Jaypee Institute of Information Technology

INTEGRATED M. TECH BIOTECHNOLOGY

Course Descriptions

SEMESTER 9

PLANT DISEASE AND BIOTECHNOLOGY <u>Detailed Syllabus</u>

Lecture-wise Breakup

Course Code	15B1NBT833	Semester Odd (specify Odd/Even)	Semester Summer Session 20 Month from
Course Name	Plants Diseases	& Biotechnology	
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	1. Prof. S Krishna Sundari
	Teacher(s) (Alphabetically)	1. Prof. S Krishna Sundari

S.No.	Description	Cognitive level
		(Blooms
		taxonomy)
CO833.1	Summarize different types of plant diseases, classification of pathogens and	Understanding
	host responses.	Level
		Level II
CO833.2	Compare different disease control mechanisms, identify Risks involved,	Understanding
	prepare disease fact sheets	Level
		Level II
CO833.3	Apply modern tools for disease management and achieve sustainable	Applying Level
	agricultural productivity	Level III
CO833.4	Examine advances in the field of plant biotechnology to develop disease	Analysing Level
	resistant plants	Level IV

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Agriculture productivity & Global food prospects, Impact of disease on crop productivity, existing methods (chemical pesticides, insecticides) of plant disease control	3
2.	Plant Physiology & plant genome	Plant physiology, Genetic basis of Plant genes, growth and development, response to disease/infection in plants, plant signaling pathways	8
3.	Plant diseases	Plant pathology and disease cycle, principle groups of plant pathogens belonging to:Bacteria, fungus, virus, nematodes, insect pests, other factors, diseases with major impact on plant productivity	10
4.	Molecular plant pathology	Molecular basis of genetic modification and crop improvement, RNAi technology, Baculovirus mediated biocontrol and other tools to generate disease resistance	5
5.	Plant disease control	Classical breeding to modern genetic engineering tools for plants, plant secondary metabolites and their role in	5

		systemic acquired resistance (SAR)	
6.	GM plants	Enhancing resistance with plant genes, developing	5
		genetically modified plants with improved disease resistance	
7.	Bio-control	Integrated pest management, Pathogen derived resistance,	6
	methods	Antimicrobial proteins, Plant bodies, PGPR (plant growth	
		promoting rhizobacteria) and their role in disease control	
		Total number of Lectures	42
Evaluatio	n Criteria		
Compone	ents	Maximum Marks	
T1		20	
T2		20	
End Semester Examination		35	
TA		25 ()	
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Plants, genes and crop biotechnology. Maarten Chrispeels, David Sadava, 2 nd edition, published by American society of plant biologists & ASPB foundation.			
2.	Molecular Biotechnology: principles and Applications, Bernard Glick, Jack J Pasternack, Cheryl Patten, 4 th edition, ASM press			

PBL Component: A research paper based analysis and study on advances in the field of plant biotechnology plant disease management to develop disease resistance in plants and achieve goals of sustainable crop protection

AQUACULTURE
Detailed Syllabus
Lecture-wise Breakup

Course Code	15B1NBT834	Semester Sumr	ner	Semester Summer Month from May- J	
Course Name	Course Name Aquaculture				
Credits	4 Contact Hour			9	
Faculty (Names) Coordinate		r(s)	Dr.	Priyadarshini	
	Teacher(s) (Alphabetically)		r. Priyadarshini, r. Ashwini Mathur	

1 COURSE OUTCOMES		COGNITIVE LEVELS	
C511.1	Explain scope & significance of aquaculture at global and Indian scenario	Understand level (C2)	
C511.2	Compare different cultivation techniques for aquatic organism	Understand level (C2)	
C511.3	Apply sustainable aquaculture practices related to environment, community, business and farm management	Apply Level (C3)	
C511.4	Identify hatchery and cultivation technology	Analyze level (C4)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	History, definition, scope and significance of aquaculture, comparison of aquaculture with agriculture and commercial fisheries. Different aquaculture systems. Aquaculture - Global and Indian Scenario.	2
2.	Pond ecology	Ecology of culture ponds. Nutrient cycles, Laws of limiting factor. Fertilizations and manuring. Liming and application of fertilizers and manures. Significance and important groups of phytoplankton, zooplankton and benthos in culture ponds. Nutrient dynamics, algal blooms. Management of water and soil quality parameters. Correction of pH, measures for increasing the concentration of oxygen and reducing the concentration of ammonia and hydrogen sulphide.	4
3.	Cultivable Freshwater fishes	Criteria for the selection of species, Cultivable freshwater fishes- carps, airbreathing fishes, tilapia, trout, freshwater prawn, frogs.	4
4.	Brackishwater culture and mariculture	Brackishwater resources and fishes of commercial importance – Milk fish, mullet, pearl spot, seabass, shrimps, crabs; selection of site. Major brackish water culture systems in India, prawn filtration, Basabhanda, kharlands – Different organisms in Mariculture – mussel, edible oyster, pearl oyster and sea weeds. Scope of open sea farming in	4

		T =	I
		India. Important fin fishes cultured in the open seas and the	
		culture systems. Present status and recent developments in	
		mariculture.	
5.	Culture of		4
	Prawns, Molluscs	culture of Macrobrachium rosenbergii, Freshwater pearl	
	and Frog	culture - Present status of freshwater pearl culture and	
		production in India. Prospects of culturing frog in India.	
6.	Aquaculture for	Sewage fed fish culture, sewage treatment, Sewage cum fish	4
	stable	culture in India. Fish in relation to public health, Larvivores	-
	environment	fishes and mosquito eradication using fishes.	
7.	Reservoir fisheries	Major reservoirs in India, measures for increasing	2
, ,		production from reservoirs in India and abroad, Game	_
		fishery.	
8.	Integrated	Recent development in integrated farming, Rice cum fish	6
0.	Farming	culture, Duck cum fish culture, Poultry cum fish culture and	
		Pig cum fish culture. Organic aqua farming. Fish culture in	
		cages and pens. Running water fish culture.	
9.	Systems in	Fish culture in cages and pens, race way, indoor tanks,	4
7.	freshwater	canals, silo culture, Aquaponics. Monoculture, polyculture,	•
	Aquaculture	composite fish culture.	
	1		
10.	Hatchery	Criteria for site selection of hatchery and nursery, design	4
	technology, design	and function of incubators, hatchery system-design and	
	and managment	operation, hatchery protocols, rearing technology.	
11.	Culture of aquatic	Cultivation of different aquatic plants.	2
	plants		
12.	Economics	Marketing and economics of fish seed and fish.	2
Total nu	ımber of Lectures		42
Evaluat	ion Criteria		
Compor	nents	Maximum Marks	
T1		20	
T2		20	
End Semester Examination		35	
TA		25 (Asignment1, Assignment2)	
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	T.V.R. Pillay, Aquaculture: Priciples & Practices, Fishing News Books, New Book, Cambridge University Press, Cambridge, UK					
2.	New M B, Freshwater prawn farming, 2000, CRC Publication.					
3.	R. L. Welcomme: Inland Fisheries: Ecology & Management, 2001, Fishing News Books.					
4.	S De Silva (ed): Reservoir and culture based Fisheries: Biology & Management, 2001, ACAIR Proceedings.					
5.	M. C. M. Beveridge and B. J. McAndrew: Tilapias: Biology & exploitations, 2000, Kluwer Academic Publishers, London.					

PBL: Students can prepare a report on current scenario of fish industry. They can also prepare report on selection of hatchery and nursery.	site

BIOTECHNIQUES LAB-II

Course Code	14M17BT271	Semester Ev (specify Odd		Semest Month	Session anuary	
Course Name	Biotechniques Lab-II					
Credits	3		Contact	Hours	6	

Faculty	Coordinator(s)	Prof. Pammi Gauba
(Names)	Teacher(s) (Alphabetically)	Dr. Chakresh K. Jain, Prof. Indira P. Sarethy, Prof. Pammi Gauba, Prof. Reema Gabrani, Dr. Shweta Dang

COURSE OUTCOMES		COGNITIVE LEVELS
CO1	Experiment with high end analytical techniques in biotechnology	Apply (Level C3)
CO2	Develop basic and applied skills in cell culture	Apply (Level C3)
CO3	Examine and analyse disease-specific drug targets	Analyze (Level C4)
CO4	Analyse bioactive compounds from plant and microbial systems	Analyze (Level C4)

Module No.	Title of the Module	List of Experiments	СО
1.	Analytical techniques	To run High-performance liquid chromatography (HPLC); prepare and analyse curcumin extract by HPLC; purification of plant extract	3
2.	Cell culture techniques	Preparation and sterilization of media for cell culture; subculture of animal cell lines; analysis and counting of adherent cells; cell cytotoxicity determination	3
3.	Drug target analyses	SDS-PAGE analysis and fluorescent staining	3
4.	Natural product analyses	Extraction of antioxidant compound from <i>in vitro</i> grown plant and bacteria; purification of compound; antioxidant capacity analyses of extracts	3
Evaluati	on Criteria		I

Components	Maximum Marks
Mid-Term Viva	20
Day-to-Day (Lab record,	
attendance, performance)	60
Final Viva	20
Total	100

Project Based Learning: The students learn HPLC, cell culture techniques, natural products characterization, which are required for Biotech and pharmaceutical industry.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.
(Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1 Biotechnology Procedures and Experiments Handbook
http://site.iugaza.edu.ps/mwhindi/files/BIOTECHNOLOGY-PROCEDURES-ANDEXPERIMENTS-HANDBOOK.pdf

2 Cornelia Kasper, Verena Charwat, Antonina Lavrentieva, "Cell Culture Technology" Springer,
2018

3 ChukwuebukaEgbuna, Jonathan ChinenyeIfemeje, Jaya VikasKurhekar, Stanley ChidiUdedi,
Shashank Kumar, "Phytochemistry Volume 2" Apple Academic Press, 2019

4 Methods standardized in lab

5 Lab manual on Biotechniques http://inpressco.com/lab-manual-on-biotechniques/

Course Code	18M11G E11 1	Semester Odd	Semester I Session 2021-2022	
Course Name	Research Methodology & Intellectual Property Rights			
Credits	2	Contact Hour	2-0-0	

Faculty (Names)	Coordinator(s)	Prof. B. P. Chamola
	Teacher(s) (Alphabetically)	Prof. B. P. Chamola

COURSE	OUTCOMES:	COGNITIVE LEVELS	
After purs able to:	uing the above-mentioned course, the students will be		
C101.1	explain the basic concepts and types of research	Understanding Level (C2)	
C101.2	define a research problem, its formulation, methodologies and analyze research related information	Analyzing Level (C4)	
C101.3	explain research ethics, understand IPR, patents and their filing related to their innovative works.	Understanding Level (C2)	
C101.4	explain and analyze the statistical data and apply the relevant test of hypothesis in their research problems	Analyzing Level (C4)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Research	What is research? Types of research. What is not research? How to read a Journal paper?	3
2.	Report writing	How to write report? Use of Mendeley in report writing. How to write a research paper? Problem identification and solving.	4
3.	Ethics, IPR and Research methodologi es	Research ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in research process and common methodologies to attempt solution to research paper.	8
4.	Basics of statistics and probability distributions	Basic statistical concepts. Handling of raw data, Some common probability distributions.	7
5.	Test of hypothesis and regression analysis	Hypothesis testing. Parametric and non-parametric data, Introduction to regression analysis.	8
Total numb (Course deli	30		

Evaluation Criteria Components Maximum Marks

Mid Term Examination 30 End Semester Examination 40

Assignments 30 (Quiz, Assignments)

Total 100

Project-based learning: Students divided in small groups will be assigned topics related to patents, intellectual property rights, plagiarism, and statistics. Students can write a report/review paper and find its similarity through plagiarism software available online. Students may collect data and test the relevant hypothesis. They may study some data set and do its regression analysis. The main purpose is to expose students to a wider arena of applicable knowledge of the subject.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Stuart Melville and Wayne Goddard, Research Methodology: An Introduction for Science & Engineering Students, Kenwyn, South Africa: Juta & Co. Ltd., 1996.

Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, New Delhi, 2009.

Kumar, Ranjit, Research Methodology: A Step-by-Step Guide for Beginners, 2nd Edition, Sage Publications Ltd., 2005.

Ramappa, T., Intellectual Property Rights Under WTO, S. Chand, New Delhi, 2008.

Wayne Goddard and Stuart Melville, Research Methodology: An Introduction, Kenwyn, South Africa: Juta & Co, 2001.