Department of Mathematics

Jaypee Institute of Information Technology, Noida

Semester I

Ordinary Differential Equations (19M21MA111)

Initial value problems, boundary-value problems, variation of parameters, Cauchy-Euler equation, series solution, Bessel's equation and Bessel functions, solution of system of linear differential equations by matrix method, the fundamental existence and uniqueness theorem, Sturm-Liouville boundary value problems, Green's function, nonlinear ordinary differential equations.

Course C	ode	19M21M	A111	Semester	Odd	Semester ISession- 2023- 2024Month fromJuly 2023-Dec 2024		
Course N	ame	Ordinary I	Different	ial Equations				
Credits	Credits 4 Contact Hours 3-1-0			3-1-0				
Faculty		Coordina	tor(s)		1			
(Names)		Teacher(s (Alphabet	/					
COURSE	L COURSE OUTCOMES						COGNITIVE LEVELS	
After purs	uing the	e above-me	ntioned c	course, the stuc	lents will	be able to	:	
C110.1	explain the basic theory of ordinary differential equations and solve related problems.					Applying Level (C3)		
C110.2	make	use of Frobenius method in solving differential equations.					ons.	Applying Level (C3)
C110.3		ply matrix method to solve a system of homogeneous linear ordinary fferential equations.					ar ordinary	Applying Level (C3)
C110.4	<u>^</u>	xplain the concept of existence and uniqueness theorem of initial value roblems.					nitial value	Understanding Level (C2)
C110.5	make use of orthogonality of functions in solving Sturm-Liouville					n-Liouville	Applying Level (C3)	
C110.6	explai	in the phase plane, critical points and paths of nonlinear systems.					ar systems.	Understanding Level (C2)
Module No.	Title o Modu		Topics	s in the Module			No. of Lectures for the module	
1.	Basic linear	theory of	existen	value problems, boundary-value problems and nee of solutions, the homogeneous linear on with constant coefficients, variation of				8

		differential equations	parameters, the Cauchy-Euler equation, applications to ordinary differential equations in LCR and mass spring problem.				
2.		Series solution	Power series solutions about an ordinary point, solutions about singular points; the method of Frobenius, Bessel's equation and Bessel functions.	5			
3.		System of linear differential equations	The matrix method for homogeneous linear systems with constant coefficients: two equations in two unknown functions.	5			
4.		Existence and uniqueness theory	The fundamental existence and uniqueness theorem, dependence of solutions on initial conditions and on the function.	6			
5.		Sturm-Liouville boundary value problems	Theory of the homogeneous linear system, the non- homogeneous linear system, Strum Theory, Strum- Liouville problems, orthogonality of characteristic functions, the expansion of a function in a series of orthonormal functions, trigonometric Fourier series, Green's function.	14			
6.		Nonlinear differential equations	Phase plane, paths and critical points, critical points and path of linear systems, critical points and path of non-linear systems.	4			
			Total number of lectures	42			
Com T1 T2 End S TA Tota	T220End Semester Examination35						
Reco	and non-homogeneous linear systems and BVPs to solve practical problems. Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	1. S. L. Ross, Differential Equations, 3 rd Ed., John Wiley & Sons, Singapore, 2007.						
2.	 G. F. Simmons, Differential Equations with Applications and Historical Notes, 3rd Ed., CRC Press, Boca Raton, 2016. 						
3.	P. L 1996		npendium on Nonlinear Ordinary Differential Equatio	ns, Wiley-Blackwell,			
4.		. Coddington and	R. Carlson, Introduction to Ordinary Differential Equ	uations, SIAM, USA,			

	PO1	PO2	PO3	PSO1
C110.1	3	2	-	2
C110.2	3	2	-	2
C110.3	3	2	-	2
C110.4	2	1	-	2
C110.5	3	2	-	2
C110.6	2	1	-	1

Real Analysis (19M21MA112)

Sets, convergence of sequences and series, absolute convergence, limit, continuity, compactness, connectedness, Riemann-Stieltjes integral, sequences and series of functions, uniform convergence, equi-continuous families of functions, Stone Weierstrass theorem, measurable sets and their properties, Lebesgue measure, measurable functions, Lebesgue integral of functions of arbitrary sign, integrable functions.

Course C	ode	19M21MA112	Semester	Odd	Semester ISession- 2023- 2024Month fromJuly 2023-Dec 2024			
Course N	ame	Real Analysis						
Credits		4		Contact	Hours	3-1-0		
Faculty Coordinator(s)								
(Names) Teacher(s) (Alphabetically)								
COURSE	COURSE OUTCOMES COGNITIVE LEVELS						VE	
After purs	uing th	e above-mentioned c	ourse, the stud	ents will b	e able to	:	•	
C111.1	C111.1 explain the concepts of compact sets, connected sets, metric space and their properties.					ic space and	Understandi Level (C2)	ing
C111.2	explai	explain the convergence of sequences, series and their properties.			Understandi Level (C2)	ing		
C1113		make use of the concepts of continuity, compactness and connectednessApplyingof functions in solving related problems.(C3)				Applying (C3)	Level	
C111.4	explai	n the Riemann-Stiel	ijes integral and	d its prope	rties.		Understandi Level (C2)	ing

C111.5	11 2	cepts of sequence and series of functions, their uniform nd properties on various problems.	Applying Leve (C3)		
C111.6	solve the prob	lems on Lebesgue integral of functions.	Applying Leve (C3)		
Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module		
1.	Review of sets	Finite, countable and uncountable sets, metric spaces, compact sets, perfect sets, connected sets.	4		
2.	Sequences and series	Convergent sequences, sub sequences, Cauchy sequences, power series, absolute convergence, algebra of series, rearrangements of elements in a series	5		
3.	Continuity	Limits of functions, continuous functions, compactness, connectedness, monotonic functions, infinite limits and limits at infinity.	6		
4.	The Riemann- Stieltjes integral	Definition and existence of the Riemann-Stieltjes integral, properties of the integral, integration and differentiation, integration of vector-valued functions, rectifiable curves.	9		
5.	Sequence and series of functions	Sequences and series of functions: interchanging order of limits for sequences of functions, uniform convergence, uniform convergence and continuity, uniform convergence and integration, uniform convergence and differentiation, equi-continuous families of functions, Stone Weierstrass theorem.			
6.	Lebesgue theory	Measurable sets and their properties, Lebesgue measure, measurable functions, Lebesgue integral of functions of arbitrary sign, integrable functions.	8		
		Total number of lectures	42		
Compone T1 T2 End Seme TA Total Project 1 literature	ester Examination based learnin and to explore	Maximum Marks 20 20 20 20 25 (Quiz, Assignments, Tutorials) 100 g: Students will be divided in the group of 2-3 students the applications of series, sequences and Lebesgue bability theory.			

books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	W. Rudin, Principles of Mathematical Analysis, 3 rd Ed., New Delhi, McGraw-Hill Inc., 2013.
2.	H. L. Royden, and P. M. Fitzpatrick, Real Analysis, 4 rd Ed., New Delhi, Pearson, 2010.
3.	N. L. Carothers, Real Analysis, Cambridge University Press, 2000.
4.	T. M. Apostol, Mathematical Analysis –A modern approach to Advanced Calculus, New Delhi, Addison-Wesley, 1974.
5.	R. G. Bartle, and D. R. Sherbert, Introduction to Real Analysis, 4 th Ed., Wiley, 2011.

	PO1	PO2	PO3	PSO1
C111.1	2	1	-	1
C111.2	2	1	-	1
C111.3	3	2	-	2
C111.4	2	1	-	1
C111.5	3	2	-	2
C111.6	3	2	-	2

Abstract Algebra (19M21MA113)

Review of basic group theory, Cayley's, Cauchy's and Sylow's theorems, rings, ideals, integral domain, polynomial rings, modules, quotient modules, cyclic modules, free modules, fields, field extension, splitting fields and Galois theory.

Course Code	19M21MA113	Semester	Odd	Semester I Session- 2023- 2024		
				Month from July 2023-Dec 2024		
Course Name	Abstract Algebra					
Credits	4	Contact Hours 3-1-0				
Faculty	Coordinator(s)					
(Names)	Teacher(s) (Alphabetically)					
COURSE OUTCOMES COGNITIVE LEVELS						
After pursuing th	e above-mentioned c	course, the stu	idents will b	e able to	:	

C112.1	illustrate vari	ous types of groups and their properties.	Understanding Level (C2)				
C112.2	explain Cayle	ey, Cauchy, Sylow theorems and solve related problems.	Applying Level (C3)				
C112.3	explain the co	oncepts of rings, ideals and isomorphism.	Understanding Level (C2)				
C112.4	—	solve problems on integral domain, principal ideal domains and unique factorization domains (UFD).					
C112.5	explain and modules.	explain and identify modules, submodules, quotient modules and free modules.					
C112.6	explain and a	analyze the concepts of fields and their extensions.	Analyzing Level (C4)				
Module No.	Title of the Module	*					
1.	Groups	Review of basic group theory, isomorphism theorems, group actions, Cayley's theorem, class equation of a group, Cauchy's theorem, p-groups, Sylow's theorems and their applications.	10				
2.	Rings	12					
3.	Modules	Basic definitions and examples, submodules and direct sums, quotient modules, homomorphism and isomorphism theorems, cyclic modules, free modules.	10				
4.	4. Fields Fields and their extensions, algebraic and finitely generated 10 field extensions, splitting fields and normal extensions, algebraic closures, finite fields, separable and inseparable extensions, Galois groups, fundamental theorem of Galois theory.						
		Total number of lectures	42				
Evaluatio	on Criteria						
TA Total	ester Examinat	25 (Quiz, Assignments, Tutorials) 100	e concerned CO				
-	Project based learning: Students in small groups will opt a topic form the concerned CO. Students must explore those areas where the theory of fields is used. For example, finite fields						

Students must explore those areas where the theory of fields is used. For example, finite fields are used in number theory, Galois theory, coding theory and combinatorics; and again, the notion

of algebraic extension is an important tool. Such type of activity enhances student's knowledge in this domain.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 2. S. K. Jain, P. B. Bhattacharya and S. R. Nagpaul, Basic Abstract Algebra, 2nd Ed., Cambridge University Press, 2014.
- 3. **I. N. Herstein**, Topics in Algebra, 2nd Ed., John Wiley & Sons, 2006.
- 4. J. B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson Education, 2013.

5. C. Carstensen, B. Fine, B. and G. Rosenberger, Abstract Algebra: Applications to Galois Theory, Algebraic Geometry and Cryptography, Heldermann Verlag, 2011.

CO-PO-PSO Mapping

	PO1	PO2	PO3	PSO1
C112.1	2	1	-	1
C112.2	3	2	-	2
C112.3	2	1	-	1
C112.4	3	2	-	2
C112.5	3	2	-	2
C112.6	3	2	-	2

General Topology (19M21MA114)

Metric space, Cantor intersection theorem, topological space, basis for a topology, subspace topology, weak topology, product topology, quotient topology, Continuous maps, continuity theorems for open and closed sets, homeomorphism, connected spaces, totally disconnected space, locally connected space, compact space, continuity and compactness, Tychonoff theorem, first and second countable spaces, normal spaces, completely normal and completely regular spaces, Tietz extension theorem, Uryshon lemma, Uryshon metrization theorem.

Course Code	19M21MA114	Semester	Odd		er I Session- 2023- 2024 from July 2023-Dec 2024	
Course Name	General Topology	General Topology				
Credits 4			Contact	Hours	3-1-0	

(Names)		Coordinat	or(s)		
		Teacher(s) (Alphabeti			
COURSE	COGNITIVE LEVELS				
After purs	suing the	e above-men	tioned c	course, the students will be able to:	
C113.1	explai	n metric spac	ce, topo	logical spaces and related concepts.	Understanding Level(C2)
C113.2	solve	problems on	differer	nt types of topologies.	Applying Level (C3)
C113.3	-	n continuou d concepts.	s maps	, continuity theorem, homeomorphisms and	Understanding Level (C2)
C113.4		the propertie is theorems.	es of con	nnected spaces and compact spaces in proving	Applying Level (C3)
C113.5		use of the ogical spaces.	_	ts of countability and separation in various	Applying Level (C3)
Module No.	Title of the Module		Topics in the Module		No. of Lectures for the module
1.	Metric	c Space	Metric space, open sets, closed sets		2
2.	Metric Space		Convergence, completeness, continuity in metric space		3
3.	Metric Space		Cantor intersection theorem		1
4.	Topological space		Topol topolo	ogical space, elementary concept, basis for a ogy	2
5.	5. Topological space		-	and closed sets, interior and closure of sets, bourhood of a point, limit points, boundary of	3
6.	6. Topological space		Subsp	ace topology, weak topology	2
7.	Topological space		Produ	ct topology, quotient topology	2
8.	Compactness and Connectedness		Continuous maps, continuity theorems for open and closed sets, homeomorphism		4
9.	Compactness and Connectedness		Connected spaces, continuity and connectedness, components, totally disconnected space, locally connected space		4
10.	Compactness and Connectedness		-	act space, limit point compact, sequentially act space, local compactness	4

	11.	Compactness and Connectedness	3					
	12.	Countability and Separation	3					
-	13.	Countability and Separation	5					
	14.	Countability and Separation	4					
			Total number of lectures	42				
Eval	luatio	on Criteria						
Com	ipone	onts	Maximum Marks					
T1	pone		20					
T2			20					
End	Seme	ster Examination	35					
TA								
Tota	Total 100							
Proj	ject k	oased learning: Ea	ch student in a group of 3-4 will apply the concept	s countability and				
sepa	ratio	n axioms to find di	stinct points in different types of topological space	s.				
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text								
books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)								
G. F. Simmons, Introduction to Topology and Modern Analysis, Tata Mc-Graw Hill Education, New Delhi, 2016.								
2.	J. R. Munkres, Topology: A First Course, 2 nd Ed., PHI, 2010.							
3.	Y. Min, Introduction to Topology: Theory & Applications, Higher Education Press, 2010.							
4.	S. Lipschutz, General Topology, Schaum's Outline Series, Mc-Graw-Hill, 1985.							
5.	C. A. R. Franzosa, Introduction to Topology, Narosa Publishers, New Delhi, 2007.							
6.	K. D. Joshi, Introduction to General Topology, New Age Publishers, New Delhi, 1983.							
	N							

	PO1	PO2	PO3	PSO1
C113.1	2	1	-	1
C113.2	3	2	-	2
C113.3	2	1	-	1
C113.4	3	2	-	2
C113.5	3	2	-	2

Mathematical Methods (19M21MA115)

Introduction, Euler equation, variational problems with constraints, geodesics and isoperimetric problems, moving end problems, Rayleigh-Ritz, Galerkin's and Kantorovich method. Integral equations of Fredholm and Volterra type, integral equations with degenerate kernels, Fredholm's theorems, eigenvalues and eigen functions of integral equations, Green's function, influence function, Abel integral equation, weakly singular kernel, Laplace transform, Fourier transform, Hankel and Mellin transform, Fox's integral equation.

Course C	Code 19M21MA	A115 Semester Odd		Semester ISession- 2023- 2024Month fromJuly 2023-Dec 2024			
Course Name Mathemati		ical Methods					
Credits	4			Contact	t Hours 3-1-0		
Faculty Coordin (Names)		or(s)				л	
	Teacher(s) (Alphabeti	cally)					
COURSE	E OUTCOMES					COGNITIVE LEVELS	
After purs	suing the above-men	tioned c	course, the stud	ents will b	e able to	:	
C114.1	explain function problems.	als and their variations to optimize various			Understanding Level(C2)		
C114.2	apply different forms of Euler's equation on different variational problems.				Applying Level (C3)		
C114.3	-	plain and solve different types of integral equations and their genvalue problems.					Applying Level (C3)
C114.4	solve boundary val	e boundary value problems and singular integral equations.					Applying Level (C3)
C114.5	apply different line integral equations.	<i>i</i> different linear integral transforms in solving differential and ral equations.					Applying Level (C3)
Module No.	Title of the Module	1			No. of Lectures for the module		
1.	Functional and its Variation					6	
2.	Variational Problems with	ariational The system of Euler's equations, the				10	

	fixed and	variations, examples, functionals in the form of					
	moving Boundaries	integrals, special cases containing only some					
	Doundaries	of the variables, functionals depending on the					
		higher derivatives of the dependent variables,					
		Euler-Poisson equation, Ostrogradsky					
		equation, moving end problems, Rayleigh-Ritz					
		method, Galerkin's method and Kantorovich					
		method of solving differential equations.					
3.	Integral	Integral equations of Fredholm and Volterra	10				
	equations	type, Conversion from IVP and BVP. Solution					
	1	by successive substitution and successive					
		approximation, integral equations with					
		degenerate kernels. Fredholm's theorems,					
		integral equations with symmetric kernel,					
		eigenvalues and eigenfunctions of integral					
		equations and their simple properties.					
4	A		٥				
4.	Applications of	Longitudinal vibrations of the rod, deformation	8				
	integral	of a rod, Green's function, influence function,					
	equations	construction of Green's function when the					
		boundary value problem contains a parameter,					
		Abel integral equation, weakly singular kernel,					
		iteration of the singular equation.					
5.	Integral	Introduction, Laplace transform, properties of	8				
	transform	the Laplace transform, application to Volterra					
	methods	integral equation, Fourier transform,					
		application of Fourier transform, introduction					
		to Hankel and Mellin transform, Fox's integral					
		equation.					
		Total number of lectures	42				
Evaluatio	Evaluation Criteria						
Compone	ents	Maximum Marks					
T1	1						
T2 20							
End Semester Examination35TA25 (Ouiz, Assignments, Tutorials)							
TA25 (Quiz, Assignments, Tutorials)Total100							
Project based learning: Students will be divided in the group of 2-3 students to collect the literature and explore the different methods to solve Integral equations.							
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text							
books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)							
1. L. Elsegolc, Calculus of Variation, Dover Publications, 2010.							

2.	I. M. Gelf and, S.V. Fomin, Calculus of Variations, Prentice Hall, 2012.
3.	R. P. Kenwal, Linear Integral Equation; Theory and Techniques, Academic Press, 1971.
4.	F. B. Hildebrand, Methods of Applied Mathematics, Dover Publications, 1992.
	S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press, 2015.
υ.	I. G. Petrovsky, Lectures on the Theory of Integral Equations, Mir Publishers, Moscow, 1971.
7.	L. Debnath and D. Bhatta, Integral Transforms and Their Applications, Chapman and Hall/CRC, 2006.

	PO1	PO2	PO3	PSO1
C114.1	2	1	-	1
C114.2	3	2	-	2
C114.3	3	2	-	2
C114.4	3	2	-	3
C114.5	3	2	-	3