3rd edition by B. Ray., CRC press, (2006).
5.	Food Microbiology by M.R. Adams, Royal Society of Chemistry, (2008).

Subject Code	19M21BT212	Semester: Odd	Semester: III Session : 2020 -2021 Month from: July to December
Subject Name	Recombinant D	NA Technology	
Credits	4	Contact Hours	3

Faculty (Names)	Coordinator(s)	1. Dr. S Krishna Sundari
	Teacher(s) (Alphabetically)	1. Dr. S Krishna Sundari

	COURSE OUTCOMES	COGNITIV E LEVELS
C01	Summarize the fundamental concepts of RDT, cloning vectors, prokaryotic vs. eukaryotic hosts and expression systems	Understandi ng Level (Level II) C2

CO2	Illustrate different methods of gene transfer, cloning, genomic libraries and molecular tools for microbes, plants and animals	Applying level (Level III) C3
CO3	Analyse RDT tools, techniques and its applications in environment, Medicine and agriculture	Analysis level (Level IV) C4
CO4	Identify importance as well as ethical and biosafety issues related to transgenics	Understandi ng Level (Level II) C2

Faculty (Names)	Coordinator(s)	Dr. Krishna Sundari		
	Teacher(s) (Alphabetically)	Dr. Krishna Sundari		
Module No.	Subtitle of the Module	Topics in the module	No. of Lectur es for the module	
1.	Introduction	Basic Concepts of Recombinant DNA technology, origin of RDT, pioneering discoveries and significance of tailoring microbes, model plants and animals in present context	4	
2.	Enzymes, Vectors and Hosts for Cloning	Restriction enzymes and other DNA modifying enzymes; Cloning vectors, expression vectors, prokaryotic and eukaryotic expression systems, bacterial, fungal and plant hosts for cloning, methods of gene transfer	6	
3.	Recombinant DNA	Basic techniques of gene manipulation, - Gel electrophoresis, DNA transformation techniques, Cloning	6	

	Technology	of PCR products, Construction of Genomic and cDNA libraries, Screening Libraries with Gene Probes, Screening Expression Libraries, Positional Gene Cloning, Subtractive cloning, Functional cloning	
4.	Molecular tools supporting RDT	PCR, RT-PCR, Blotting techniques, Sequencing methods, NGS, Gene editing, Mutagenesis, Gene expression techniques, Regulation of gene expression, microRNAs, Microarrays	4
5.	Methods & Applications of Plant Genetic engineering	Molecular Biology of DNA transfer in Plant through <i>Agrobacterium tumefaciens</i> , methods for artificial gene transfer, Applications in agriculture such as golden rice, BT Cotton, Nif and Nod gene clusters and Nitrogen fixing, etc.	5

6.	RDT for Environment al Biotechnolog y	Environmental Applications: biodegradation and bioremediation Energy based applications: Biogas, biodiesel and bioethanol production by microorganisms. Biotechnological applications. Biotechnological applications.	5
7.	RDT in Medicine & Therapeutics	Production of recombinant vaccines and antibiotics, phytopharming, microbes as cell factories for production of therapeutic molecules, insulin and other major discoveries, gene therapy	6
8.	Animal cloning & Issues	Transferring gene in animal oocytes, eggs embryos and specific animals tissues, Application of rDNA technology in animal cell lines, tailoring model animals, Controlling the expression of transgene in time and space, case studies exposing risks of animal cloning	4
9.	Ethics & Biosafety in RDT	Ethical issues, Biosafety guidelines and regulations	2

Total number of Lectures42

Evaluation Criteria Components Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25 **Total 100**

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Genes XII: Benjamin Lewin, 2016			
2.	Molecular Biology of the Gene, Seventh Edition: James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick, 2004Microbial Biotechnology: Progress and Trends, FarshadDarvishiHarzevili, Hongzhang Chen, First edition CRC Press/Taylor & Francis Group, 2017			

3	Molecular biotechnology : principles and applications of recombinant DNA / Bernard R. Glick and Jack J. Pasternak, Cheryl L. Patten. ASM Press
4.	Gene Cloning and DNA Analysis: An Introduction, Seventh Edition-T. A. Brown, John Wiley & Sons Ltd. 2016
5.	Microbial Biotechnology: Progress and Trends, FarshadDarvishiHarzevili, Hongzhang Chen, First edition CRC Press/Taylor & Francis Group, 2014

Detailed Syllabus

Course Code	19M21BT213	Semester Oc	ld	Sessio	ster: III on : 2020-21 h from: July to December
Course Name	Bioinformatics and Omics				
Credits	3		Contact He	ours	3

Faculty (Names)		Dr Chakresh Kumar Jain
	Teacher(s) (Alphabetically)	Dr Chakresh Kumar Jain

COURS	E OUTCOMES: Upon completion of the course, students will be able to	COGNITIVE LEVELS
CO1	Overview of the bioinformatics methdos and resources	Understanding Level Level C2
CO2	Explain about the Sequence analysis and highthotuput methodologies	Understanding Level Level C2
CO3	Apply Genome annotation and proteome analysis in solving biological problems.	Apply Level Level C3
CO4	Analyzing the use of Phylogenetic analysis in Microbial System annotation	Analyse Level Level C4

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Overview of bioinformatics and Microbial Informatics	Introduction to Bioinformatics, Information flow, Scope of Bioinformatics, computers and microbes, basics of internet, Network-based services (Cloud & Grid Computing), microbial informatics, environment and diversity	5

2.	Biological databases, microbial genomes Projects	Basics of Database designing and modeling, Designing policies, File formats (FASTA, PIR, Genbank), data storage, retrieval, <i>Microbial</i> Genomes, Genbank, Pfam, KEGG, Brenda, MBGD, <i>biodiversity databases</i>	5
3.	Sequence analysis (Sequence, retrieval, methods, substitution matrices, submission and analysis)	String comparison (substring, subsequence), Hamming and Levenshtein distance, Sequence alignment (pair wise, multiple) Dot plot method, Dynamic programming, <i>Needleman–Wunsch</i> and <i>Smith–Waterman</i> algorithm, BLAST algorithm ,FASTA algorithm comparison, PSI blast, gap penalty, e-value, statistical importance, PAM and BLOSUM matrices, log odd score, Sequence submission tools (Banklt, Sequin)	8
4.	High throughput data generation and analytics (NGS and	Genome sequencing projects, NGS generation, Computational tool and pipelines, microarray technology, data analysis methods and tools	5

	Microarray)		
5.	Genome annotation procedures and analysis tools	Gene structure, Gene finding strategies Glimmer,Genscan, promoter region identification, promoter signals, genome annotation tools, Gene ontology, biological networks	4

6.	Protein Structure prediction and proteome analysis	Protein sequence and structures (primary, secondary and tertiary) and prediction, protparam, <i>Chou–Fasman</i> algorithm, GOR method, Concepts of structural modeling and tools (Comparative homology modeling, Threading), PHD, ANOLEA, Transmembrane protein prediction tools, Mass spectrometry data and analysis	6
7.	Phylogenetic analysis	Phylogeny, Phyloegenetic reconstruction distance matrix, types of trees, Rooted un-rooted, distance based methods (UPGMA, FM, NJ Methods), Character based methods (Parsimony method, Maximum likelihood method), tree evaluation, (bootstrapping, Jackknifing), functional inferences. Phylogenetic profiles.	5
8.	Microbial System biology, Environment, and	System biology, microbial diseases. Metagenomics, Environmental <i>Informatics and health</i>	4

	Metagenomics		
		Total number of Lectures 4	
Evaluat	ion Criteria		
Compo	nents Maximum Marl	KS	
T1 20			
T2 20			
End Sen	nester Examination 35		
	Assignment 1, MCQ, P	resentations, Viva)	
Total 10	0		
		rial: Author(s), Title, Edition, Publisher, Year of Publication e	tc. (
lext bo	oks, Kelerence Books,	Journals, Reports, Websites etc. in the IEEE format)	

Attwood T.K. & Smith Parry., "Introduction to Bioinformatics", Benjamin Cummings, 2001

1.

2.	BaxevanisA., D & Ouellette "Bioinformatics A practical guide to analysis of genes and protein", Wiley Interscience, 1998.
3.	David Mount "Bioinformatics: Sequence and Genome analysis", Cold Spring Harbor Laboratory Press, 2001.

Detailed Syllabus Lab-wise Breakup

		Lab-wise breakup	
Course Code	19M25BT211	Semester Odd	Semester III

					on 2020-21 h from July to nber
Course Name	Microbiology Lab-	III			
Credits	4		Contact	Hours	8

COURS	COURSE OUTCOMES Students will be able to	
C01	Apply concepts of food microbiology	Level III (Apply)
CO2	Analyze bacterial transformation techniques	Level IV (Analyze)
CO3	Evaluate cloning techniques	Level V (Evaluate)

CO4	Apply bioinformatics tools for microbial genome analysis	Level III (Apply)

Modu le No.	Title of the Module	List of Experiments
1.	Food microbiology	Enumeration of yeasts and moulds in food; microscopic examination of moulds; microbial standards for different foods and drinking water; food adulteration: methods of detection of common adulterants in food, heat preservation of food; food fermentations
2.	Bacterial Transformation	Competent cells preparation and transformation of plasmid DNA, calculation of transformation efficiency

3.	Cloning and screening of recombinants	Restriction digestion of vector and insert; ligation of gene of interest in vectors; transformation; Screening of recombinants
4.	Bioinformatics	Bioinformatics tools (BLAST, genome analysis & phylogenetic analyses tools) and resources (NCBI); proteome and transcriptome analyses; network studies

Course Code	17M12BT116	Semester Odd	Semester X Session 2020-2021 Month from July-Dec 20

Course Name	Regulatory Affairs

Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	Dr Shweta Dang
	Teacher(s) (Alphabetically)	Dr Shweta Dang

COURS	SE OUTCOMES	COGNITIVE LEVELS	
C120.1 Explain regulatory markets and agencies; preclinical and clinical trials		Understanding (Level 2)	
C120.2	Analyze the guidelines for approvals of new drugs/biologics	Analyzing (Level 4)	
C120.3	Compare innovator and generic pharmaceutical industry with Patent and Non patent exclusivity	Evaluating (Level 5)	
C120.4	Interpret ICH guidelines applicable to drugs and biotechnology based therapeutic products.	Understanding (Level 2)	
C120.5	Assess regulatory approvals via related case studies	Evaluating (Level 5)	

ModuTitle of the ModuleTopics in the Modulele No.Module	No. of Lectures for the module
---	---

1.	Introduction To Regulatory agencies	CDSCO, India USFDA, USA EMEA, Europian Union TGA, Australia	2
2.	Introduction To Pharmacopoei as and Monographs	Indian Pharmacopoeia (IP) British Pharmacopoeia (BP) United Sates Pharmacopoeia (USP) International Pharmacopoeia (Int. Ph.) European Pharmacopoeia (Eur. Ph.)	2
3.	Safety and efficacy of drugs/biologics, preclinical studies, Clinical phases	Case studies of safety issues in history, Preclinical requirements, acute and chronic toxicity, dose determination, NOAEL, phases of clinical trials (I,II III)	4
4.	Approval pathways for Drugs/ biologic/ biopharmaceuti c als in USFDA	FDA,CDER, CBER, IND, NDA, BLA, recalls, Phase IV, filing procedures	7
5.	Approval pathways	EMEA, market authorization application. Centralized,	4

for Drugs/ biologic/ biopharmaceutic als in europe	Decentralized, National, Mutual recognition procedure. CTD, eCTD, Nees Submissions, ICH M4	
---	---	--

6. Approval pathways for Drugs/ biologic/ biopharmaceuti cal s in India and Japan		Central Drug Standard Control Organization, INDIA, Pharmaceutical and Medical Devices Agency of Japan	3
7. Generics and Biosimilars		Hatch Wax man Act (Para I,II,III and IV filings), BPCI act USA, CDSCO guildines, EMEA guidelines, Status of guidelines	6

8.	Non Patent Exclusivities	Orphan Drug law, Market exclusivity, Pediatrics exclusivity, First to file exclusivity	5
9.	ICH Guidelines for Biologics and Good Clinical Practices	Overview of ICH guidelines, ICH QSEM, ICH Q5 ,Q6,. ICH E6, ICH Q8,9,10	5
11.	Case Studies	Relevant Case studies	4
		Total number of Lectures	42
Comp T1 20 T2 20 End Se	ntion Criteria onents Maximum Mark mester Examination 35 (Class Test, Assignment		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Sandy Weinberg, GUIDEBOOK FOR DRUG REGULATORY SUBMISSIONS, 2009 (first edition), John Wiley & Sons, Inc.

2.	The Common Technical Document (CTD), Internet: http://www.ich.org/
3.	Guideline for submitting supporting documentation in drug applications for the manufacture of drug substances, February 1987, Internet: http://www.fda.gov/cder/guidance/drugsub.pdf
4.	ICH Guideline: The Common Technical Document for the Registration of Pharmaceuticals for Human Use: Quality - M4Q; Quality Overall Summary of Module 2, Module 3: Quality, Internet: http://www.ich.org/MediaServer.jser?@_ID=556&@_MODE=GLB

_	Lecture-wise Breakup					
	Course Code	17M12BT111	Semester Odd	Semester III Session 2021-2022 Month from: July-December		

Course Name	Biosensors		
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	Prof.Sudha Srivastava
	Teacher(s) (Alphabetically)	Prof.Sudha Srivastava

COURSE OUTCOMES	COGNITIVE LEVELS

CO1	Explain principle and working of biosensors and characterization techniques	Understand Level(C2)	
CO2	Evaluate different methods of immobilization and their effect on biosensor performance	Evaluate Level (C5)	
CO3	Analyze performance of a biosensor for disease diagnosis, environmental pollution, pathogen quantification	Analyze Level (C4)	
CO4	Design strategy for fabrication of a given biosensor with high sensitivity and wide detection range	Create Level (C6)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction:	Sensors and biosensors, definitions, types of sensors, markets, target analytes, glucose and other medical sensors	2

2. Biosensor Advancements and nanotechnology		First-, second-, third generation biosensors, Nanotechnology and present day biosensors	3
3.	Basic Design Considerations	Calibration, dynamic Range, signal to noise, sensitivity, selectivity, interference.	3
4.	The biological component	Whole cell sensors, enzymes – sensing substrates or inhibitors, antibodies (Mab, Fab). And other binding proteins, oligonucleotides and aptamers.	3
5.	Types of biosensors	Optical biosensors, Electrochemical biosensors, Piezoelectric biosensor, Calorimetric biosensors	8

6.	Immobilizati on method	Non-covalent immobilization - entrapment and multipoint electrostatic attachment. Covalent attachment via thiol, amino and hydroxyl groups. Affinity interactions - avidin/biotin, , complementary oligonucleotides.	4
7.	Techniques for sensing : Physical and chemical	Absorbance, fluorescence, chemi/bioluminescence and phosphorescence, Surface Plasmon Resonance (SPR), quartz crystal microbalance, cyclic voltammetry	8
8.	Sensor stabilization	Storage and operational stability. Polyols, polymers and low Mw compounds as stabilizing agents for drying and long term storage. Stabilization mechanisms.	3
9.	Applications	Pharmaceutical, agricultural, food safety, biomedical applications, food processing: state of the field, market potential, unique design criteria and needs, current sensors in use.	8

	Total number of Lectures	42
Evaluation Criteria		
Components Maximum Marks		
T1 20		
T2 20		
End Semester Examination 35		
TA 25 (Class Test, Presentation)		
Total 100		

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Ligler, F.S. and Rowe Taitt, C.A. 2002. Optical Biosensors: Present & Future. Elsevier, The Netherlands. ISBN: 0-444-50974-7.			

2.	Yang, V.C. and T.T. Ngo. 2000. Biosensors and Their Applications. Kluwer Academic/Plenum Publishers, New York, NY. ISBN: 0-306-46087-4.
3.	Recent research articles

Co	ourse Code	17M12BT118	Semester Odd	Semester III Session 2021-2022 Month from: July-December
Co	ourse Name	Product Development in Biotechnology		

Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	Dr.NeerajWadhwa
	Teacher(s) (Alphabetically)	Dr.NeerajWadhwa

COURSE OUTCOMES		COGNITIVE LEVELS
CO1	Outline various processes relevant for Biobusiness	Understand Level (C2)
CO2	Compare marketing techniques and related ethics	Apply Level (C2)

CO3	Select appropriate technology for the production of Biological products	Understand Level (C3)
CO 4	Explain financial, regulatory, health policy aspects for biobased industries	Understand Level (C2)

IoduleSubtNo.of thMod	e	No. of Lectures for the module

1.	Biotech nol ogy Industri es overvie w	Biotech industries in India and abroad, Biotechnology as a function of science and business ,Company structures versus other non-biotech companies , Functional units Company structure and functions Emerging technology and technical convergences issues	5
2.	Business in the context of biotech nol ogy Entrepre ne urship	Science/development, the idea and its development, Plant tissue culture lab-equipment- glassware chemical requirement- construction,techniquesin culturing and export abroad, Vermitechnology, Mushroom cultivation, single cell protein, Biofertilizer technology production, Textile processing, leather treatment, Detergent industry, bakery, diary Pharmaceutical drug development, Medical device product development ,Technology product development Other biotech product development, such as biofuels, bioengineered foods, etc commercialization of Bakery and dairy products	10

3.	Product develop me nt	 a. Production of commercially important primary metabolites like organic acids, amino acids and alcohol & Production processes for various classes of secondary metabolites: Antibiotics, Vitamins and Steroids. b.Production of Industrial Enzymes, Biopesticides, Biofertilizers, Biopreservatives, Biopolymers Biodiesel. Cheese, Beer, SCP & Mushroom culture, Bioremediation. c.Production of recombinant proteins having therapeutic and diagnostic applications, vaccines. 	12
----	-----------------------------	---	----

	Bioprocess strategies in Plant Cell and Animal Cell culture. d.Biotransformation applications of enzymes - Hydrolytic- Ester bond, Amide, Epoxides, Nitriles, Reduction reactions – aldehydes, Ketones, C=C, Oxidation reactions – Alkanes, Aromatic, Baeyer Villiger, Enzymes in organic synthesis– esters, amide, peptide, Modified and Artificial Enzymes, Catalytic antibodies	
--	--	--

4.	Intellectu al property, Bioethics ,le gal issues	alBusiness Development/Licensing, Strategyproperty,Marketing and public perception in productBioethicsdevelopment, genetically modified products andorganism transgenic products licencing andbranding concerns	
5.	Biobusi nes s plans	Concerns and oppurtunities, Bank loan and finance strategy, Budget planning,Policy and regulatory concerns,Corporate partners marketing- Model project Case studies of different industries and strategic planning	10

	Total number of Lectures	42
Evaluation Criteria		
Components Maximum Marks		
T1 20		
T2 20		
End Semester Examination 35		
TA 25 (Class Test, Presentation)		
	Total 100	

Publ	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Papers, Reports, Websites etc. in the IEEE format)			
1.	Satyanarayana, U. "Biotechnology" Books & Allied (P) Ltd., 2005.			
2.	Kumar, H.D. "A Textbook on Biotechnology" 2nd Edition. Affiliated East West Press Pvt. Ltd., 1998.			
3.	Balasubramanian, D. etal., "Concepts in Biotechnology" Universities Press Pvt.Ltd., 2004.			
4.	Ratledge, Colin and Bjorn Kristiansen "Basic Biotechnology" 2nd Edition Cambridge University Press, 2001			
5.	Faber K , Biotransformations in Organic Chemistry, IV edition , Springer			
6.	Dubey, R.C. "A Textbook of Biotechnology" S.Chand& Co. Ltd., 2006. Trevor Palmer, Enzymes II edHorwood Publishing Ltd			
7.	Cruger,Wulf and AnnelieseCrueger, "Biotechnology: A Textbook of Industrial Microbiology", 2 nd Edition, Panima Publishing, 2000.			

8.	Richard Oliver "The coming Biotech Age ; the business of Biomaterials" Mc
	Graw Hill Publication, New York USA2000

9.	Karthikeyan,S and Arthur Ruf." Biobusiness"MJP Publication Chennai India 2009
10.	Cynthia Robins," The business of Biotechnology". UK Harper Collins 2001

Subject Code	19M22BT211	Semester Odd	Semester III Session 2020-21 Month from July to December
Subject Name	Diagnostic Microbiology		
Credits	3	Contact Hours	3

Faculty	Coordinator	2. Dr. Sonam Chawla
	Teacher	2. Dr. Sonam Chawla

	COGNITIVE LEVELS	
C01	Interpret the fundamental concepts, tools and methods of microbial diagnostics in relation to various human diseases/disorders	Applying level (Level III) C3
CO2	Apply principles of Molecular diagnostics to genetic counselling, communicable, non-communicable and lifestyle diseases/disorders	Applying level (Level III) C3

CO3	Correlate different advances in microbial diagnostics to human microbiome, their significance in disease management and therapy	Analysis level (Level IV) C4
CO4	Identify importance as well as ethical and biosafety issues related to the field of diagnostics	Understanding Level (Level II) C2

Modu le No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction	Fundamentals of Microbial diagnostics and its significance in post genomic era in health care industry	03

2.	Microbiological diagnostic tools for bacterial pathogen detection	Microscopy and other culture based tests, Blood and other body fluids based biochemical methods for pathogen detection, strategies for antimicrobial sensitivity testing, Urea Breath Tests for <i>Helicobacter pylori</i>	08
3.	Advanced Techniques in Diagnostic Microbiology	Principles and characteristics of techniques ranging from rapid antigen testing, to advanced antibody detection, <i>in vitro</i> nucleic acid amplification techniques, Gene and signal amplification techniques, non PCR mediated target amplification, RT-PCR and microarray based Identification, probe technologies, FISH, RFLP, RNA inhibition analysis, OLA, DNA finger printing	10
4.	Diagnostics for assessing viral	Methods in basic virology, Human Immunodeficiency Virus (HIV), Hepatitis C, B & A Virus, Covid and emerging	04

infections microorganism detection and genotyping	
--	--

5.	Diagnostic tools for Genetic counseling and Cytogenetics	Genetic analysis for inherited disorders, mutation detection, detection of allelic diversity (SSCP/DGGE/ DHPLC, PTT tests), Heterozygote Testing, Presymptomatic Testing, Prenatal Testing, and Newborn Screening	05
6.	Lifestyle diseases/disorders, Human microbiome Human microbiome Human microbiome Human microbiome Human microbiome Human microbial identification and applications in disease management and therapy		06
Health care & Hemoglobinopathies, Plas		Diagnostic tools applicable in Hemoglobinopathies, Plasmapheresis, Blood Banking, blood and blood product screening forensics & Quarantine	04
8.	Regulatory, Ethical and biosafety issues in diagnostics	Laboratory safety and specimen management, regulatory controls, case studies related to ethics in diagnostics	02
		Total number of Lectures	42
	tion Criteria		
Compo T1 20	onents Maximum Marks		
T2 20			
	mester Examination 35		
IA 23 ((Class Test, Presentation)	Total 100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Tang , Yi-Wei, Stratton , Charles W. (Eds.), "Advanced techniques in Diagnostic microbiology", 2018, Springer publication			
2.	Bailey & Scott's Diagnostic Microbiology, 14th Edition, by Patricia Tille, 2017, Elsevier Evolve			
3.	Jean-Louis Serre, "Diagnostic techniques in Genetics", 2006, John Wiley& Sons publication			

4.	Trent R J, "Molecular Medicine : An Introductory text", Churchill Livingston publication
5.	Refereed papers from scientific journals for case studies

Course Code	18M12BT116	Semester Odd (specify Odd/Even)			ester III Session 2020 - Month from July to mber
Course Name	IPR in Biotechnolo	ogy			
Credits	3		Contact Hours		3

Faculty (Names)		Dr. Indira P. Sarethy
	Teacher(s) (Alphabetically)	Dr. Indira P. Sarethy, Dr. Shweta Dang

COURSE OUTCOMES		COGNITIVE LEVELS
CO1	Explain and interpret the types of intellectual property rights, related laws and systems	Understand (C2)
CO2	Apply specific IPR issues pertaining to medical biotechnology	Apply (C3)

CO3	Evaluate plant and traditional knowledge protection	Evaluate (C5)

CO4	Appraise commercialization of intellectual property, infringements and laws applicable	Evaluate (C5)
-----	--	---------------

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Intellectual Property Rights - their Relevance, Importance and Business Interest to Industry, Academia, Protection of Intellectual Property, Relationship of IPRs with biotechnology	2 [CO1]
2.	Types of Intellectual Property Rights	Patents, Trademarks, Copyrights, Industrial Designs, Geographical Indications, Trade secrets, non disclosure agreements	2 [CO1]
3.	Patents	General Introduction to Patents, Patent Terminology, Patent Claims, Patent Life and Geographical Boundaries, Utilization of Intellectual Patents, Licensing of patents	4 [CO1, CO2]
4.	Elements of patentability	Invention/Discovery, What constitutes Patentable subject matter, the Utility, novelty and non-obviousness of an invention, Patentability in Biotechnological Inventions: Case studies	2 [CO2, CO3]
5.	Preparation and Process for	Procedural steps to grant of a patent, Process of filing patents in India, PCT application, protocols of application, pre-grant &	3 [CO2, CO3]

	Patenting	post-grant opposition	
6.	Patent Search	Invention in context of "prior art", Patent Search methods, Patent Databases & Libraries, online tools, Country-wise patent searches (USPTO, EPO, India etc.), patent mapping	2 [CO2, CO3]

7.	IPR laws	Basic features of the Indian Patent Act, the Indian Copyright Act, and the Indian Plant Varieties Protection and Farmers' Rights Act, A brief overview of other Patent Acts & Latest Amendments of Indian, European & US patent systems	2 [CO1, CO2, CO3]
----	----------	---	----------------------

8.	Patent issues in Drugs and Pharmaceu ti cal s	Generics, Compulsory Licensing, Exclusive Marketing Rights (EMR), Bolar provision, Bayh- Dole act, Second medical use	2 [CO2, CO3]
9.	Worldwide Patent Protection, WTO & TRIPS Agreement	Brief Background of different International conventions such as Paris convention, TRIPS, WTO, PCT and Patent Harmonisation including Sui-generis system, The relationship between IPRs and international trade, Overview of WTO & TRIPS Agreement, Enforcement and dispute settlement under the TRIPS Agreement, The implication of TRIPS for developing countries in the overall WTO system	2 [CO1, CO2, CO3]
10.	Gene patents	Introduction & overview, what constitutes gene patents, Bayh Dole Act, ESTs, Cohen-Boyer technology, PCR patents, EPO case, BRCA gene, Types of IPR involved, Genetic Use Restriction Technologies, Patenting of biologics, Hatch Waxman Act	9 [CO3, CO4]
11.	Protection of Plant Varieties /Seeds	The interface between technology and IPRs in the context of plants, Key features of UPOV 1978, UPOV 1991 and TRIPS with respect to IPRs on plants, Indian Law on Protection of Plant Varieties, DUS criteria, patenting of genetically modified plants, The significance of IPRs in agricultural biotechnology, Biodiversity, Conventions & Treaties, plant patents, Plant Varieties Protection Act, Plant Breeders' Rights, UPOV, benefit sharing, <i>sui</i> <i>generis</i> systems Case studies	4 [CO3, CO4]
12.	Traditional Knowledge and Intellectual Property Rights	The importance and relevance of Traditional Knowledge for developing nations, The various approaches to protecting TK, The local, national and global dimensions of the issues in TK and IPRs, Traditional Medicine & IP Protection, Folklore, Patenting of Health Foods: Case studies	4 [CO3, CO4]

13.	Patent Infringeme nt and Commerciali zin g Intellectual Property Rights	What all are considered as patent Infringement: Case studies, defenses to infringement including experimental use, patent misuse, legal considerations, Patent Valuations, Competition and Confidentiality issues, Assignment of Intellectual Property Rights, Technology Transfer Agreements	4 [CO4]
		Total number of Lectures	42
	ion Criteria 1ents Maximum M	arks	

End Semester Examination 35 TA 25 (Assignments 1, 2. Presentation 1) **Total 100**

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	USPTO Web Patent Databases at: www.uspto.gov/patft		
2.	Government of India's Patents Website: patinfo.nic.in		
3.	Intellectual property India: www.ipindia.nic.in		
4.	"Indian Patent Law : Legal and Business Implications" by AjitParulekar, Sarita D'Souza Macmillan India publication, 2006		
5.	"Agriculture and Intellectual Property Rights", edited by: Santaniello, V., Evenson, R.E., Zilberman, D. and Carlson, G.A. University Press publication, 2003		

6.	Research papers and Reports provided from time to time