Department of Mathematics

Jaypee Institute of Information Technology, Noida

Semester II

Linear Algebra (19M21MA116)

Vector space, linear combination, linear dependence and independence, basis and dimension, linear transformation, null space and range space, rank-nullity theorem, change of basis, linear functional, eigenvalues and eigenvectors, diagonalisation, invariant subspaces, Jordan canonical representation, norm of a matrix, inner product space, orthogonal and orthonormal vectors, normed space, Gram-Schmidt process for orthogonalisation, quadratic forms.

Course C	Course Code 19M21MA116 Semester Even Semester II Sessi Month from Jan 20			sion- 2023- 2024 2024-June 2024				
Course N	ame	Linear Alg	ebra					
Credits		4			Contact	Hours	3-1-0	
Faculty		Coordinato	or(s)					
(Names) Teacher(s) (Alphabetically)								
COURSE OUTCOMES				COGNITIVE LEVELS				
After purs	After pursuing the above-mentioned course, the students will be able to:							
C120.1	C120.1 Explain the vector spaces and their properties.				Understanding Level (C2)			
C120.2	apply various concepts of the linear transformation.					Applying Level (C3)		
C120.3	solve problems related to matrix diagonalization.					Applying Level (C3)		
C120.4	analys	se inner produ	ict spac	es and its prop	erties.			Analysing Level (C4)
Module No.	le Title of the Topic Module			cs in the Module		No. of Lectures for the module		
1.	Vector spaces Vector space, subspace, elementary properties of vector spaces, sum of subspaces, linear combination, linear dependence and independence, basis and dimension, ordered bases and coordinates			10				
2.	Linear transf	ear Basic definitions, null space and range space, rank- nullity theorem, matrix of linear transformation,				10		

		change of basis, linear functional, dual spaces, dual basis.				
3	Canonical forms	10				
4. Inner product space		Inner product spaces, orthogonal and orthonormal vectors, normed space, Gram-Schmidt process for orthogonalisation, projection theorem, quadratic forms, positive definite forms, adjoint operator, unitary operators, normal operators.	12			
	Total number of lectures 42					
Eval	luation Criteria					
Com T1 T2 End TA Tota	ComponentsMaximum MarksT120T220End Semester Examination35TA25 (Quiz, Assignments, Tutorials)Total100					
Project based learning: Each student in a group of 2-3 will collect literature on canonical forms and inner product space to solve some practical problems. To make the subject application based, the students analyze to deal with afore mentioned topics.						
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1. K. Hoffman and R. Kunze, Linear Algebra 2nd Ed., Prentice Hall of India, 2015.						
 V. Krishnamurty, V. P. Mainra and J. L. Arora, An introduction to Linear Algebra, Affilated East-West, 1976. 						
3.	3. G. Strang, Linear Algebra and its applications, 4rd Ed., Thomson, 2007.					
4.	H. Anton and C. Rorre	s, Elementary linear algebra, 11th Ed., Wiley, 2016.				
5.	G. H. Golub and C. F.	V Loan, Matrix Computations, 3rd Ed., Hindustan Bo	G. H. Golub and C. F. V Loan, Matrix Computations, 3rd Ed., Hindustan Book Agency, 2007.			

	PO1	PO2	PO3	PSO1
C120.1	2	1	-	2
C120.2	3	2	-	2
C120.3	3	2	-	2

C120.4	3	2	-	2

Mathematical Statistics (19M21MA211)

Random variables, probability density and cumulative distribution functions, MGF and CF, joint, marginal and conditional distributions, probability distributions, Binomial, Poisson, Uniform, Normal distributions, Sampling theory, random sampling, distribution of sample mean, proportion and variance, property of a good estimation, point estimation, completeness, Factorization theorem, Rao-Blackwell theorem, Cramer-Rao inequality, Maximum likelihood method of estimation and method of moments, confidence intervals, null and alternative hypothesis, type-I and type II errors, testing of hypothesis for goodness of fit, large samples test, ANOVA, Regression.

Course C	Code 19M21N	MA211	Semester	Even	Semest	er II Ses	ssion-	- 2023- 2024
					Month	from Jan	2024	-June 2024
Course N	Mame Mathem	atical Stati	stics		·			
Credits	4			Contact	Hours	3-1-0		
Faculty	Coordii	nator(s)		1				
(Names)	Teacher (Alphab	r(s) petically)						
COURSI	COURSE OUTCOMES					COGNITIVE LEVELS		
After pur	After pursuing the above-mentioned course, the students will be able to:							
CO1	explain random variables and some standard distributions.						Understanding Level (C2)	
CO2	O2 apply the concepts of random sampling, parametric point and interval estimation.					erval	Applying Level (C3)	
CO3	apply hypothesis testing for goodness of fit and large sample tests.					Applying Level (C3)		
CO4	CO4 analyze the sample data using ANOVA and regression analysis.					Analyzing Level (C4)		
Module No.	Title of the Module	Topics in	in the Module				No. of Lectures for the module	
1.	Random variables and its properties	and continuous random variables, univariate and random variables, joint, marginal and al distributions, expectation of a random moment generating function (MGF) and istic function of a random variable, correlation.			9			

2	• Probability	Binomial, Poisson, uniform, normal distributions.	7			
3	. Theory of	Sampling theory random sampling distribution of	4			
	sampling	sample mean, variance.	-			
4	• Point and	General concept of estimation, unbiasedness,	9			
	interval	consistency, efficiency and sufficiency, factorization				
	estimation	theorem, completeness, Rao-Blackwell theorem, Cramer-				
		Rao inequality, method of moments, confidence interval.				
3	. Hypothesis	Null and alternative hypothesis, type I and type –II error,	5			
	testing	of fit, large sample tests.				
6	• Analysis of	One way of analysis with equal and unequal sample size,	4			
	variance	tests for the homogeneity of variances.				
7	. Regression	Simple and multiple linear regression, elementary	4			
		regression, regression curve and scedastic curves				
Total number of lectures 4						
Eval	luation Criteria					
Com	ponents	Maximum Marks				
T1 T2		20 20				
End	Semester Examination	35				
TA	_	25 (Quiz, Assignments, Tutorials)				
Tota	Total 100					
Proj	Project based learning: Students in small groups will collect sample data set and make simple/multiple					
linea By f	ir regression models. I	to make simple/multiple linear regression models	ing and ANOVA.			
by this student will be able to make simple/multiple miear regression models.						
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text						
books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	1. A. M. Mood, F. A. Graybill and D. C. Boes, Introduction to the theory of statistics, 3 rd Indian Ed., Mc Graw Hill, 2001.					
2.	2. R. V. Hogg and A. T. Craig, Introduction to mathematical Statistics, Mc-Millan, 1995.					
3.	3. V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern,					
4.	4. S. M. Ross, A First Course in Probability, 6th edition, Pearson Education Asia, 2002.					
5.	5. S. Palaniammal, Probability and Random Processes, PHI Learning Private Limited, 2012.					
6.	P. L. Mayer, Introductory Probability and Statistical Applications, Addison-Wesley, Second Edition, 1972.					
7.	R. E. Walpole, R H	. Myers, S. L. Myers, and K. Ye, Probability & Statistics	for Engineers &			
	Scientists, 9 th edition,	Pearson Education Limited, 2016.				
8.	I. Miller and $\overline{\mathbf{M}}$.	Miller, John E. Freund's Mathematical Statistics with	Applications, 8th			
	Edition, Pearson Education Limited 2014.					

	PO1	PO2	PO3	PSO1
CO1	3	2	-	2
CO2	3	2	-	2
CO3	3	2	-	2
CO4	3	2	-	2

Functional Analysis (19M21MA119)

Normed space, Banach space and related results, subspace of Banach space, finite dimensional normed space and subspaces, linear operators, bounded and continuous linear operators, principle of uniform boundedness, boundedness and continuity of linear transformations, Hahn-Banach theorem, open mapping theorem, closed graph theorem, Inner product spaces, Schwartz and Minkowski inequalities, Hilbert spaces, relation between Banach and Hilbert spaces, projections, orthonormal basis, Riesz-representation theorem, convex sets, projection theorem, orthogonal and orthonormal systems in Hilbert spaces, characterization of complete orthonormal systems, Banach fixed point theorem and its simple applications.

Course C	ode	19M21MA119	Semester	Even	Semest Month	er II Ses from Jan	sion- 2023- 2024 2024-June 2024
Course N	Course Name Functional Analysis						
Credits	redits 4 Contact Hours 3-1-0						
Faculty (Names)		Coordinator(s)		1		1	
		Teacher(s) (Alphabetically)					
COURSE OUTCOMES					COGNITIVE LEVELS		
After purs	suing th	e above-mentioned c	course, the stud	lents will b	e able to	:	
C123.1 explain the concept of normed spaces, Banach spaces and their properties				and their	Understanding Level (C2)		
C123.2	apply concepts of Banach space to prove Hahn-Banach theorem, open mapping theorem and closed graph theorem.				Applying Level (C3)		
C123.3	explain inner product space, Hilbert spaces, orthonormal basis and Reisz-representation theorem				Understanding Level (C2)		
C123.4	develop the concept of orthonormal systems and solve related problems.					re related	Applying Level (C3)

C123.5	examine contraction mapping, Banach fixed point theorem and its simple applications.		Analyzing Level (C4)		
Module No.	Title of the Module Topics in the Module		No. of Lectures for the module		
1.	Normed spaces and Banach space I	Review of Holder inequality, Minkowski inequality and vector spaces with examples to l_p and L_p spaces, normed space, Banach space, subspace of Banach space.	5		
2.	Normed spaces and Banach space II	Finite dimensional normed space and subspaces. Linear operators, bounded and continuous linear operators, their properties and related results.	7		
3. Some fundamental theorems of normed spaces principle of uniform boundedness, boundedness and continuity of linear transformations, Hahn-Banach theorem, open mapping theorem, closed graph theorem.			б		
4.	Inner Product Spaces and Hilbert spaces 1	8			
5. Inner Product Spaces and Hilbert spaces II		Convex sets, existence and uniqueness of a vector of minimum length, projection theorem, orthogonal and orthonormal systems in Hilbert spaces with examples.	8		
6.	Inner product spaces and Hilbert spaces III	Bessel's inequality, Parseval's identity, characterization of complete orthonormal systems.	4		
7.	Banach fixed point theorem	Contraction mapping, Banach fixed point theorem and its applications.	4		
Total number of lectures 42					
Evaluation CriteriaComponentsMaximum MarksT120T220End Semester Examination35TA25 (Quiz, Assignments, Tutorials)Total100					
Banach fiz	Banach fixed point theorem to solve related problems.				

Rece book	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text pooks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	E. Kreyszig , Introductory Functional Analysis with Applications, John Wiley and Sons, Inc., 2011.					
2.	W. Rudin, Functional Analysis, Mc-Graw Hill, 1991.					
3.	G. F. Simmons, Introduction to Topology and Modern Analysis, Tata Mc-Graw Hill Education, New Delhi, 2016.					
4.	A. H. Siddiqi, K. Ahmad and P. Manchanda , Introduction to Functional Analysis with Applications, Anamaya Publication, New Delhi, 2006.					
5.	L. Debnath and P. Mikusinski , Introduction to Hilbert spaces with Applications, 3rd Edition, Elsevier, 2005.					
6.	G. Bachman and L. Narici, Functional Analysis, Academic Press, 1972					
7.	M. T. Nair, Functional Analysis: A First Course, PHI India, 2004.					

	PO1	PO2	PO3	PSO1
C123.1	2	1	-	1
C123.2	3	2	-	2
C123.3	2	1	-	1
C123.4	3	2	-	1
C123.5	3	2	-	2

Partial Differential Equations (19M21MA120)

Linear, semi-linear and quasi-linear equations, Cauchy problem, method of characteristics, nonlinear first order PDE's, complete integrals, envelopes and singular solutions, classification of second order equations, Laplace equation, fundamental solutions, maximum principles and mean value formulas, properties of harmonic functions, Green's function, parabolic equations in one space dimension, fundamental solution, maximum principle, wave equation, Duhamel's principle, methods of separation of variables for Laplace, heat and wave equations.

Course Code	19M21MA120	Semester Even	Semester II Session- 2023- 2024	
			Month from Jan 2024-June 2024	
Course Name	Partial Differential Equations			
Credits	4	Contact Hours	3-1-0	

Faculty (Names)		Coordinat	or(s)			
		Teacher(s) (Alphabetic	cally)			
COURSE	COURSE OUTCOMES					
After pursu	uing t	he above-me	ntioned	course, the students will be able to:		
C124.1	clas equa	sify and solv ations (PDE).	Applying Level (C3)			
C124.2	exp	lain Fourier	series a	and Fourier transforms.	Understanding Level (C2)	
C124.3	clas cyli	sify second ndrical and	l order spheric	• PDE and solve Laplace equation in al polar coordinates.	Applying Level (C3)	
C124.4	solv	ve heat equat	tion in c	cylindrical and spherical polar coordinates.	Applying Level (C3)	
C124.5	solv	ve wave equ	ation us	sing separation of variables.	Applying Level (C3)	
C124.6	app	ly Fourier tr	ansforr	ns to solve PDE.	Applying Level (C3)	
Module No.	Title of the ModuleTopics in the Module			No. of Lectures for the module		
1	Firs Part Diff Equ (PD	tt-order tial ferential tations DEs)	Forma PDEs, equati charac compl solutio waves for fir metho	ation and classification of first-order linear semi-linear and quasi-linear ons, Cauchy problem, method of eteristics, nonlinear first order PDEs, ete integrals, envelopes and singular ons, discontinuous solutions (shock), compatible systems, Lagrange method st order PDEs, Charpit's method, Jacobi's d for nonlinear PDEs.	10	
2	Fou	rier Series	Introd Fourie contin series, cosine	uction to Fourier series, convergence of er series for continuous and piecewise uous functions, Fourier cosine and sine Fourier transform, Fourier sine and e transform.	5	
3	Second-Order PDEsClassification of second-order linear partial differential equations into hyperbolic, parabolic and elliptic PDEs, reduction to canonical forms.		3			
4	Lap Equ	lace's lation	Basic proble princip solution formu the D	concepts, types of boundary value ems, the maximum and minimum ple, Green's identity and fundamental on, Green's function, Poisson integral la, the method of separation of variables, birichlet problem for the rectangle, the	8	

	Dirichlet problem for annuli and disk, the						
		exterior Dirichlet problem, solution of Laplace					
		equation in cylindrical and spherical polar					
		Derivation of the heat equation maximum and					
5	Heat	minimum principles uniqueness continuous	6				
	Equation	dependence, method of separation of variables.					
		solution of heat equation in cylindrical and					
		spherical polar coordinates.					
6	Wave	Derivation of the wave equation, infinite string	7				
	Equation	problem, D'Alembert solution of the wave					
		equation, semi-infinite string problem, finite					
		vibrating string problem, method of separation					
		or variables, infomogeneous wave equation, Dubamel's principle					
		Fourier transform methods for heat flow					
	Fourier	problem in an infinite and semi-infinite rod	3				
	transform methods for	Infinite string problem, Laplace equation in a					
	PDEs	half-plane.					
	Total number of lectures 42						
Evaluatio	on Criteria						
Compone T1	ents	Maximum Marks					
T1 T2		20					
End Seme	ester Examination	35 25 (0, i, , , , , , , , , , , , , , , , ,)					
TA Total		25 (Quiz, Assignments, Tutorials) 100					
Project ba	ased learning: Eac	h student in a group of 3-4 will apply the concepts of L	aplace's equation, Heat				
equation,	Wave equation to	solve some field problems.					
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)							
1. 8	. Sneddon, I. N., Elements of Partial Differential Equations, McGraw Hill, 2013.						
2. J	John, F., Partial Differential Equations, Springer Verlag, 1982.						
3. 8	Strauss, W. A., Partial Differential Equations: An Introduction, John Wiley, 1992.						
4. V	Willams, W. E., Partial Differential Equations, Oxford, 1980.						
5. I	E vans, L. C., Partia	al Differential Equations, AMS, 1998.					
6. I	McOwen, R., Parti	al Differential Equations, Pearson, 2002.					
7. I	Powers, D. L., Bou Press, 2006.	Indary Value Problems and Partial Differential Equati	ons, 5 th Ed., Academic				

	PO1	PO2	PO3	PSO1
C124.1	3	2	-	1
C124.2	2	1	-	2
C124.3	3	2	-	2
C124.4	3	2	-	2
C124.5	3	2	-	2
C124.6	3	2	-	2

Computer Programming (19M21MA118)

Number system, integer and floating point arithmetic, expressions and operators, conditions and selection statements, looping and control structures, string processing, addresses and pointers, arrays, pointers into arrays, constants, references, structures, functions, parameters, passing by value, passing by reference, passing arguments by constant reference, recursive functions, function overloading and default arguments, classes, access control, class implementation, constructors, destructor, operators overloading, friend functions.

Course C	ode	19M21MA118	Semester	Even	Semester II Sess		ession- 2023- 2024
					Month	from Ja	n 2024-June 2024
Course N	ame	Computer Program	ming				
Credits		3		Contact	Hours	3-0-0	
Faculty		Coordinator(s)					
(Names)		Teacher(s) (Alphabetically)					
COURSE	COURSE OUTCOMES COGNITIVE LEVELS					COGNITIVE LEVELS	
After purs	uing th	e above-mentioned c	ourse, the stud	ents will b	e able to	:	
C122.1	explai	n representation of n	umbers in com	nputer prog	gramming	5.	Understanding Level (C2)
C122.2	explain basic concepts of programming.				Understanding Level (C2)		
C122.3	apply the concepts of programming through functional decomposition. Applying Level (C3)					n. Applying Level (C3)	
C122.4	constr	ruct the pointers for c	lynamic memo	ry allocati	on.		Applying Level (C3)

C122.5	apply the object-or	iented programming in solving various problems.	Applying Level (C3)			
Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module			
1.	Basic Computer Fundamentals	Introduction to computer systems; number system, integer, signed integer, fixed and floating-point representations; integer and floating-point arithmetic, expression and operators.	5			
2.	Basics of Programming	Input/output; Constants, variables, expressions and operators; Naming conventions and styles; Conditions and selection statements; Looping and control structures (while, for, do-while, break and continue); Arrays; File I/O, header files, string processing; Pre-processor directives.	10			
3.	Programming through functional decomposition	Structures; design of functions, void and value returning functions, parameters, scope and lifetime of variables, passing by value, passing by reference, passing arguments by constant reference, recursive functions; Function overloading and default arguments; Library functions.	10			
4.	Pointers	Pointers; Dynamic data and pointers, dynamic arrays.	5			
5.	Object Oriented Programming Concepts	Data hiding, abstract data types, classes, access control; Class implementation-default constructor, constructors, copy constructor, destructor, operator overloading, friend functions; Object oriented design (an alternative to functional decomposition) inheritance and composition; Dynamic binding and virtual functions; Polymorphism; Dynamic data in classes.	12			
		Total number of lectures	42			
Evaluation Component T1 T2 End Sement TA Total Project b	have a group logder to					
Project based learning: A group of 2 to 3 students will be formed. Each group will have a group leader to develop coordination among the group members. Each group will be assigned a project based on						

programming skills. The group leader of each group will submit a report of 6-7 pages and then finally each member of the group will be evaluated through a viva voce.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Lafore R., Object-Oriented Programming in C++. Sams Publishing, 4th edition, 2001.
2.	Stroustrup, B., The C++ Programming Language. Addison-Wesley, 3rd edition, 1997.
3.	Deitel, H.M. and Deitel, P.J., C++ How to Program. Prentice Hall, 8th edition, 2011.
4.	Schildt, H., C++: The Complete Reference. McGraw-Hill, 4th Ed., 2002.
5	Lippman, S. B. and Lajoie, J. and Moo, B.E., The C++ Primer. Addison-Wesley Professional, 5th
5.	Ed., 2012.

	PO1	PO2	PO3	PSO1
C122.1	2	1	-	1
C122.2	2	1	-	1
C122.3	3	2	-	1
C122.4	3	2	-	2
C122.5	3	2	-	1

Computer Programming Lab (19M25MA111)

Number system, integer and floating-point arithmetic, expressions and operators, conditions statements, looping and control structures, string processing, addresses and pointers, arrays, references, structures, functions, recursive functions, function overloading and default arguments, classes, access control, class implementation, constructors, destructor, operators overloading, friend functions.

Course Code	19M25MA111	Semester	Even	Semester II Session- 2023- 2024			
				Month from Jan 2024-June 2024			
Course Name	Computer Programming Lab						
Credits	1		Contact	Hours	0-0-2		
Faculty	Coordinator(s)						
(Names)	Teacher(s) (Alphabetically)						
COURSE OUTCOMES COGNITIVE LEVELS							
After pursuing the above-mentioned course, the students will be able to:							

C170.1	explain data types,	xplain data types, variables, and arithmetic operators.					
C170.2	explain basic conce understand the use	explain basic concepts of conditional statements, loops, structures and to inderstand the use of arrays.					
C170.3	apply the concepts	apply the concepts of programming through functional decomposition.					
C170.4	describe the usage	of the pointers for dynamic memory allocation.	Applying Level (C3)				
C170.5	develop the program	ms using various concepts of object oriented	Applying Level (C3)				
Module No.	Title of the Module	СО					
1.	Basic Computer Fundamentals	Write programs in C++ to understand the arithmetic operators, logical and relational operators.	C170.1				
2.	Basic Programming and Statements	Write programs in C++ for I/O functions and conditional statements like if else etc.	C170.2				
3.	Basic Programming and loops	C170.2					
4.	Use of loops and statements	Write C++ programs for n!, e^x , $sinx$, $log(1+x)$.	C170.2				
5.	Arrays and strings	Write C++ programs using 1D and 2D arrays like Sorting of arrays, Matrix multiplication. Strings.	C170.2				
6.	Structures	Write C++ programs of time and distance structures	C170.2				
7.	Functions	Write C++ programs using functions for Matrix multiplication, HCF of two numbers, factorial, etc.	C170.3				
8.	Functions	Write programs in C++ using call by value, reference, recursive functions, function overloading.	C170.3				
9.	Pointers	Write programs in C++ for handling addressing through pointers.	C170.4				
10.	Object oriented programming Concepts	Write programs in C++ using OOPs concepts like Object and classes, Constructor, Destructors.	C170.5				
11.	Object oriented programming Concepts	Write program of Complex class. Use of Operator overloading, Friend functions.	C170.5				
12.	Object oriented programming Concepts	Write programs in C++ showing the application of Inheritance.	C170.5				

Eva	luation Criteria				
Con Lab Lab TA Tota	aponentsMaximum MarksTest 120Test 22060 (Quiz, Assignments, Tests, Viva)al100				
Pro lead base lead will	Project based learning: A group of 2 to 3 students will be formed. Each group will have a group leader to develop coordination among the group members. Each group will be assigned a project based on its commercial and general applications illustrating the programming skills. The group leader of each group will submit a report of 5-6 pages and then finally each member of the group will be evaluated through a viva voce.				
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Lafore R., Object-Oriented Programming in C++. Sams Publishing, 4th edition, 2001.				
2.	Stroustrup, B., The C++ Programming Language. Addison-Wesley, 3rd edition, 1997.				
3.	Deitel, H.M. and Deitel, P.J., C++ How to Program. Prentice Hall, 8th edition, 2011.				
4.	Schildt, H., C++: The Complete Reference. McGraw-Hill, 4th Ed., 2002.				
5.	Lippman, S. B. and Lajoie, J. and Moo, B.E., The C++ Primer. Addison-Wesley Professional, 5th Ed., 2012.				

	PO1	PO2	PO3	PSO1
C170.1	2	2	-	1
C170.2	3	3	-	2
C170.3	3	2	-	2
C170.4	2	2	-	1
C170.5	3	2	-	2

Advanced Matrix Theory (20M22MA211)

Review of Vector spaces, existence and uniqueness of solution for a system of linear equations, LU- decomposition methods, Crout's and DooLittle's methods, Cholesky method, conjugate gradient method, p-norms of a vector, norms of a matrix, condition number, Orthogonal matrices, expansion in terms of orthonormal basis–Fourier series, orthogonal complement, Pythagoras theorem, Eigen values, eigenvectors and their properties, power method, inverse power methods, Q-R algorithm, eigen system of Hermitian matrix, spectral radius,

Gershgorin's theorem, Singular Values and Singular Value Decomposition, Approximation methods of function of matrices, application to solve discrete dynamical system of the type $x(t+1) = Ax(t), x(0) = \alpha$, reduction of an nth order equation.

Course Code		20M2	22MA211	Semester Odd S		Semest Month	Semester IISession- 2023- 2024Month fromJan 2024-June 2024	
Course N	lame	Adva	Advanced Matrix Theory					
Credits		3			Contact	Hours	3-0-0	
Faculty		Cool	rdinator(s)		I <u></u>			
(Names)	(Names)		her(s) nabetically)					
COURSI	E OUTO	COME	S					COGNITIVE LEVELS
After purs	suing the	e abov	e-mentioned c	course, the stud	lents will b	e able to	:	
CO1	solve the system of linear equations using direct and iterative methods.					Applying Level (C3)		
CO2	explain Gram- decom	explain matrix norms, orthogonal complement and apply the revised Applying Level (C3) decomposition.					Applying Level (C3)	
CO3	constru smalle matrix	Instruct Gershgorin's circles, quadratic and canonical forms and solve Applying Level allest and largest eigenvalue problems, eigen system of Hermitian (C3) trix and singular value decomposition.					Applying Level (C3)	
CO4	analyz dynam	e syst ical sy	ems of diffe stems using n	rential and d	lifference	equation	s arising in	Analyzing Level (C4)
Module No.	Title o Modu	of the le	Topics in th	e Module				No. of Lectures for the module
1.	Linear Systen equati	LinearExistence and uniqueness of solution for a system of linearSystem ofequations, LU- decomposition methods, Crout's andDooLittle's methods, Cholesky method, conjugate gradientmethod.			7			
2.	Normed and Inner Product Spaces <i>p</i> -norms of a vector, norms of a matrix, co Orthogonal matrices, QR factorization, terms of orthonormal basis–Fourier ser complement, Pythagoras theorem.			ix, condi ation, ex er series,	tion number, xpansion in , orthogonal	10		
3.	EigenEigen values andvalueGreshgorin's theoremProblemseigen system of a HeSingular Value Decom			ues and Ei s theorem, Pov n of a Hermiti lue Decomposi	and Eigenvectors, spectral radius, orem, Power and Inverse power methods a Hermitian matrix, Singular Values and Decomposition.			12

	36.4.1		12				
4	Matrix	Powers and functions of matrices, approximation	13				
	Calculus						
		system of differential equations of the form $dx/dt = Ax$.					
		$\mathbf{y}(0) = \alpha$					
	42						
Evaluation Criteria							
Components Maximum Marks							
T1 20							
T2 20							
End Semester Examination 35							
TA 25 (Quiz, Assignments)							
Tota	վ	100					
Project based learning: Each student in a group of 3-4 will apply the concepts of matrix calculus to solve system of differential equations related to some practical problems.							
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)							
1.	. R. Bronson, Matrix Methods an Introduction, Academic Press, 1991.						
2.	G. H. Golub, Matrix Computations, 4 th Edition, Johns Hopkins University Press, 2013.						
3.	K. B. Datta , Matrix and Linear Algebra, 3 rd Edition, Prentice Hall of India, 2016.						
4.	W. L. David, Matrix Theory, World Scientific, 1991.						
5.	R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 2013.						
6.	G. Strang, Linear Algebra and its Applications, Thomson, Brooks/Cole, 2006.						

<u>CO-PO-PSO Mapping</u>

	PO1	PO2	PO3	PSO1
CO1	3	2	-	2
CO2	3	2	-	2
CO3	3	2	-	2
CO4	3	2	-	2