Jaypee Institute of Information Technology

M.Sc. Microbiology

Course Descriptions

SEMESTER 2

Enzyme & Bioprocess Technology (Sem II)

Course Code	19M21BT117	Semester: Even	Semester: 1stSession: 2021-22Month from:Jan to June
Course Name	Enzyme & Bioprocess Technology		
Credits	3-1-0	Contact Hours	4

Faculty (Names)	Coordinator(s)	Dr. Garima Mathur
	Teacher(s) (Alphabetically)	Prof. Sudha Srivastava
		Dr. Garima Mathur

COURSE able to	COGNITIVE LEVELS	
CO117.1	Explain biochemical reactions and structure function relationships of different classes of enzymes	Understand Level (C2)
CO117.2	Apply production and optimization methods for industrial products	Apply Level (C3)
CO117.3	Summarize microbial growth kinetics and bioreactors for production	Understand Level (C2)
CO117.4	Research and present a contemporary application of enzyme technology and bioreactor engineering.	Analyze Level (C4)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures
1.	Introduction and Scope	Enzymes - Nomenclature and Classification, Biological Roles, Enzyme activity, Specific activity and turn over number, Coenzymes and cofactors, Isozymes, Synzymes scope of enzymes in medicine, detergents, food and beverage, textiles and leather. Significance of Acetyl choline esterase, creatine kinase, trypsin, amylase, cellulase;	5
2	Structure function relationships	3D- Structure of Enzymes, Active Site, Modifiers of Enzyme Activity, Enzyme Activators, Enzyme Inhibitors, structure- function relationships in model proteins like ribonuclease A, Triose phosphate isomerase, chymotrypsin etc.; Protein folding:	7

		folding of single and multiple-domain proteins, Anfinsen''s Dogma, Levinthal paradox, cooperativity in protein folding	
3.	Production of Enzymes	Sources of industrial enzymes (natural & recombinant), Screening for new and improved enzymes, different methods of extraction, isolation and purification of commercially important enzymes, large-scale industrial enzyme production and downstream processing	6
4.	Techniques of enzyme Immobilizatio n	Immobilization - Definition, Advantages & Disadvantages, Types of Immobilization Techniques - Physical and chemical - adsorption, matrix entrapment, encapsulation, cross-linking, covalent binding with examples; Overview of applications of immobilized enzyme systems, Enzyme electrodes and their application as biosensors in industry, health care, food and environment.	4
5.	Microbial Growth kinetics	Different growth stages – lag, log and stationary phase; Exponential growth model, substrate and product stoichiometry, multi-subtrate growth kinetics, maintenance energy	7
6.	Bioreactors	Ideal and non-ideal culture system, types of Bioreactors- Brief introduction to design and operations;	5
7.	Energy and Mass Transfer	Energy and mass balance in biochemical processes; Aeration and agitation, volumetric mass transfer coefficient	4
8.	Microbial fermentation	Primary and secondary metabolite, Prrocesses for production of alcohol, lactate, butyrate, butanol-acetone fermentation	4
		Total number of Lectures	42
Evaluatio	n Criteria		
Compone	ents	Maximum Marks	
T1		20	
T2		20	
End Semester Examination		35	
ТА		25 (PBL, Class test, Assignment)	
Total		100	

Project based learning component: The students will be provided with the insight into industrial production of primary and secondary metabolites. They will present the details on production of any industrial product.

Rec Tex	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (t books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Lehninger Principles of Biochemistry, 7 th Edition; Freeman, WH & Company, 2017
2.	Biochemistry, 9 th Edition by Jeremy Berg, Lubert Stryer, John Tymoczko, Gregory Gatto; WH Freeman, 2019
3.	Bioprocess Engineering: Basic Concepts; 3 st Edition by Matthew DeLisa, Fikret Kargi, Michael L. Shuler; Prentice Hall; 2017
4.	Methods in Enzymology series by Academic Press
5.	Principles of Fermentation Technology, 3 rd Edition by Stanbury PF, Whitaker A and Hall SJ, Elsevier, 2017
6.	"Bioprocess Engineering Principles", Doran, P.M., Academic Press

ENVIRONMENTAL MICROBIOLOGY

Course Code	19M21BT114	Semester Even	Semest	ter: II
		(specify Odd/Even)	Session	n: 2021-22 January - May
Course Name	Enzyme & Biop	rocess Technology		
Credits	3	Contact Hours		4

Faculty (Names)	Coordinator(s)	Prof. Krishna Sundari
(ivaines)	Teacher(s) (Alphabetically)	Dr. Garima Mathur Prof. Neeraj Wadhwa

Course objectives:

To learn the basic principles of environmental microbiology

Course learning outcomes:

Demonstrate skills in laboratory and theoretical aspects of environmental biology

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Basic principles in microbiology and microbial ecology	General introduction to microbiology, organism interactions, biogeochemical cycles,	5
2.	Microbial biodiversity	Natural selection and survival of fittest theory, Darwinian Theory of natural selection, concept of microbial diversity and its significance,	4
3.	Microbial metabolism, growth and regulation	Overview of microbial metabolism, growth estimation of microbial culture, influence of environmental factors on microbial growth, physical and chemical methods in microbial control	4

4.	Water quality and common sources of infections, Aquatic ecology	Water sampling and analysis, water borne diseases, Health issues associated with water, safety considerations, public health view, Aquatic biodiversity, saltwater and freshwater biomes, productivity of aquatic ecosystems.	7
5.	Aeromicrobiology	Environmental sampling, air sampling	7

		methods, types of air samplers, Air borne diseases and their control, common biological contaminants	
6.	Microenvironments and biofilms	Biofilms, stages in biofilm formation, phenotypic plasticity, biofilms in extreme environments, biofilm infections, control of biofilms, industrial applications of biofilms	5
7.	Microbiology and extreme environments	Astrobiology and extremophiles, Habitats overview of halophiles, hyperthermophiles, psychrophiles and survival strategies, industrial applications of extremophiles	5
8.	Biotransformation and biodegradation	Typesofbiotransformation reactions, techniquesin biotransformation, productrecovery, value added products, Microbes and plants as potential tool for remediation	5
Total nur	nber of Lectures		42

Project based Learning: The project involves the students understanding the concepts related to international norms for drinking water quality guidelines and their relation to human health. Students are also acquainted with the air borne disease and their transmissions.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	C. J. Hurst, G.R. Knudsen, M.J. McInerney L.D.Stetzenbach, M.V.Walter: Manual of Environmental Microbiology (1997), ASM Press, Washington, D.C.
2.	J. Nicklin, K. Graeme-Cook and R. Killington (2002): Microbiology, Oxford: BIOS Scientific Publishers Ltd.
3.	P. K. Mohapatra (2008): Textbook of Environmental Microbiology, I.K. International.
4.	M. T. Madigan, J. M. Martinko, D. A. Stahl, D. P. Clark: Brock Biology of microorganisms – 13. izdaja (2012), Pearson Education, Inc., publishing as Benjamin Cummings, San Francisco

MEDICAL MICROBIOLOGY

Course Code	19M21BT118	Semester: Ev	en	Semester: II		
				Session	: 2021-22 Jan-June	
Course Name	Medical Microbiology					
Credits	4		Contact H	Iours	4	

Faculty (Names)	Coordinator(s)	Dr. Vibha Gupta
(1 (11105)	Teacher(s) (Alphabetically)	Prof. Reema Gabrani, Dr. Shalini Mani

COURSE	OUTCOMES	COGNITIVE LEVELS
CO 1	Understand the association between microbes and human health	Understand Level (C2)
CO2	Apply advance techniques for disease diagnosis	Applying Level (C3)
CO3	Analyze antimicrobial agents and immune system in microbial diseases	Analyze Level (C4)
CO4	Explain the epidemiology of microbial diseases and their effect on global health	Understand Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Introduction, Human microbiome and health	2
2.	Diseases caused by microbes:	Diseases caused by bacteria, virus, fungus and parasites; host susceptibility; mechanism of their pathogenesis; Specific Virulence Factors	11
3.	Diagnostic methods	Microscopy, molecular and immunological diagnostics	11

Total nun	nber of Lectures		42
6.	Global health and epidemiology	Chain of Infection; Epidemiologic Methods; Epidemic Investigation	3
5.	Specific Acquired Immunity against pathogens	General Concepts; Basis of Acquired Resistance; Primary vs Opportunistic Pathogens; Protective Antigens; Immune Mechanisms; Preventive Immunity	8
4.	Antimicrobial agents and disease control	Targeting bacterial biological components; Drugs that Inhibit other Biochemical Targets; Bacterial Resistance; Combinations of Antimicrobial Agents; Gram positive and gram negative bacteria, virus (DNA and RNA) specific case studies; antimicrobial vaccines;	7

Evaluation Criteria	
Components	Maximum Marks
Т	20
1	20
_	

Project based learning: Students will be able to learn different techniques, their applications and limitations for identification of different microbes. Students are assigned a project to identify different techniques for diagnosis of different microbes and their application in therapy of infectious diseases too.

Reco book	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	S. Baron, "Medical Microbiology"; https://www.ncbi.nlm.nih.gov/books/NBK7627/						
2.	P. Murray, K. Rosenthal, M. Pfaller, "Medical Microbiology", 8 th Ed., Elsevier, 2015						
3.	FH Kayser, KA Bienz, J Eckert, "Medical Microbiology", Thieme, 2011						
4.	Selected Research articles						

IMMUNOLOGY AND IMMUNOTECHNOLOGY

Course Code	19M21BT116		Semester : Even	Semester: II				
				Session: 2021-22 January - June				
Subject Name	Immunology and	Imn	nunotechnology	gy				
Credits	4		Contact Hours	4				
Faculty (Names) Coordinator(s)		Dr. Rachana					
	Teacher(s) (Alphabetically)		Dr. Rachana, Dr. S	Shalini Mani				
CO116.1	Explain the role of	f Imn	nune system in hun	an health and diseases.		(C2)		
CO116.2	Apply immunolog	ical t	techniques for diag	nosis of various diseases.		(C4)		
CO116.3	Make use of antibo	ody e	engineering for vari	ous applications.		(C3)		
CO116.4 Apply the advanced Immunological principle and technology for clinical (C purposes.			(C3)					
Module No.	Subtitle of the Module	Тој	Topics in the module		No for	o. of Lectures r the module		
1.	Component of Immune system	Cel imr rece	Cells and organs of immune system, Innate immunity, adaptive immunity, B cell receptor, T cell receptor					
2.	Regulation of immune response	Ant Coi	tigen presentation, I mplement systems	MHC molecules, Cytokines,	4			
3	Diseases related to immune system	Aut Imr	toimmune diseases, nune deficiency, ca	hypersensitivity reactions, incer, infectious diseases.	5			
4	Organ and tissue transplantation	HL stud	A typing, graft reje dies.	ction, graft acceptance, case	3			
5	Antibody engineering	Antibody diversity, Polyclonal antibody, Hybridoma Technology and its application, Humanized antibody, Phage display technology.			6			
6	Immunotechnology	Theory, cross reactivity, p agglutination reactions, A Ouchterlony, Western blo immunofluorescence (IHC diseases. RIA		y, precipitation reactions, s, ABO blood grouping, blotting, Elispot, IHC, FACS), ELISA, Kits for	10			

7	Vaccine Technology and its	Adjuvants, live, attenuated, killed, inactivated, toxoids, recombinants, sub unit, conjugate and DNA	4
	application	vaccines	
8	Immunotherapy	Passive immunization, activation of NK cells, T Cells, generation of antibody	4
Total number o	42		

Project based learning: Each student in a group of 4-5 will search the authentic scientific sites (NCBI/Sciencedirect/companies/labs) for the relevant articles/reports discussing application of Immunotechnology and will present/discuss the topic among the class students. Students would also discuss the medical reports of patients (collected from home/friends/internet) and will learn the basic methodology and parameters which are relevant to diagnose a particular disease.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Immunology (3 rd edition)
	Janus Kuby W.H. Freeman and company
2.	Essentials of Immunogy
	Ivan- Roit; 6 th edition (2017); Blackwell Publications
3.	Antibodies A laboratory Manual
	Harlow and David Lane, Old spring Harbor Laboratory
4.	Immunology – A Short Course,
	Richard Coico, et al. 5th Ed., Wiley – Liss, 2003.
5.	Immunology, 4th Ed
	Richard Hyde. Lippincott Wilkins & Wilkins, 2000.
6.	Microbiology & Immunology Online.
	Richard Hunt. Univ South Carolina, School of Medicine, http://pathmicro.med.sc.edu/book/immunol-sta.htm

MICROBIOLOGY LAB – II

Course (Code	19M25BT1	12	Semester: Even Semester: II					
				(specify Odd/Even) Session: 2021		: 2021-22 Jan-June			
Course N	Name	Microbiolog	ology Lab – II						
Credits			4 Contact Hours 8						
Faculty (Names)		Coordinato	r(s)	Dr. Garima Mathur					
(Names) Teacher(s) (Alphabetic		Teacher(s) (Alphabetic	cally)	Dr. Ashwani Mathur Ms. Ekta Bhatt Dr. Garima Mathur Dr. Indira P. Sarethy Dr. Sonam Chawla Dr. Sujata Mohanty Dr. Susinjan Bhattacharya					
COURS	E OUTO	COMES					COGNITIVE LEVELS		
C170.1	Apply	microorganisms for environmental remediation C3 - Apply level							
C170.2	Make impor	use of microorganisms for production of industrially C3 - Apply level rtant enzymes and metabolites							
C170.3	Apply diseas	r immunological principles for understanding of microbial C3 - Apply level es							
C170.4	Analy	ze and compa	re antii	microbial agent	S		C4 – Analyze lev	vel	
C170.5	Comp tools	are pathogeni	c micro	microbial genomes using computational C4 – Analyze leve				vel	
Module No.	Title of Modul	f the e			List of Ex	xperime	nts	СО	
1.	Enviro Microb	nmental biology	Determination of enzyme activities as pollution indicator (e.g. esterase, lipase, dehydrogenases) in contaminated soil and water samples.				CO1		
2.			Total from o	al coliform bacteria count in contaminated water samples n different locations				CO1	
3.			Evalu phosp	ating of health of agriculture soil (pH, Organic carbon, phorous, nitrate-nitrogen)				CO1	

4.	Enzyme & Bioprocess Technology	Production of industrial enzymes using microbial cultures	CO2
5.		Enzyme kinetics	CO2
6.		Optimization of enzyme yield	CO2
7.	Immunology	Differential WBC counts	CO3
	& Immunotechnology		
8.		Virtual Lab: Removal of spleen and thymus from mice and isolation of lymphocytes	CO3
9.		Antigen- antibody interactions	CO3
10.	Medical Microbiology	Antimicrobial activities of various medicinal plant extracts using disc diffusion method	CO4
11.		Determination of IC50 of various plant extracts	CO4
12.		Comparative analysis of pathogenic microbial genomes using computation tools	CO5
Total			12
Evaluati	on Criteria		1
Compon	ents	Maximum Marks	
Mid Tern	n Evaluation	20	
End Tern	n Evaluation	20	
Day to D	ay Evaluation	60	
Total		100	
Project B	ased Learning: The stu	dents learn techniques in Microbiology Laboartory which are of Biotec	h

industry relevance.

 Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

 1.
 Aneja, K.R. (Eds.), Laboratory manual of microbiology and biotechnology, First, Delhi Meditec, 2014

2.	Siva, N., Taniwaki, M.H., Junqueira, V.C.A., Silveira, N.F.A., Okazaki, M.M., Gomes, R.A.R., Microbiological examination methods of food and water: a laboratory manual, Second,CRC Press Balkema, 2013
3.	Technological notes from industries