Software Development Fundamentals – II

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11CI211	Semester:Even 2022 (specify Odd/Even)		Semester: II Session: CSE/IT/ECE Month from: Jan to June	
Course Name	Software Development Fundamentals – II				
Credits	4		Contact Hours 4 (3 Hrs. Theory, 1 Hr. Tutoria		4 (3 Hrs. Theory, 1 Hr. Tutorial)
	Coordinator(s) Ashish Mishra (162) Amhalika Sarkar (1128) Ankita Wadhwa (163			ra Sarkar (1128) Ankita Wadhwa (162)	

	Coordinator(s)	Ashish Mishra (J62), Ambalika Sarkar (J128), Ankita Wadhwa (J62),
Faculty (Names)	Teacher(s) (Alphabetically)	J128 - Ambalika Sarkar, Chetna Gupta, Himanshu Mittal, Mukesh Saraswat, Naveen,Rashmi Kushwah, Shailesh Kumar, Surender, Shariq Murtuza J62 – Aditi Sharma, Alka Singhal, Ankita Verma, Ankita Wadhwa, Ashish Mishra, Kapil Madan, RadulaSharma, Neetu Sardana

	COURSE OUTCOMES	COGNITIVE LEVELS
CO1	Explain various object-oriented concepts like class and objects, friend	Understand Level(Level 2)
	function, function and operator overloading, etc.	
CO2	Apply and implement the relationships of association, aggregation,	Apply Level (Level 3)
	composition, and inheritance	
CO3	Analyze the output of the source code and able to debug the errors	Analyze Level (Level 4)
CO4	Design the class diagram for real life problems and implement it using	Create Level (Level 6)
	virtual functions, abstract classes, templates, and exception handling	
CO5	Apply SQL commands to create tables and perform various operations	Apply Level (Level 3)
	like insert, delete, select, etc.	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Object Oriented Programming	Comparison of Procedural and Object-Oriented Approach, Characteristics of Object-Oriented Languages, Separation of behavior and implementation	2
2.	OO Concepts using C++	Objects, Classes, Internal representations of Objects, Constructors, Destructors Functionand Operator Overloading, Static and Friend Functions	8
3.	Inheritance using C++	Base Class, Derived class, Method Overriding, Private and Public Inheritance, Multiple Inheritance.	3
4.	Polymorphism using C++	Virtual Functions, Pure Virtual Functions, Abstract Classes, Dynamic Dispatch, Internal representations of method tables, RTTI	3
5.	UML/Relationship Implementation in C++	Models, Views and Model Elements, Class Diagram, Relationships of Association, Aggregation, Composition, and Inheritance, <i>etc.</i> and their implementing	8

6.	Exceptions, Templates, and STL in C++	Exceptions, Try, Catch and Throw, Re-throwing exceptions, Exception and Inheritance, Function Templates, Overloading Functions Template, Class Templates, Collection classes and iteration protocols (STL)	8	
7.	Introduction to Database	Fundamentals of Database and Database Management System, Introduction to Relational Database, Table, Attributes, Records, Introduction to SQL, Data types in SQL, Various operations on single table like create, insert, delete, update, alter, etc. using SQL, SQL queries on single table using select statement with or without where/ group by clause, etc.	10	
	Total number of Lectures			

Project based learning: Each student in a group of 3-4 will have to develop a mini project based on object-oriented programming concepts. The students have to design the class diagram for any real-world application. The students have to implement the mini project using C++/Java language. Project development and its presentation will enhance the knowledge and employability of the students in IT sector.

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Mini Project (10), Attendance (10), Tutorial Assignments (5))
Total	100

II .	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1	Herbert Schildt, C++: The Complete Reference, McGraw-Hill Osborne Media, 4th Edition, 2017				
2	Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Pearson, 7 th Edition, 2016				
3	Stroustrup B., The C++ Programming Language, Addison Wesley, 4 th Edition, 2013				
4	Avi Silberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6th edition, McGraw-Hill, 2010.				
5	Robert Lafore, Object Oriented Programming in C++, SAMS, 4 th Edition, 2002				
6	John Hubbard, Schaum's Outline of Programming with C++, McGraw-Hill, 2 nd Edition, 2000				

Detailed Syllabus Lecturewise Breakup

Course Code	15B11EC111	Semester: E	ven	Semes	ter: 2 nd Session: 2021 -22
		(specify Ode	d/Even)	Month	from: Feb-June
Course Name	Electrical Science -1				
Credits	4	Contact Hours 3		3	
					+
					1

Faculty	Coordinator(s)	Kaushal Nigam, Atul Kumar Srivastava
(Names)	Teacher(s) (Alphabeticall y)	Ashish Gupta, Varun Goel, Sajaivir Singh, Satyendra Kumar, Abhishek Kashyap, Neetu Joshi, Mandeep Narula, Archana Pandey, Rachna Singh, Shraddha Saxena.

COURSE	COGNITI VE LEVELS	
C113.1	Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws and different analyzing techniques to identify the different circuit parameters.	Applying Level (C3)
C113.2	Define and apply the networks theorems in the complex AC and DC circuits, networks. Demonstrate the physical model for given Sinusoidal AC signal and construct the phasor diagrams.	Applying Level (C3)
C113.3	Demonstrate the concept of resonance and operate different instrumental and measurement equipments.	Understanding Level (C2)
C113.4	Demonstrate the construction and working of a single phase transformer.	Understanding Level (C2)

Mod ule No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic Concepts	Voltage, Current, Power and Energy analysis for Circuit elements (R, L, C), Independent and Dependent Sources, Kirchhoff's Laws, Voltage Divider rule, Current Divider rule.	6
2.	DC Circuit Analysis	Star-Delta Transformation, Source transformation, Mesh and Supermesh Analysis, Nodal and super nodal Analysis	6
3.	Network Theorems	Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem.	6
4.	Sinusoidal Steady State Analysis	Physical Model for a Sinusoid, Average Value, Effective Value, Phasor presentation, Addition of Phasor using Complex Numbers, Concepts of impedance and admittance.	4

5.	AC Network Analysis and Theorems	Mesh and Nodal analysis, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem.	6
6.	Resonant Circuits	Series and Parallel resonance, frequency response of Series and Parallel resonance, Q-Factor, Bandwidth	4
7.	Electrical Instrume nts	Essentials of an Instrument, Permanent Magnet Moving Coil (PMMC) Instruments, voltmeter, ammeter, Ohmmeter, Meter Sensitivity (Ohms-Per-Volt Rating); Loading Effect; Multimeter; Cathode Ray Oscilloscope: Construction,	6

	Working and Applications. Function Generators.		
8.	8. Single Principle of operation, construction, e.m.f. equation, equivalent circuit, power losses, efficiency (simple numerical problems), introduction to auto transformer.		4
		Total number of Lectures	4 2
Evaluati	on Criteria		
Compon	ents	Maximum Marks	
T1		20	
T2		20	

Project based learning component: Students will learn fundamental concepts, working and applications of Permanent Magnet Moving Coil (PMMC) Instruments, voltmeter, ammeter, Ohmmeter, Cathode Ray Oscilloscope and Function Generators that develop aptitude among students to design minor and major projects. They will also develop knowledge about step-up and step-down transformers which can be further used to design advanced circuits in communication and robotics. It will also help develop concepts about instrumentation in electrical/electronics/biotech/communication based industries.

25 (Assignment, quiz, attendance)

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

35

100

R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 9th ed, John Wiley & Sons, 2013.
 Charles K. Alexander (Author), MatthewN.O Sadiku, "Fundamentals of Electric Circuits", 6th ed, Tata Mc Graw Hill, 2019.
 Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 11th ed, Prentice Hall of India, 2014.
 D.C. Kulshreshtha, Basic Electrical Engineering, Revised 1st ed, Tata Mc Graw Hill, 2017.

Mathematics-2 (15B11MA211)

End Semester Examination

Total

Course Description

	Course Description						
Course Code	15B11MA211	Semester Even	Semester II Session 2021-22				
			Month from Jan 2022 - Jun 2022				
Course Name	Mathematics 2						
Credits	4	Contact Hours 3-1-0					
Faculty	Coordinator(s)	Dr. Richa Sharma, Dr. Neha Ahlawat, Dr. Shruti Goel					

(Names)	Teacher(s) (Alphabetic	Prof. Alka Tripathi, Prof. R.C. Mittal, Prof. A.F. Lokender Kumar, Dr. Anuj Bharadwaj, Dr. Hima Richa Sharma, Dr. Neha Ahlawat, Dr. Shruti Pandey, Dr. Manish Bansal, Dr. Neha Sin Srivastav, Dr. Dinesh Bisht, Dr. Md. Sarfaraj, Dr Pinkey Chauhan.	nshu Agarwal, Dr. Goel, Dr. Shikha ghal, Dr. Pankaj	
COURSE (OUTCOMES		COGNITIVE LEVELS	
After pursui	ing the above-mention	ned course, the students will be able to:		
C106.1	apply different met order.	thods for solving ordinary differential equations of second	Applying Level (C3)	
C106.2	explain different te	sts/methods of convergence for infinite series.	Understanding Level (C2)	
C106.3		tion of differential equations and use it to construct mials and Bessel's functions.	Applying Level (C3)	
C106.4	classify the partial their solution.	differential equations and apply Fourier series to find	Applying Level (C3)	
C106.5	explain Taylor's & transformations.	Laurent's series expansion, singularities, residues and	Understanding Level (C2)	
C106.6	apply the concept of differentiation and	of complex variables to solve the problems of complex integrations.	Applying Level (C3)	
Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module	
1.	Second Order Linear Differential Equations	Linear Differential Equations of Second Order with constant coefficients and with variable coefficients, Change of Variable, Variation of Parameters.	5	
2.	Convergence of Series	Convergence of series, Tests of convergence, Alternating Series, Absolute & Conditional Convergence, Uniform Convergence.	7	
3.	Series Solution and Special Functions	Series Solutions, Bessel Function, Recurrence Relations and Orthogonality. Legendre functions, Recurrence relations and Orthogonality.	7	
4.	Fourier Series and Partial Differential Equations	Fourier Series. Classification and Solution of PDE, Equation of vibrating string, Solution of one dimensional wave & heat equations.	5	
5.	Complex Variables	Limit, Continuity and Differentiability of Functions of Complex Variables, Analytic Functions, Cauchy's Riemann Equations.	3	
6.	Complex Integration	Cauchy Integral Theorem, Cauchy Integral Formula and Applications.	4	
7.	Series Expansion	Taylor and Laurent Series Expansion, Poles and Singularities.	4	
8.	Contour Integration	Residues, Cauchy's residue theorem and its applications.	5	
9.	Conformal Mapping	Bilinear transformation	2	
Total numb	Total number of Lectures			
Evaluation Component T1		Maximum Marks 20 20		

End Semester Examination TA 25 (Quiz, Assignments, Tutorials) **Total Project based learning:** Each student in a group of 3-4 will apply the concepts of Fourier Series, partial differential equations and contour integration to solve practical problems. **Recommended Reading material:** Jain, R. K. & Iyenger, S. R. K., Advanced Engineering Mathematics, 5th Ed., Narosa Publishing House, New Delhi, 2016. Brown, J.W. & Churchill, R.V., Complex Variables and Applications, 6th Ed., McGrawHill, 1996. 2. Prasad, C., (a) Mathematics for Engineers (b) Advanced Mathematics for Engineers, Prasad 3. Mudranalaya, 1982. Kreysizg, E., Advanced Engineering Mathematics, 10th Edition, John Willey & Sons, Inc., 2015. 4. Simmons, G. F., Differential Equations with Applications and Historical Notes, 2nd Ed. McGraw Hill, 5. 1991. Spiegel, M.R., Complex Variables, Schaum's outline series, Mac Graw-Hill, 2009. **Grewal, B. S.,** Higher Engineering Mathematics, 44th Edition, Khanna Publisher, 2018.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11PH211	Semester: Ever		Semester: II Session 2021-22 Month from: February to June		
Course Name	PHYSICS-II			,		
Credits	4		Contact Hours	4		

Faculty (Names)	Coordinator(s)	Dr. Anshu D Varshney and Dr. Anuraj Panwar
	Teacher(s)	Prof. D.K. Rai
	reaction (s)	Prof. S. C. Katyal
		Prof. S. P. Purohit
		Prof. R. K. Dwivedi
		Prof. Navendu Goswami
		Dr. Manoj Kumar
		Dr. Vikas Malik
		Dr. Suneet Kumar Awasthi
		Dr. Amit Verma
		Dr. A. P. S. Chauhan
		Dr. Prashant Kumar Chauhan
		Dr. Anshu D Varshney
		Dr. Anuraj Panwar
		Dr. Dinesh Tripathi
		Dr. Anuj Kumar
		Dr. Manoj Tripathi
		Dr. Ashish Bhatnagar
		Dr. Ravi Gupta

COURSE	OUTCOMES	COGNITIVE LEVELS
C102.1	Recall the basic concepts relating to electromagnetic theory, lasers, fiber optics and solid state physics.	Remembering (C1)

C102.2	Illustrate the various physical phenomena with interpretation based on the mathematical expressions involved.	Understanding (C2)
C102.3	Apply the basic principles in solving a variety of problems related to lasers, electromagnet theory, fiber and solid state physics.	Applying (C3)
C102.4	Analyze and examine the solution of the problems using physical and mathematical concepts involved in the course.	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Electromag	Introduction of electromagnetism, Basic idea of Cartesian, Spherical polar and cylindrical coordinate systems, Basics of fields, Gradient, Divergence and Curl, Coulomb's law, Electric Flux & Gauss's law, Applications of Gauss law for Spherical and Cylindrical symmetries (all important cases), Electric field due to charged conductor, Force per unit area on the surface of the charged conductor, Laplace and Poisson's equations and their applications to solve electrostatic problems in Cartesian and cylindrical systems, Treatment of electrostatic problems using Laplace and Poisson's equations in spherical coordinate system, Maxwell's correction to Ampere's law, Displacement current, Maxwell's equations in free space and dielectric media (both differential and integral forms) Poynting's theorem (derivation) and Poynting vector, Electromagnetic waves in free space (equations and solutions) and Transverse nature of EM waves, Energy and momentum in EM waves, Radiation pressure, Propagation of EM waves through boundary, Boundary Conditions across the medium ,Reflection and Transmission of EM waves at normal incidence, Reflection and Refraction , Oblique incidence- Laws of Reflection and Refraction , Oblique incidence-p polarization, Fresnel's equations, Total internal Reflection and Brewster's Law for EM waves	17
2.	Lasers, Optical Fiber and their applications	Introduction to Laser, spontaneous and stimulated emission, population inversion, Einstein A and B coefficients, Principles and working of lasers, Three level Laser Scheme, Ruby laser, Applications of lasers, Concept of optical fiber and Principle of Total Internal Reflection in optical fiber, Numerical aperture and Single, multistep & graded index fiber, Attenuation coefficient, Transmission losses in optical fiber, Applications of an optical fiber: Endoscopy and sensing applications (discussion of one specific example) of an optical fiber.	08

3.	Solid State	Basic ideas of Bonding, Ionic bonding, covalent bonding and Metallic	15		
	Physics	Bonding, Inter-atomic coulomb forces in ionic crystals and Determination of			
	•	equilibrium separation, Minimum Potential energy and determination of			
		Madelung constant 'α 'for NaCl crystal in 1D , Lattice points and space			
		lattice, Basis and crystal structure, Unit cell and Primitive cell, Seven crystal			
		systems and Fourteen, Bravais space lattice, Coordination number, nearest			
		neighbor distance, atomic radius and packing factor in crystal structure,			
		Calculation of lattice constant, Lattice planes and Miller			
		indices, Separation between lattice planes, Derivation and examples,			
		X-ray diffraction, Bragg's law of X- ray diffraction, Electrical			
		properties of metals: Classical free electron theory of conduction in metals,			
		Quantum mechanical treatment: Quantum theory of electronic			
		conduction in metals , Kronig Penney Model: Periodic Potential and			
		Allowed Energies, Emergence of Bands through Kronig Penney Model			
		and Band Theory of Solids, Distinction between metals,			
		Semiconductors and insulators, intrinsic and extrinsic			
		semiconductors, Effective Mass: Concept and Significance, Brillouin			
		zone: Relation with Lattice Structures, Types of Brillouin zones,			
		Energy and Momentum ,Brillouin zone: Origin of Forbidden Bands			
		Total number of Lectures	40		
Evaluation	Criteria				
Component	S	Maximum Marks			
T1		20			
T2		20			
End Semester Examination		35			
TA		25			
		(a) Quizzes /class tests (05 M),			
		(b) Attendance (05 M)			
		(c) Internal Assessment (05)			
		(d) Assignments in PBL mode (10 M)			
Total		100			

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	D. J. Griffiths, Introduction to electrodynamics, Pearson India.					
2.	G. Keiser, Optical Fiber Communications, Tata Mc Graw Hill Education.					
3.	A. Beiser, Concepts of Modern Physics, Mc Graw Hill International.					
4.	4. S. O. Pillai, Solid State physics, New Age International (P) Limited.					
5.	B. G. Streetman & S. Banerjee, Solid State Electronic Devices, Prentice-Hall India.					

Project Based Learning (PBL): Small projects (in groups) will be assigned to the students on diverse topics such as electromagnetism, lasers, optical fibres, and solid-state theory in order to study their applications in engineering and technology and to better comprehend the role of physics. This will assist students in connecting the

concepts learned in class to their engineering and technology applications, as well as improve their analytical skills.

Software Development Lab - II

Detailed Syllabus Lab-wise Breakup

Lab-wise Breakup					
Course Code	15B11CI271	Semeste	er:Even	Ser	mester: II Session: 2021-22
				Mo	onth from: Jan to June
Course Name	Software Developme	ent Lab - I	[
Credits	1		Contact Hours		2 hrs
Faculty (Names)	Coordinator(s)	(J62) Alka Singhal, Mradula Sharma, Aditi Sharma (J128) Mukesh Saraswat			
	Teacher(s) (Alphabetically)	(J62) Adwitiya Sinha, Aditi Sharma, Alka Single Ankita Verma, Arpita Yadav, Ashish Mishr Deepti, Jaspal, Kapil madan, K Vimal Kumar, Neetu Sardana, Parul Sharma, Raghu Vamsi, Sarishty Gupta. (J128) Arti Jain, Mukta Goyal, Rashmi Kushwah, Shariq Murtuza, Surender, Swati, Himanshu Mittal,			dav, Ashish Mishra,Chetna Dabas, K Vimal Kumar, Mradula Sharma, na, Raghu Vamsi, Sangeeta Mittal, al,Rashmi Kushwah, Shailesh Kumar,
COURSE OUTCO	OMES				COGNITIVE LEVELS
CO1 Write prog	CO1 Write programs in C++ to implement OOPs concepts related to objects. Apply Level (Level 3)				o objects. Apply Level (Level 3)

COUI	RSE OUTCOMES	COGNITIVE LEVELS
CO1	Write programs in C++ to implement OOPs concepts related to objects,	Apply Level (Level 3)
	classes, constructor, destructor, and friend function.	
CO2	Write programs in C++ using OOPs concept like encapsulation,	Apply Level (Level 3)
	inheritance, polymorphism and abstraction.	
CO3	Write programs in C++ using Standard Template Library.	Apply Level (Level 3)
CO4	Perform exception handling in C++ programs.	Apply Level (Level 3)
CO5	Write MySQL queries to perform operations like ADD, DELETE,	Apply Level (Level 3)
	UPDATE, SELECT on relational databases.	

Module No.	Title of the Module	List of Experiments	No. of Labs for the module
1.	OO Concepts using C++	Write output based C++ programs to implement the concepts of Objects, Classes, Internal representations of Objects, encapsulation, Constructors, Destructors, Functionand Operator Overloading, Static and Friend Functions.	3
2.	Inheritance using C++	Write programs in C++ to implement concepts of Base Class, Derived class, Method Overriding, Private and Public Inheritance, Multiple Inheritance.	2

3.	Polymorphism using C++	Write programs in C++ using Virtual Functions, Pure Virtual Functions, Abstract Classes, Dynamic Dispatch, Internal representations of method tables, RTTI, operator overriding.	2
4.	UML/Relationship Implementation in C++	Write programs in C++ using based on Class diagram, Relationshipsof Association, Aggregation, Composition, and Inheritance	1
5.	Exceptions, Templates, and STL in C++	Write programs in C++ usingExceptions, Try, Catch and Throw, Re-throwing exceptions, Exception and Inheritance, Function Templates, Overloading Functions Template, Class Templates, Collection classes and iteration protocols (STL)	2
6.	Introduction to Database	Design simple SQL queries using MYSQL to apply various operations on single table like create, insert, delete, update, alter, etc., Queries on single table using select statement with or without where/ group by clause, etc.	2
		Total number of Labs	12

Evaluation Criteria	ı	
Components	Maximum Marks	
Evaluation 1	15	
Lab Test1	20	
Evaluation 2	15	
Lab Test 2	20	
Mini Project	10	
Attendance	10	
TA10		
Total	100	

Project based leaning: Groups of 3-4 students will choose a project topic. They will use the concepts of OOP and/or database to execute their project. In a team, they will learn how to apply the concepts for problem solving in a meaningful way.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1	Herbert Schildt, C++: The Complete Reference, McGraw-Hill Osborne Media, 4th Edition, 2017					
2	Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Pearson, 7 th Edition, 2016					
3	Stroustrup B., The C++ Programming Language, Addison Wesley, 4 th Edition, 2013					
4	Avi Silberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6th edition, McGraw-Hill, 2010.					
5	Robert Lafore, Object Oriented Programming in C++, SAMS, 4 th Edition, 2002					
6	John Hubbard, Schaum's Outline of Programming with C++, McGraw-Hill, 2 nd Edition, 2000					

Course Description

Course Code	15B17EC171	Semester -: E (specify Odd/E		Semeste Month-	r IISession:2021 -22 : January-May
Course Name	Electrical Science Lab-1				
Credits	1		Contact I	lours	2

Faculty (Names)	Coordinator(s)	AbhishekKashyap&ShradhaSaxena			
	Teacher(s)	Atul K. Srivastava, Bhawna Gupta, Akansha Bansal, Gaurav Verma, Madhu Jain, NishaVenkatesh, Rachna Singh, Ritesh Sharma, SamritiKalia, ShradhaSaxena, Vijay Khare, Vishal N. Saxena, AbhishekKashyap, Bajrang Bansal, Kaushal Nigam, SajaiVir Singh, VarunGoel, Ashish Gupta			

COURSE O	UTCOMES	COGNITIVE LEVELS
C176.1	Understand various active and passive components and instruments (Multimeter, Bread board, Regulated D.C. power supply).	Understanding Level (C2)
C176.2	Acquire the knowledge of electrical network and circuit such as branch, node, loop and mesh in networks and circuits.	AnalyzingLevel (C4)
C176.3	Study and verification of reduction technique using different network theorem.	Remembering Level (C1)
C176.4	Study and verification of series and parallel AC circuits as well as Open & Short Circuit Test insingle phase transformer.	ApplyingLevel (C3)

Module No.	Title of the Module	List of Experiments	COs
1.	Exp.1	Introduction to various components (Resistor, Capacitor, inductor, and IC) and instruments Multimeter, Bread board, Regulated D.C. power supply, and CRO.	C176.1
2.	Exp.2	Verification of KVL and KCL using a given circuit.	C176.2
3.	Exp.3	Verification of Superposition Theorem.	C176.3
4.	Exp.4	Verification of Thevenin's Theorems.	C176.3

5.	Exp.5	Verification of Norton's Theorems.	C176.3
6.	Exp.6	Verification of Maximum Power Transfer Theorem	C176.3
7.	Exp.7	Verification of Reciprocity Theorem	C176.3
8.	Exp.8	Verification of Star-Delta Theorem	C176.2
9.	Exp.9	To study the time domain behavior of voltage - current in Series-Parallel RLC Circuit AC circuit.	C176.4
10.	Exp.10	To study the behavior of Series-Parallel RLC Circuit at Resonance.	C176.4
11.	Exp.11	Open Circuit Test in Single Phase Transformer using Vlab.	C176.4
12.	Exp.12	Short Circuit Test in Single Phase Transformer using Vlab.	C176.4
Evaluati	on Criteria		
Components Viva1 Viva2 Report file, Attendance, and (15+15+30)		Maximum Marks 20 and D2D	20 60
Total		100	

Project Based Learning: Electrical Science Lab-I experiments are performed on breadboard and softwares like Multisim. The experiments have designed in order to meet out basic demand of today's electrical and electronics industry. In this lab students get the idea of all the electrical components like resistor, capacitor, inductor, transformer and apparatus like bread board,multimeter, power supply, cathode ray oscilloscope, function generator. The high demands of various electrical instruments in various industries helps students towards employability/ entrepreneurship/ skill development.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. Richard C. Dorf, James A. Svoboda, "Introduction to Electric Circuits," Wiley; 7 Edition, 2006
- 2. D. Roy Choudhary and Shail B. Jain, "Linear Integrated Circuit," 2nd Edition, NAILP, 20 03
- Analog Signals, Network and Measurement Virtual Laboratory (IITKharagpur)
 - Analog Signals, Network and Measurement Laboratory (ernet.in)
- 4. | Electric Circuits Virtual Lab (Pilot) : Physical Sciences : Amrita VishwaVidyapeetham Virtual Lab

https://phet.colorado.edu/sims/html/circuit-construction-kit-dc-virtual-lab/latest/circuit-construction-kit-dc-virtual-lab_en.html
 https://phet.colorado.edu/sims/html/circuit-construction-kit-ac/latest/circuit-construction-kit-ac_en.html

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17PH271	Semester: Eve Semester	n		er: II Session 2021 -2022 from June-July
Course Name	Physics Lab-2				
Credits	1		Contact I	Hours	2
Faculty (Names)	Coordinator(s)	Dr. Alok Chauhan and Dr. Vikas Malik.			
	Teacher(s) (Alphabetically)	Mit Verma, Anuj Kumar, Ashish Bhatnagar, Anshu Varshney, B.C. Joshi, Dinesh Tripathi, Manoj Kumar, Manoj Tripathi, Navendu Goswami, , Prashant Chauhan, Sandeep Chhoker, Suneet Kumar Awasthi, Vikas Malik.			

COURSE	OUTCOMES	COGNITIVE LEVELS
C171.1	Recall laser, fibre optics, semiconductor and solid state physics principles behind the experiments.	Remembering (C1)
C171.2	Explainthe experimental setup and the principles involved behind the experiments performed.	Understanding (C2)
C171.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C171.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C171.5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	СО
1.	Semiconductor Physics	 1(a). To determine the band gap in a semiconductor using its p-n junction diode. 1(b). To draw the I-V characteristic of Solar cell and find maximum power and fill factor. 2(a). To measure resistivity of semiconductor at different temperatures by Four Probe Method. 2(b).To determine Band Gap of the semiconductor. 3.To study the Hall effect in semiconductor and to determine its allied coefficients. 	1 5
2.	Solid State Physics	4. To study the Magnetostriction in metallic rod with the help of Michelson interferometer arrangement.5. To find the susceptibility of a paramagnetic substance	1-5

		(FeCl ₃) in the form of liquid or a solution.	
		6. Study of dielectric (constant) behavior and determination	
		of Curie's temperature of ferroelectric ceramics.	
3.	Modern Physics	7. To study the magneto resistance of given semiconductor	1-5
		material.	
		8(a). To determine the value of specific charge (e/m) of an	
		electron by Magnetron method.	
		8(b). To determine the velocity of ultrasonic wave in the	
		medium of liquid using ultrasonic interferometer and to	
		determine the compressibility of the given liquid.	
		O(a) To determine Planck's Constant using LEDs of	
		9(a). To determine Planck"s Constant using LEDs of	
		known wavelength.	
		9(b). To study the photovoltaic cell and hence verify the inverse square law.	
	O-4:1 E1		1 5
4.	Optical Fiber	10(a). To determine the numerical aperture of a given multimode optical fiber.	1-5
		10(b). To measure the power loss at a splice between two	
		multimode fibers and tostudy the variation of splice loss	
		with Longitudinal and Transverse misalignments of	
		thegiven fibers.	
Evaluation	Cuitania	1	
Evaluation Criteria			
		Maximum Marks	
Mid Term Viva (V1)20			
End Term Viva (V2)20			
Total		100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Dey and Dutta, Practical Physics

2. Lab Manuals

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15GE112	Semester: Even			emester:2Session:2021 -22 Ionth:Feb - June	
Course Name	Workshop					
Credits	1.5 Contact 1		Hours	03		
	ı	li .				

Faculty (Names) Coordinator(s) Prabhakar Jha, Nitesh Kumar	Faculty (Names)	Coordinator(s)	Prabhakar Jha, Nitesh Kumar
--	-----------------	----------------	-----------------------------

Teacher(s)		Chandan Kumar, Deepak Kumar, Madhu Jhariya, Nitesh Kumar.
(Alphabet	cally)	Prabhakar Jha, Rahul Kumar, Vimal Saini

COURSE	OUTCOMES	COGNITIVE LEVELS	
C179.1	Tell the basic of manufacturing environment and various safety measures associated with it.	Remembering Level (C1)	
C179.2	Apply the appropriate tools to fabricate joints utilizing workbench tools.	ApplyingLevel (C3)	
C179.3	Create various prototypes in the carpentry trade, fitting trade, and welding trade	CreatingLevel (C6)	
C179.4	Demonstrate the working principle of lathe, shaper and milling machines and able to fabricate the prototypes of desired shape and accuracies.	UnderstandingLevel(C2)	

Module No.	Title of the Module	List of Experiments	СО
1.	Carpentry	Preparation of T joint as per the given specification. Preparation of dovetail joint/ cross lap joint as per given specification.	C179.2, C179.3
2.	Welding Shop	To study Gas welding and Arc welding equipment and various safety measures associated with it. To make butt joint and lap joint.	
3.	Sheet Metal Shop	To prepare a square tray using GI sheet. To prepare a funnel using GI sheet.	C179.2, C179.3
4.	Fitting Shop	To prepare V- groove fit as per given specifications. To prepare square fit as per given specifications.	C179.2, C179.3
5.	Machine Shop	To perform turning, facing and grooving operation on Lathe. To perform slotting operation on Shaper Machine. To perform face milling operation on Milling Machine.	C179.4

Evaluation Criteria

Components

Maximum Marks

Viva 1 20 Viva 220

Report file, Attendance, and D2D

60 [File Work (20) + Attendance (10)+(Experimental Work

(30)]

Total 100

Project based learning: Here students are divided in groups and learn about the applying of appropriate tools to fabricate joints utilizing work-bench tools which helps them in creating various prototypes in the field of

engineering and technology. In the present workshop laboratory with the application of the course outcomes,

students prepare their projects like robotic car, cutting of electronic board made of wood, etc. where application of carpentry shop, sheet metal shop and fitting shop is required.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai					
2.	Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4th edition, Pearson Education India Edition, 2002.					
3.	Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata Mc GrawHill House, 2017.					
4.	John K.C., Mechanical Workshop Practice, 2nd Edition, PHI, 2010					
5.	Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998					
6.	Gowri P Hariharan and A. Suresh Rahu," Manufacturing Technology – I", Pearson					
7.	Raghuwanshi B.S., Workshop Technology Vol. I & II, Dhanpath Rai & Sons.					

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Subject Code	22B12HS111	Semester: EVEN	Semester: 2 Session: 2021-2022
			Month from Jan to June
Subject Name	LIFE SKILLS AND B	EFFECTIVE COMMUNIC	ATION
Credits	2	Contact Hours	(1-2-0)
Faculty (Names)	Coordinator(s)	Dr. Kanupriya Misra Bakhru	
	Teacher(s)	Teacher(s) Dr. Amandeep Kaur, Dr. Anshu Banwari, Dr. Anl	
	(Alphabetically)	Chaudhuri, Dr. Debjani Sarkar, Dr. Ekta Srivastava, Dr. Nilu Choudhary, Dr.	
		Monali Bhattacharya, Dr. Swati Sharma, Ms Shikha Kumari	

COURSE (COGNITIVE LEVELS	
CO1	Understand different life skills required for Self, Family, Society and lifelong success.	Understand (C2)
CO2	Apply listening, speaking, reading and writing skills in professional environment.	Apply (C3)
CO3	Analyze (C4)	
CO4	Evaluate and make decisions for empowerment of self and others.	Evaluate (C5)

Module No.	Subtitle of the Module	Topics in the module	No of	No of
			Lectures	Practical
1.	Introduction	Overview of Life Skills: Meaning and significance of	2	4

2.	AdvancedLSRW Skills	life skills, Life skills identified by various organizations, Life Skills for Self, Family, Society and lifelong success. Practical 1: Ice-breaking and Introducing Oneself Practical 2: Understanding Self Advanced Reading and Comprehension Skills, inferring lexical and contextual meaning, employing discourse analysis, Advanced Speaking Skills: Conversations, Dialogues and Debates, Persuasion, Negotiation Skills, Expressing Opinions, Agreement and Disagreement, Advanced Listening Skills, Advanced Writing skills: The art of Condensation, Note making, Essay Writing. Practical 3: Academic Listening Practical 4: Comprehensive Reading	2	6
3.	Work-Place Skills	Practical 5: Career-oriented Writing Interpersonal Skills: Team- work skills, Empathy, Emotional Intelligence, VUCA Leadership, Resilience, Tolerance, Self-Belief and Time Management Practical 6: Team Communication-1 Practical 7: Team Communication-2	3	4
		Presentation and Interaction Skills: Speech Delivery, Group Discussion, Presentation Skills (Focused and targeted information seeking and presentation), Public Speaking, Audience Analysis, Interviews, Assessment of Personality - Projective& Self Report Techniques - Building Self-Confidence - Enhancing Personality Skills. Practical 8: Technical Presentation-1 Practical 9: Technical Presentation-2	2	4
		Creativity and Critical Thinking: Creativity: Definition; Characteristics of Creative Person: Fluency; Originality; Curiosity; Critical Thinking, Problem Solving Techniques: Six Thinking Hats, Mind Mapping etc. Practical 10: Thinking Skills Practical 11: Interview Skills-1	2	4
4.	Ethics and Holistic Life	Harmony in personal and social life: Professional Integrity, Respect & Equality, Building Trusting Relationships. Concept of personal and group Ethics; Balance between - rights and duties-welfare of self and welfare of all. Understanding Nine universal values in relationships. Understanding harmony in the Family. Harmony in the Family; Trust (Vishwas) and Respect (Samman) as the foundational values of relationship. Understanding the harmony in the society (society being an extension of family): Undivided Society (AkhandSamaj),Universal Order (SarvabhaumVyawastha)- from family to world family. Gender Harmony & equity. Practical 12: Interview Skills-2	2	2
		Character, Righteousness and Virtues for A Meaningful Life: Self-Realization Through Spiritual texts: Egoless, Humility, Righteousness, Purity, Truthfulness, Integrity, Self-restraint, Self-control, Sense of responsibility, Empathy, Love, Compassion, Maitri / Comradeship,	1	

Cooperation, Tolerance and Gratitude.		
Practical 13: PROJECT		4
Practical 14: PROJECT		
Total number of Hours	14	28

Evaluation Criteria

Components Maximum Marks

T1 20 T2 20 End Semester Examination 35

TA 25 (Technical presentation, class participation, Project)

Total 100

Project Based Learning:

Students, in groups of 4-5, are required to visit Old Age Home/ Underprivileged Children/ NGO/ Cancer Hospital / etc. Spend time with them for 3-4 hours. Apply Life Skills learned in understanding their feeling and help them by providing solution to ease their stress. They have to document their visit and present in the class.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books,	
Journals, Reports, Websites etc. in the IEEE format)	
1.	Wadkar Alka, Life Skills for Success, Sage Publication Pvt Ltd, 2019
2.	Carnegie Dale, Become an Effective Leader, New Delhi: Amaryllis, 2012
3.	Harold R. Wallace et. al, Personality Development, Cengage Learning India Pvt. Ltd; New Delhi, 2006
4.	Barun K. Mitra, Personality Development & Soft Skills, Oxford University Press, New Delhi, 2012.
5.	Mark G. Frank, David Matsumoto, Hyi Sung Hwang, Nonverbal Communication: Science
	and Applications, 2012, 1st Edition, Sage Publications, New York.
6.	William S. Pfeiffer, Public Speaking, Pearson, Delhi, 2012.
7.	Human Values, A.N. Tripathi, New Age International Pvt Ltd. Publishers New Delhi ,2005
8.	Shiv Khera, You Can Win, Macmillan Books, New York, 2003.
9.	S. Kumar and PushpLata, Communication Skills, Oxford University Press,1st, Ed. 2011
10.	Raman M. and S. Sharma, Technical Communication: Principles & Practices, 29 th Impression, Oxford University Press,
	New Delhi, 2009