Course Code	15B11EC211	Semester Odd (specify Odd/Even)		Semester III Session 2022 -2023 Month from August to December	
Course Name	Electrical Science-2				
Credits	4		Contact H	Iours	3+1

Faculty	Coordinator(s)	Yogesh Kumar and Shradha Saxena
(Names)	Teacher(s) (Alphabetically)	Abhishek Kashyap, Atul Kumar, Atul Kumar Srivastava, Jitendra Mohan, K. Nisha, Mandeep Singh Narula, Pankaj Kumar Yadav, Sajaivir Singh, Satyendra Kumar, Shivaji Tyagi, Varun Goel, Vinay Kumar

COURSE	OUTCOMES	COGNITIVE LEVELS
C203.1	Study and analyze the complete response of the first order and second order circuits with energy storage and/or non-storage elements.	Analyzing Level (C4)
C203.2	Understand two-port network parameters and study operational amplifier, first-order&second-orderfilters.	Understanding Level (C2)
C203.3	Study the properties of different types of semiconductors, PN junction diode, Zener diode and analyze diode applications.	Analyzing Level (C4)
C203.4	Study the characteristics, operation of bipolar junction transistor (BJT) and its biasing, stability aspects.	UnderstandingLevel (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Transient Analysis	First-order network analysis, sequential switching, Differential equation approach for DC and Non constant source, second order network analysis using differential equation approach for DC and non-constant source	10
2.	Two Port Network Parameters	Definition of Z, Y, h and Transmission parameters and their conversions.	5
3.	Introduction to Operational Amplifier and Filters	Introduction to Operational Amplifier and its applications, First-order and Second-order (Low Pass, High Pass, Band pass and Band Stop) RLC Filters.	5
4.	Introduction to	Semiconductor Physics-Energy Band Model, Carrier Statistics, Intrinsic Semiconductors, Extrinsic	6

	Semiconductor					
5.	Diodes &Applications P-N Junction diode, Biasing the PN Junction diode, Current-Voltage Characteristics of a P-N Junction, Half Wave Rectifier &Full Wave Rectifier, Clipper&Clamping Circuits, Zener Diode and its application as voltage reference, Line and Load Regulations of reference circuits.		8			
6.	Bipolar Junction Transistor Transistor Transistor Construction and Basic Transistor Operation, Transistor Characteristics (CE,CB,CC). Transistor Biasing & Stability.					
		Total number of Lectures	42			
Compo T1 T2 End Ser TA Total	mester Examination 2	Jaximum Marks 20 20 35 25 00 will learn about the transient responses of the first/second order	circuits which			
is the ut	tmost requirement for electro	onic circuit design. Also, the students with the knowledge of OP- ircuits for the signal processing applications.				
ll .	· ·	al: Author(s), Title, Edition, Publisher, Year of Publications, Reports, Websites etc. in the IEEE format)	ı etc. (Text			
1. R. C. Dorfand James A. Svoboda, "Introduction to Electric Circuits", 9 th ed, John Wiley & Sons, 2013.						
2.	Charles K. Alexander, Matthew N.O. Sadiku, "Fundamentals of Electric Circuits", 6th Edition, Tata McGraw Hill, 2019.					
3.	Abhijit Chakrabarti, Circuit Theory Analysis and Synthesis, 7 th ed, Dhanpat Rai &Co. 2018.					
4.	Robert L.Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 11 th ed, Prentice Hall of India, 2014.					

Jacob Millman, Millman's Electronic Devices and Circuits (SIE), 4thed, McGraw Hill Education, 2015.

5.

Course Description Lecture wise Breakup

Course Code	15B17EC271			Semester-: III Session 2022 -2023 Month-: August- December		
Course Name	Electrical Science Lab-II					
Credits	1	Contact H		Hours	0-0-2	

Faculty (Names)	Coordinator(s)	Dr. Abhishek Kashyap, Mr. Shivaji Tyagi		
	Teacher(s)	Atul Kumar, Abhishek Kashyap, Atul Kumar Srivastava, Ajay Kumar, Ankur Bhardwaj, Bhawna Gupta, Bajrang Bansal, Garima Kapur, Gaurav Khanna, Hemant Kumar, Jitendra Mohan, Kapil Dev Tyagi, Kaushal Nigam, K. Nisha, Mandeep Narula, Ritesh Kumar Sharma, Sajaivir Singh, Satyendra Kumar, Shivaji Tyagi, Samriti Kalia, Smriti Bhatnagar, Shradha Saxena, Varun Goel, Vinay Tikkiwal, Vijay Khare, Vishal Narain Saxena, Yogesh Kumar,		

COURSE O	UTCOMES	COGNITIVE LEVELS
C204.1 Study and analyze time response of first order and second order passive circuits		Analyzing(C4)
C204.2	Understand two port resistive network parameters, operational amplifier applications and first order filter.	Understanding(C2)
C204.3	Understand the characteristics of pn junction diode and its applications	Understanding(C2)
C204.4	Understand the characteristics of Common emitter and common base configurations of BJT.	Understanding(C2)

Module No.	Title of the Module	List of Experiments	COs
1. First and Second order passive		Study the transient response of a series RC circuit and understand the time constant concept using pulse waveforms.	C204.1
	circuits	Study of Time Response of R-L-C Network	C204.1
2. Two port resistive networks		To determine the Z-parameters of a 2- port resistive network.	C204.2
		To determine the h-parameters of a two-port resistive network.	C204.2
3.	Operational amplifier and	To realize inverting and non inverting configurations using Op- Amp IC 741 amplifier.	C204.2
its applications		To realize an adder and substractor circuits	C204.2

		using Op- Amp IC 741 amplifier.	
		using Op Tamp to 741 umpinter.	
4.	PN junction and Zener diodes	To study the forward and reverse bias (volt-ampere) characteristics of a simple p-n junction diode. Also determine the forward resistance of the diode.	C204.3
		To study the forward and reverse bias volt-ampere characteristics of a zener diode. Also determine the breakdown voltage, static and dynamic resistances.	C204.3
5.	Diode applications	To observe the output waveform of half/full wave rectifier and calculate its ripple factor and efficiency.	C204.3
		Realization of desired wave shapes using clipper and clamper circuits.	C204.3
		To study Zener voltage regulator and calculate percentage regulation for line regulation and load regulation.	C204.3
6.	Bipolar Junction	To plot input characteristics of a common emitter npn BJT.	C204.4
	Transistor	To plot output characteristics of a common emitter npn BJT.	C204.4
		To plot input characteristic of a BJT in Common Base Configuration.	C204.4
		To plot output characteristic of a BJT in Common Base Configuration.	C204.4
7.	First order filters	To plot frequency and phase response of First order low pass and high pass filter.	C204.2
Evaluati	on Criteria		
Compon Viva1 Viva2	ents	М	Eaximum Marks 20 20
	Attendance, and D2D		
Total			100

Project Based Learning: Students will learn about the transient response of first and second order passive circuits. Also, student will learn about Op-amp and its applications like adder and substractor circuits. This course also gives the understanding of semiconductor diodes and Bipolar Junction Transistor. These concepts are the required for Electronic circuit design.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	. R.C.Dorf, A. Svoboda, "Introduction to Electric Circuits",9th ed, John Wiley & Sons, 2013.					
2.	D. Roy Choudhary and Shail B. Jain, "Linear Integrated Circuit," 2nd Edition, NAILP, 2003					
3.	3. A.S .Sedra & K.C.Smith, Microelectronic Circuits Theory and Application, 6th Edition, Oxford University Press, 2015(Text Book)					

Course Code	18B11EC214	Semester Odd (specify Odd/I		Semester: III Session: 2022-2023 Month from Aug'22 to Dec'22	
Course Name	Signals & Systems				
Credits	4		Contact Hou		3+1

Faculty (Names)	Coordinator(s)	PriyankaKwatra, Vishal Narain Saxena
	Teacher(s) (Alphabetically)	Ajay Kumar, Kuldeep Baderia, PriyankaKwatra, Vishal Narain Saxena

COURSE	COURSE OUTCOMES: At the end of the course, students will be able to COGNITIVE LEVY		
C210.1	Understand the mathematical representation, classification, applications and analyze both continuous-time (CT) and discrete-time (DT) signals and systems.	Understanding Level (C2)	
C210.2	Analyze and interpret the response of CT and DT LTI systems in time domain.	Evaluating Level (C5)	
C210.3	Choose and demonstrate the use of different frequency domain transforms to examine and explain the spectral representation of the CT and DT signals and systems.	Evaluating Level (C5)	
C210.4	Apply Laplace transform and Z-transform to analyze and examine the response and behavior of the CT and DT systems.	Analyzing Level (C4)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Signals and their classifications	Signal: definition, Classifications of Signals (Continuous- time & Discrete-time, Analog & Digital, Energy & Power, Deterministic & Random, Periodic & Aperiodic, Even and Odd etc.)	4
2.	Systems and their classifications	Classifications of Systems Classifications of Systems (Linear & Nonlinear, Time invariant & Time varying, Causal & Non- causal, Memory & Memory less, Stable & unstable system), LTI Systems (continuous-time and discrete-time)	5
3.	Response of LTI system	Impulse response of a system, Response of LTI system, Convolution (Integral and Sum).	5
4.	Fourier analysis of Continuous time signal and system	Continuous Transforms Fourier series, Convergence of Fourier series, Continuous-time Fourier Transform, properties of Fourier series and Transform, Frequency domain analysis of continuous time LTI system	7
5.	Fourier analysis of Discrete time signal and system	Discrete Transforms Fourier series, Convergence of Fourier series, Discrete-time Fourier Transform, properties of Discrete-time Fourier series and Transform, Frequency domain analysis of discrete-time LTI system	7
6.	Laplace Transform	Laplace Transform, Concept of ROC and Transfer function, pole-Zero plot, properties Laplace Transform, solution of differential equations using Laplace Transform, System	7

	on Criteria	Total number of lectures	42
8.	Introduction to Digital Filters: FIR & IIR	Digital filters:- definition and frequency response of basic filtering function like BP, HP, LP, BR, AP Definition and representation of IIR and FIR digital filter	1
7.	Z-transform	function, Laplace approach to analysis the LTI system, stability analysis Z- Transform, Concept of ROC, properties Z- Transform, solution of difference equations using Z- Transform, System function, pole-Zero plot, Z- Transform approach to analysis the Discrete-time LTI system, stability analysis of Discrete-time LTI system	6

Project Based Learning: This course's primary learning purpose is for students to be able to analyse various signal types, their transformations, and their implementation. This course also covers the design and response of several types of basic filters. The opinions of students were acquired through a course exit survey conducted at the completion of the course.

35

25

100

End Semester Examination

TA

Total

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) A.V. Oppenheim, A.S. Willsky & S.H. Nawab, Signals & Systems, 2nd edition, PHI, 2004. 2. H.P. Hsu, Schaum's outlines of theory and problems of signals and systems. McGraw Hill; 1995. S. Haykin B. Van Veen, Signals and Systems, 2nd edition, John Wiley & sons, 2004. 3. M. Mandal, Amir Asif, Continuous and Discrete Time Signals and Systems, Cambridge, 2007. 4. 5. M. J. Roberts, Signals and Systems, Tata Mcraw-Hill, 2003. Tarun Rawat, Signals and Systems, Oxford University Press, 2010. 6. J. G. Proakis & D. G. Manolakis, Digital Signal Processing, Principles, Algorithms and Applications, 7. Fourth edition, PHI, 2007.

Detailed Syllabus Lab-wise Breakup

Course Code	(18B15EC214)	Semester: Od (specify Odd/)			er: III Session: 2022-2023 From Aug'22 to Dec'22
Course Name	Signals and Systems Lab				
Credits	1		Contact I	Hours	2

Faculty (Names)	Coordinator(s)	Priyanka Kwatra, Ritesh Kumar Sharma	
	Teacher(s) (Alphabetically)	Bhawna Gupta , Kuldeep Baderia , Madhu Jain , Priyanka Kwatra, Ritesh Kumar Sharma, Rahul Kaushik, Smriti Bhatnagar , Vineet Khandelwal	

COURSE	OUTCOMES	COGNITIVE LEVELS
C270.1	Understanding of MATLAB and its various applications, Classification of continuous time signals and discrete time signals.	Understanding (C2)
C270.2	Apply the coding skills of MATLAB for Convolution of continuous time signals and discrete time signals, for DFT and IDFT.	Applying (C3)
C270.3	Analyze different LTI systems with Frequency domain representation of continuous time and discrete time periodic and aperiodic signals.	Analyzing (C4)
C270.4	Determine Laplace Transform of continuous time signals and Z- Transform of discrete time signals. Introduction to SIMULINK and to realize systems described by differential and difference equations	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	СО
1.	Understanding of MATLAB and its use in signals and discrete time signals.	Introduction to MATLAB and its various applications.	C270.1
2.	Study and Classification of continuous time signals	Introduction to continuous time signals.	C270.1
3.	Study and Classification of Discrete time signals	Introduction to Discrete time signals.	C270.1
4.	Study of parts of signals	Introduction to even and odd parts of signal.	C270.1
5.	Study of plotting of different signals using MATLAB	Write MATLAB Codes for generating and plotting various combinations of the two signals and perform time scaling, time shifting, time reversal and multiple transformations.	C270.1
6.	Study and calculation of	Write MATLAB codes for finding the Signal Energy or power of signals.	C270.1

	Dayyan and ananay of		1
	Power and energy of signals using		
	MATLAB		
7.	Apply the concepts	To calculate the convolution, sum of two discrete time signals.	C270.2
, •	of		
	MATLAB in finding		
	the Convolution sum of		
	signals		
8.	Apply the concepts	To calculate the convolution integral of two continuous - time	C270.2
	of MATLAB in finding	signals.	
	the Convolution		
	integral of signals		
9.	Analyze different	Realization of LTI system and verify it.	C270.3
·	LTI systems with		
	Frequency domain		
	representation	Determine frequency density representation of CT and DT	C270.2
10.	Analyze Frequency domain	Determine frequency domain representation of CT and DT periodic signals.	C270.3
	representation of	periodic signals.	
	continuous time and		
	discrete time periodic		
	signals.		G270 2
11.	Analyze different LTI systems with	Determine frequency domain representation of CT and DT aperiodic signals.	C270.3
	Frequency domain	aperiodic signals.	
	representation of		
	continuous time and		
	aperiodic signals.		
12.	Analyze and realize Discrete Fourier	Write your own MATLAB function to compute DFT (Discrete	C270.3
	Transform and	Fourier Transform) and IDFT (Inverse Discrete Fourier Transform) for the spectral analysis of signals.	
	Inverse Discrete	Transformy for the spectral analysis of signals.	
	Fourier Transform		
13.	Determine Laplace	Find out output y (t) of the system where input is x (t) and	C270.4
	Transform of continuous time	impulse response is h (t) using Laplace Transform. Also, find the ROC of the transform.	
	signals	the ROC of the transform.	
14.	Determine Z-	Find out output y [n] of the system where input is x[n] and	C270.4
. •	Transform of discrete	impulse response is h[n] using Z-Transform. Also, find the	
	time signals.	ROC of the transform. Verify answer using MATLAB	
		commands "ztrans" and "iztrans". Check stability of the system using MATLAB	
15.	Introduction to	Introduction to SIMULINK and to realize systems described	C270.4
15.	SIMULINK	by differential and difference equations.	
16.	Understanding of	Virtual Lab: 1. Signals and its properties	C270.1
	MATLAB and its use		
4=	in signals Understanding of	Virtual Lab: 2. System and their properties	C270.2
17.	MATLAB and its use	virtual Lao. 2. System and their properties	C210.2
	in systems		
18.	Understanding of	Virtual Lab: 3. Fourier analysis of signals	C270.3
100	MATLAB and its use	-	
	in Frequency Domain		

Representation of signals		
Evaluation Criteria		
Components	Maximum Marks	
Viva 1 (Mid Sem Viva)	20	
Viva 2 (End Sem Viva)	20	
Day to Day	30	
Lab Record	15	
Attendance	15	
Total	100	

Project Based Learning: Every Student will learn analyzing different LTI systems with frequency domain representation of continuous time and discrete time periodic and aperiodic signals. Moreover, small groups of students are required to develop one Simulink model to realize systems described by differential and difference equations.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	J.G.Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, Third Edition, PrenticeHall, 1999.		
2.	A.V.Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, Second Edition, Prentice Hall, 1999.		
3.	Sanjit K. Mitra, Digital Signal Processing: With DSP Laboratory Using MATLAB: A Computer-Based Approach, Second Revised Edition, TMH, 2001.		

Subject Code	18B11EC215	Semester ODD	Semester: III Session: 2022-2023 Month from Aug'22 to Dec'22
Subject Name	Digital Circuit Design		
Credits 4 Con		Contact Hours	3-1-0
E14	Combinatorial Classic Victorial Vict		

Faculty	Coordinator(s)	Bhartendu Chaturvedi, Garima Kapur
Members	Teacher(s)	Ankur Bhardwaj, Shamim Akhter

COURSE	OUTCOMES- At the end of the course, students will be able to:	COGNITIVE LEVELS
C212.1	Understand the representation and conversion of various number systems and binary codes.	Applying Level (C3)
C212.2	Understand the fundamental concepts and techniques used in digital electronics which in turn form a digital logic.	Applying Level (C3)
C212.3	Analyze and construct combinational and sequential logic circuits. Develop skill to troubleshoot digital circuits using Finite state machines.	Analyzing Level (C4)
C212.4	Classify different semiconductor memories and analyze digital system design using PLDs. Classify and analyze wave shaping circuits and digital logic families.	Analyzing Level (C4)

Module No.	Subtitle of the Module	Topics in the Module	No. of Lectures
1	Introduction to Digital Systems, Binary Codes and Boolean Algebra	Digital systems, Importance, Analog vs. digital world; Conversion of bases, Representation of negative numbers, 9's and 1's complements, 10's and 2's complements, Arithmetic using 1's and 2's complements; Hexadecimal code, BCD, Excess-3 code, Gray code and Alphanumeric code; Basic theorems and properties of Boolean algebra; Digital logic gates.	4
2	Boolean Function Representation and Minimization Techniques	Canonical and standard forms; Prime implicants and essential prime implicants; Minimization of Boolean functions using Karnaugh map and Quine-McCluskey technique; Two-level gate implementation.	5
3	Combinational logic circuits	Binary adders and subtractors: Half adder, full adder, half subtractor, full subtractor, full adder using half adder, parallel adder, adder cum subtractor, look ahead carry adder; Circuit delay calculation; Magnitude comparator; Decoder and encoder; Multiplexer and demultiplexer; Binary multiplier; Code converters.	10
4	Sequential logic circuits	Latches and flip-flops: SR, JK, master-slave JK, T	10

		and D; Conversion of flip-flops; Synchronous and asynchronous counters; Registers and shift registers; Counters using shift registers; State diagram; Analysis of sequential circuits using flip-flops.	
5	State machines	Finite state machine of sequential circuits - Moore and Mealy machines.	5
6	Programmable logic devices	RAMs- DRAM, SRAM and ROM. PLDs: PLAs, PALs and PROMs.	3
7	Introduction to digital logic families	Parameters of logic families, Types- DTL, RTL, TTL, CMOS.	3
8	Wave shaping circuits	Linear wave shaping circuits, Schmitt trigger, Square wave generator, IC-555 based multivibrators.	2
Total Lectur	42		

, aradioir Criteria	
omponents	MaximumMarks
Į.	20
2	20
nd Semester Examination	n 35
A	25
otal	100
<u>otal</u>	100

Project based learning: Digital Circuit Design is a fundamental course in Electronics and Communication Engineering. In this course, a description of the effective and innovative logic circuit design is presented, which can be utilized to design various logic circuits. The project-based exercises using Boolean logic functions, constructing a truth table, assembling the logic gates, counters design and FSM are also included.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	1. M. Morris Mano, "Digital logic and computer design," 5th ed., Pearson Prentice Hall, 2013.		
2.	M. Morris Mano and Michael D. Ciletti, "Digital Design with an Introduction to the Verilog Hdl," 5 th Edition, Pearson Education, 2013.		
3.	R. P. Jain, "Modern Digital Electronics," 4 th Edition, Tata McGraw-Hill Education, 2009.		
4. A. Anand Kumar, "Fundamentals of Digital Circuits," PHI; 4th Revised edition, 2016.			

Course Code	18B15EC215	Semester: Odd (specify Odd/Even)			er: III Session 2022-23 from: August to December 2022
Course Name	Digital Circuit Design Lab				
Credits	1		Contact I	Hours	2

Faculty (Names)	Coordinator(s)	Dr. Archana Pandey and Dr. Hemant Kumar
	()	Dr. Akansha Bansal, Dr. Ashish Goel, Dr. Gaurav Khanna, Samriti Kalia, Dr. Saurabh Chaturvedi

COURSE	OUTCOMES - At the end of the course, students will be able to:	COGNITIVE LEVELS
C271.1	Learn the nomenclature of digital ICs, familiarize and verify the truth tables of logic gates using ICs.	Applying Level (C3)
C271.2	Analyze, construct and verify various combinational circuits and their functionalities.	Analyzing Level (C4)
C271.3	Identify basic requirements to analyze, construct and verify sequential circuits.	Analyzing Level (C4)
C271.4	Analyze, construct and verifying wave shaping circuits.	Analyzing Level (C4)

Module No.	Title of the Module	List of Experiments	СО
1.	Nomenclature and specifications of digital ICs	Introduction to Digital Circuit Design Lab: Nomenclature of Digital ICs, specifications, study of the data sheet, concept of V_{CC} and ground, verification of the truth tables of logic gates using ICs.	C271.1
2.	Implementation of basic logic gates	(a) To implement basic logic gates AND, OR, NOT using NAND and NOR gates(b) To implement Ex-OR gate using NOR gates only(c) To implement the Boolean expression(s) using NAND gates	C271.1
3.	Combinational Logic circuits	To design 4-bit Binary to Gray and Gray to Binary Code Converters.	C271.2
4.	Combinational Logic circuits	To realize a Half Adder, Full Adder and Half Subtractor using logic gates.	C271.2
5.	Combinational Logic circuits	To design a 2-bit Multiplier using basic logic gates.	C271.2
6.	Combinational Logic circuits	To realize and implement 2-bit Magnitude Comparator using logic gates.	C271.2
7.	Combinational Logic circuits	To realize 4:1 Multiplexer using NAND gates.	C271.2
8.	Combinational Logic circuits	To realize 2:4 Decoder using basic logic gates and to realize Half Adder using 2:4 Decoder as a block.	C271.2
9.	Seven-segment display	Display decimal digit between 0-9 on seven segment using BCD Decoder IC-7447.	C271.2
10.	Sequential Logic circuits	To realize and verify the truth table of SR, Gated SR, Gated D Latch using logic gates and of JK flip flop using IC-74LS76.	C271.3
11.	Sequential Logic	To design a Ripple Counter (Asynchronous) using JK flip flop	C271.3

	circuits	IC-74LS76 and display the output on seven segment.	
12.	Sequential Logic	To Design and implement counting sequence 0, 7, 1, 6, 2, 5, 0,	C271.3
	circuits	7 (Repeating) using IC-74LS76.	
13.	Wave shaping circuits	Using IC-555 in Astable mode to generate a rectangular pulse of	C271.4
		1ms period with duty cycle 75%.	

Components	Maximum Marks
Mid Sem Viva	20
End Sem Viva	20
Day-to-day performance	30
Attendance	15
Lab Record	15
Total	100

Project Based Learning: The main learning objective of this Lab course is that students should be able to analyze and design simple combinational and sequential circuits by means of discrete components. Students' opinions have been obtained by means of course exit survey at the end of the course.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	M. Morris Mano, Digital logic and computer design, 5th ed., Pearson Prentice Hall, 2013.			
2.	R. P. Jain, "Modern Digital Electronics," 4th Edition, Tata McGraw-Hill Education, 2009.			
3.	A. Anand Kumar, "Fundamentals of Digital Circuits," PHI; 4th Revised edition, 2016.			

Course Code	15B11CI312	Semester: Odd		Semester: III Session: 2022-2023 Month from Aug'22 to Dec'22	
Course Name	Database Systems & Web				
Credits	4		Contact Hours		3-1-0

Faculty (Names)	Coordinator(s)	Janardan Verma, Dr. Payal
	Teacher(s) (Alphabetically)	Aditi Sharma, Ankit Vidyarthi, Bhawna Saxena, Indu Chawla, Kirti Aggarwal, Megha Rathi, Dr. Neetu Sardana, Parmeet Kaur, Dr. Payal, Sonal

COURSE	OUTCOMES	COGNITIVE LEVELS
C212.1	Explain the basic concepts of Database systems and Web components.	Understand Level (Level II)
C212.2	Model the realworld systems using Entity Relationship Diagrams and convert the ER model into a relational logical schema using various mapping algorithms	Apply Level (Level III)
C212.3	Develop a simple web application with client and server side scripting using Javascript and PHP and connect with a given relational database	Create Level (Level VI)
C212.4	Make use of SQL commands and relational algebraic expressions for query processing.	Apply Level (Level III)
C212.5	Simplify databases using normalization process based on identified keys and functional dependencies	Analyse Level (Level IV)
C212.6	Solve the atomicity, consistency, isolation, durability, transaction, and concurrency related issues of databases	Apply Level (Level III)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Databases	Introduction to Databases, Physical Level of Data Storage, Structure of relational databases, Review of SQL Create, Insert, Update, Delete and Select Statements, Overview of NoSQL databases	4
2.	Web Architecture & Introduction	Motivation, characteristics and complexities of web applications, Basics, of Web Server and Application server, differences between web application and conventional software, architecture layers.	2
3.	Client Side Web Technology	SGML, HTML 5, DHTML, CSS, Java script	3
4.	Server Side Web Technology	PHP, Database Connectivity with PHP	4
5.	Database Design and ER Model	Entity type, Attributes, Relation types, Notations, Constraints, Extended ER Features	4

	1	Total number of Lectures	42
9.	Transaction Management	Transactions, Concurrency, Recovery, Security	7
8.	Normalisation	Data Dependencies, 2NF, 3NF, BCNF, building normalised databases	5
7.	Procedural Language	PL/SQL: Stored Procedures, Functions, Cursors, Triggers	4
6.	Relational Model and Structured Query Language	SQL: Data Definition and Data Manipulation, Relational Algebra	9

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25(Attendance:10, Assignments/Min-Project/Class Test/Quiz/Tutorial):15
Total	100

Project Based Learning: Each student in a group of 3-4 will choose a real-life application area. To make a project, the students will analyse and define the need of database systems in terms of functional requirements. Each group will design the Entity Relationship diagram to understand the organisational structure of the application area and implement the database in MySQL. Each group will identify 15-20 typical queries and execute them. For handling the multiple record they will implement cursors ad triggers. Student will design the webpage of the application area and connect with the database.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) Henry F Korth, Abraham Silberschatz, S. Sudurshan, Database system concepts, 5th Edition, McGraw-1. Hill,2006 RamezElmasri, Shamkant B. Navathe, Fundamentals of Database Systems, 4th Edition, Pearson 2. Education, 2006. Ramakrishnan, Gehrke, Database Management Systems, Mcgraw-Hill, 3rd Edition, Addison-Wesley, 2006. 3. Thomas Connolly, Carolyn Begg, Database Systems-A Practical Approach to design, Implementation and 4. Management, 3rd Edition, Addison-Wesley,2002. 5. "PHP and MYSOL Manual" by Simon Stobart and Mike Vassileiou "PHP and MYSQL Web Development" by Luke Welling and Laura Thomson(Pearson Education) 6. "An introduction to database systems" by Bipin C. Desai, West Publishing Company, College & School 7. Division, 1990 - Computers - 820 pages 8. Christopher J. Date, Database Design and Relational Theory: Normal Forms and All That Jazz, 2012. Rajiv Chopra, Database Management System (DBMS): A Practical Approach, 5th Edition, 2016, 682 pages.

Course Code	15B17CI372	Semester:Odd			er: III Session: 2022-2023 from Aug'22 to Dec'22
Course Name	Database System & Web Lab				
Credits	1		Contact	Hours	0-0-2

Faculty	Coordinator(s)	Aditi Sharma
(Names)	Teacher(s) (Alphabetically)	Dr Ankit Vidyarthi, Dr Archana Purwar, Dr Bhawna Saxena, Dr Indu Chawla, Dr Megha Rathi, Dr Neetu Sardana, Dr Parmeet Kaur

COURSE	COURSE OUTCOMES		
CI271.1	Explain the basic concepts of Database systems and Web components.	Understand (Level II)	
CI271.2	Develop web page using HTML, CSS with client-side scripting using JavaScript.	Apply (Level III)	
CI271.3	Develop a simple web application with client and server-side scripting using JavaScript and PHP and connect to a given relational database.	Apply (Level III)	
CI271.4	Programming PL/SQL including stored procedures, stored functions, cursors, Triggers.	Apply (Level III)	
CI271.5	Design and implement a database schema for a given problem-domain and normalize a database.	Creating (Level VI)	
CI271.6	Design a Project based on database management	Create (Level VI)	

Module No.	Title of the Module	List of Experiments	CO
1.	Introduction to MySQL commands.	1. MySQL Create, Insert, Update, Delete and Select Statements.	CI271.1
2.	Client Side Web Technology	1. Design web page using SGML, HTML 5, DHTML, CSS, Java script.	CI271.2

			CIO71 0	
3.	Server Side Web Technology	1. Develop a web application with client and server side scripting using JavaScript.	CI271.3	
		2. Develop a web application with client and server side scripting using PHP.	CI271.5	
		3. Design web application with databased connectivity.		
		4. Design web application with entering user data into database.		
		5. Design web application for user - database interaction through PHP.		
4.	SQL	Simple Queries, Sorting Results (ORDER BY Clause), SQL Aggregate Functions, Grouping Results (GROUP BY Clause), Subqueries, ANY and ALL, Multi-Table Queries, EXISTS and NOT EXISTS, Combining Result Tables (UNION, INTERSECT, EXCEPT), Database Updates	CI271.4	
5.	Procedural		CI271.4	
	Language	Write PL/SQL program for storing data using procedures.		
		2. Write PL/SQL program for storing data using stored functions.		
		3. Write PL/SQL program for storing data using cursors and Triggers.		
6.	Project	Students are expected to designed web application	CI271.5	
		based on PHP or JavaScript and connect with databased to execute insert, update, retrieve and delete data queries.	, CI271.6	
Evalua	ation Criteria			
Components		Maximum Marks		
Lab Test-1		20		
Lab Test-2		20		
Day-to-Day Total		60 (Project, Lab Assessment, Attendance) 100		

Project based learning: Each student in a group of 3-4 will have to develop a project based on different real-world problems. Students have to study the web and database related technologies before finalizing the objectives. Project development will enhance the knowledge and employability of the students in IT sector.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Henry F Korth, Abraham Silberschatz, S. Sudurshan, Database system concepts, 7th Edition, McGraw-Hill,2019

2.	Ramez Elmasri , Shamkant B. Navathe , Fundamentals of Database Systems, 5 th Edition, Pearson Education, 2015.
3.	Ramakrishnan, Gehrke, Database Management Systems, Mcgraw-Hill, 3 rd Edition, Addison-Wesley,2006.
4.	Thomas Connolly, Carolyn Begg, Database Systems-A Practical Approach to design, Implementation and Management, 6 rd Edition, Addison-Wesley,2015.
5.	"PHP and MYSQL Manual" by Simon Stobart and Mike Vassileiou

Course Code	15B11HS211	Semester :ODD (specify Odd/Even)		Semester :III Session 2022-23 Month from: August-December	
Course Name	Economics				
Credits	03	Contact Ho		Hours	2-1-0

Faculty (Names)	Coordinator(s)	Dr. Amandeep Kaur (JIIT62) Dr. Amba Agarwal (J128)
	Teacher(s) (Alphabetically)	Dr. Akarsh Arora Dr. Kanupriya Misra Bakhru Dr. Sakshi Varshney

COURSE	OUTCOMES	COGNITIVE LEVELS
C206.1	Explain the basic micro and macro economics concepts.	Understanding Level(C2)
C206.2	Analyze the theories of demand, supply, elasticity and consumer choice in the market.	Analyze Level (C4)
C206.3	Analyze the theories of production, cost, profit and break even analysis	Analyze Level (C4)
C206.4	<i>Evaluate</i> the different market structures and their implications for the behavior of the firm.	Evaluation Level(C5)
C206.5	Examine the various business forecasting methods.	Analyze Level (C4)
C206.6	<i>Apply</i> the basics of national income accounting and business cycles to Indian economy.	Apply Level (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Economics Definition, Basic economic problems, Resource constraints and welfare maximization. Micro and Macro economics. Production Possibility Curve. Circular flow of economic activities.	2
2.	Basics of Demand, Supply and Equilibrium	Demand side and supply side of the market. Factors affecting demand & supply. Elasticity of demand & supply – price, income and cross-price elasticity. Market equilibrium price.	6
3.	Theory of Consumer Choice	Theory of Utility and consumer's equilibrium. Indifference Curve analysis, Budget Constraints, Consumer Equilibrium.	2
4.	Demand forecasting	Regression Technique Time-series Smoothing Techniques: Exponential, Moving Averages Method	4
5.	Production theory and analysis	Production function. Isoquants, Isocostlines, Optimal combination of inputs. Stages of production, Law of returns, Return to scale.	2

6.	Cost Theory and Analysis	Nature and types of cost. Cost functions- short run and long run Economies and diseconomies of scale	2
7.	Market Structure	Market structure and degree of competition Perfect competition Monopoly Monopolistic competition Oligopoly	6
8	National Income Accounting	Overview of Macroeconomics, Basic concepts of National Income Accounting,	2
9	Macro Economics Issues	Introduction to Business Cycle, Inflation-causes, consequences and remedies: Monetary and Fiscal policy.	2
		Total number of Lectures	28 (lectures)

2741444141	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Quiz+ Project+ Class Participation)
Total	100

Project based learning: Students have to form a group (maximum 5 students in each group) and have to do an economic analysis on the topic assigned. An economic impact analysis assesses the impact of an event on the economy in a particular area. It generally measures the effect on revenue, profits, wages and jobs. The knowledge gained in conducting economic analysis will enhance student's decision-making skills.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
H.C. Petersen, W.C. Lewis, *Managerial Economics*, 4th ed., Pearson Education 2001.
D. Salvatore, Managerial Economics in a Global Economy, 8th ed., Oxford University Press, 2015.
S. Damodaran, Managerial Economics, 2 nd ed., Oxford University Press, 2010.
M. Hirschey, Managerial Economics, 12th ed., Cengage India, 2013.
P.A. Samuelson, W.D. Nordhaus, S. Nordhaus, Economics, 18th ed., Tata Mc-Graw Hill, 2006.
S.K. Misra& V. K. Puri, Indian Economy, 38th ed., Himalaya Publishing House, 2020.

Course Code	22B15HS211	Semester: Odd		Semester: III Session: 2022-2023 Month from Aug'22 to Dec'22	
Course Name	Professional Com	munication Pr	actice		
Credits	0		Contact Hou		0-0-2

Faculty (Names)	Coordinator(s)	Dr AnshuBanwari Dr Swati Sharma
	Teacher(s) (Alphabetically)	Dr Ankita Das, Dr Anshu Banwari, Dr Badri Baja, Dr Ekta Srivastava, Dr Debjani Sarkar, Dr.Deepak Verma, Dr Monali Bhattacharya, Dr Mukta Mani, Dr Priyanka Chhaparia, Dr Nilu Choudhary, Dr Shirin Alavi, Dr Swati Sharma

CO Code	COURSE OUTCOMES	COGNITIVE LEVELS
C251.1	Explore one's strengths and frame professional goals	Analyze(C4)
C251.2	Apply workplace communication skills in a professional setting	Apply(C3)
C251.3	Develop their professional and social competence	Apply(C3)
C251.4	Demonstrate the ability to apply professional ethics in contemporary workplace settings	Understanding(C2)

Module No.	Title of the Module	Description of the module	List of Activities	Number of Labs
1.	Intrapersonal Communication	Self-exploration, Setting Personal, Professional Goals with Holistic Perspectives	Practical Sessions on a) Self Inventory, b) Goal Setting c) SWOC Analysis	3 labs
2	Interpersonal Communication	Extending Intrapersonal influence for enhancing social competence. Inculcating assertiveness, empathy, Inclusivity and win- win approach to communication.	Practice session through role-play on situation related to a) workplace conflict, b) business negotiation c) Gender sensitization	3 labs
3.	Professional Interaction and Etiquettes	Liaison harmoniously with audience, taking initiatives and team focus	Practical Session on mediated interpersonal communication a) Topical group discussion, b) case study group discussion c) Mock interviews)	4 labs
4.	Professional written communication	Enhancing professional competency through professional writing	Practical session on styles of workplace writing: a) E-mail, b) Report, c) Website and Resume writing	3 labs

5.	Professional Ethics	Enhancing Ethical Awareness	Case Study and oral discussion on ethical	1 Lab	
			dilemmas		
		Total number of Labs		14	
Evaluation Cr	riteria				
Components		Maximum Marks			
Lab test 1		20 (Group Discussion)			
Lab Test 2		20 (End Term Presentation)			
PBL		30			
Assignment		20	20		
Attendance		10			
Total		100			

Project-based learning: The students in groups of 4-5 will identify an organization of their choice and present a report (based on desk-based research) focusing on the skills, values and ethics promoted by the company. Based on the insight gained from the research each student is then required to pitch their candidature through a video CV.

Reference:

	VII.VV
1	George Cheney, Daniel J. Lair, Dean Ritz and Brenden E. Kendall, Just a Job?: Communication, Ethics
	and Professional Life, Oxford University Press, USA, 2009.
2	Timothy S. Boswood, "Redefining the professional in International Professional
	Communication," in Exploring the Rhetoric of International Professional Communication, Carl
	R. Lovitt and Dixie Goswami, Ed. Routledge, 2020, pp. 111-136.
3	Steven A. Beebe and Timothy P. Mottet. Business and Professional Communication, Principles and
	Skills for Leadership, Pearson, 2013.
4	R. Almonte, A Practical Guide to Soft Skills: Communication, Psychology, and Ethics for Your
	Professional Life. Routledge, 2021.
5	K. M. Quintanilla & Distriction: Keys for Workplace
	Excellence. Sage Publications, 2020
6	K.Floyd& P. W, Cardon, Business and Professional Communication. McGraw-Hill Education, 2020
7	P. Hartley & D. Chatterton, Business Communication: Rethinking your professional practice for the
	post-digital age. Routledge, 2015

Course Code		15B11M	A301	Semester Oc	ld			n 2022-2023 022- Dec 2022
Course Name Probabilit			ty and Random Processes					
Credits		4	•		Contact	Hours	3-1-0	
Faculty		Coordin	ator(s)	Prof. B. P. C	hamola, D	r. Yoges	h Gupta, Dr.	Lakhveer Kaur
(Names)		Teacher((Alphabe	. /	Prof. B. P. C Dr. Yogesh (-	Dr. Lakhv	veer Kaur, D	Or. Pato Kumari,
COURSI	E OUT	COMES:						COGNITIVE LEVELS
After purs	suing th	ne above m	entioned	course, the stu	ıdents will	be able	to:	
C201.1	•	in the basic theorem	concept	s of probabilit	ty, condition	onal prol	pability and	Understanding Level (C2)
C201.2				and two dimen ad statistical av		dom vari	ables along	Applying Level (C3)
C201.3	~ ~ ~	some problem	•	y distribution	s to var	rious di	screte and	Applying Level (C3)
C201.4	solve	solve the problems related to the component and system reliabilities. Applying Level (C3)						
C201.5	identify the random processes and compute their averages. Applying Level (C3)							
C201.6					Applying Level (C3)			
Module No.	Title of the Module Module		No. of Lectures for the module					
1.	Proba	bility	Three by probabilitheorem	•	es to probrobles			5
2.	Rando Varia		continue (density function		tion of a cdf). MG om variab	a randon F and chole and	m variable naracteristic its utility. arginal and	8
3.	Proba Distri	bility butions	geometi	lli, binomial, ric distributio gamma, Earla	ons. Uni	form, e	exponential,	8
4.	Relial	oility	rate fu Reliabil	t of reliability nction, mean ity of serie -series systems	time to	failure		6
5.	Rando	om	Introduc	ction, Statisti	cal descr	ription	of random	7

	Processes I	processes, Markov processes, processes with independent increments. Average values of random processes. Strict sense and wide sense stationary processes, their averages. Random walk, Wiener process. Semi-random telegraph signal and random telegraph signal process. Properties of autocorrelation function.	
6.	Random Processes II	Ergodic processes. Power spectral density function and its properties. Poisson processes. Markov chains and their transition probability matrix (TPM).	8
Total nu	mber of Lectures	S	42

Components Maximum Marks

T1 20 T2 20 End Semester Examination 35

TA 25 (Quiz, Assignments, Tutorials)

Total 100

Project based learning: Each student in a group of 3-4 will apply the concepts probability distributions to various discrete and continuous problems arising in different real life situations.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. Veerarajan, T., Probability, Statistics and Random Processes, 3rd Ed. Tata McGraw-Hill, 2008.
- **2. Papoulis, A. & Pillai, S.U.,** Probability, Random Variables and Stochastic Processes, Tata McGraw-Hill, 2002.
- **Ross, S. M.,** Introduction to Probability and Statistics for Engineers and Scientists, 4th Ed., Elsevier, 2004.
- **4. Palaniammal, S.,** Probability and Random Processes, PHI Learning Private Limited, 2012.
- **5. Prabha, B. and Sujata, R.,** Statistics, Random Processes and Queuing Theory, 3rd Ed., Scitech, 2009.

Subject Code	19B13BT211	Semester: ODD Semester: III Session: 2022-2023 Month from: August to December		
Subject Name	Environmental Studies			
Credits	0	Contact Hours	3	

Faculty	Coordinator(s)	1. Prof. Krishna Sundari S
(Names)	Teacher(s) (Alphabetically)	 Prof. Krishna Sundari S Prof. Neeraj Wadhwa
		3. Dr. Manisha Singh
		4. Prof. Rachana5. Dr. Susinjan Bhattacharya

COURS	COURSE OUTCOMES		
C205.1	Explain diversity of environment, ecosystem resources and conservation.	Understand Level (C2)	
C205.2	Identify hazards related to environmental pollution and safe management practices	Apply Level (C3)	
C205.3	Apply modern techniques for sustainable Urban planning and Disaster management	Apply Level(C3)	
C205.4	Recall Government regulations, Environmental Policies, Laws & ethics	Understand Level (C2)	
C205.5	Survey ground situation on specific environmental aspects, examine risks involved, make a field report and present the findings	Analyze Level(C4)	

Modul e No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	The Multidisciplinary nature of environment, Biodiversity	Definition, scope and importance, Need for public awareness, Types of Ecosystems, World Biomes, Ecosystem functioning, Diversity of flora and fauna, species and wild life diversity, Biodiversity hotspots, threats to biodiversity, Case studies.	6
2.	Natural resources, Energy consumption & conservation	Water, Land, Energy (Renewable, non-renewable, wind, solar, hydro, Biomass), Mineral, Forest, & Food resources, Global Conventions on Energy, Kyoto protocol, Case studies.	10
3.	Pollution, hazardous waste management	Air, Water & Land, chemical, noise pollution, sources & causes, effects, Electronic waste, nuclear hazards, Case studies.	8

4.	Urban planning, human communities, Disaster management	Sustainable building, Disaster Management and Contingency Planning, human population, resettlement, rehabilitation environmental movements, environmental ethics, Critical issues concerning Global environment Urbanization, population growth, global warming, climate change, acid rain, ozone depletion etc Case studies.	8
5.	Environmental Policies, Laws, Regulations & ethics	Regulation of technology and innovation, Policy and laws, Different Acts such as: Environmental Protection Act, Air and Water Acts, Wildlife and Forest Acts), US-EPA, National Environmental Policy; Function of pollution control boards (SPCB and CPCB), their roles and responsibilities, Case studies.	4
6	Field Work/	Explore the current environment related occurrences at national and international level, Study of successful sustainable measures, a know-how of industries in local region and their possible effects, measure of water, air and land quality, Visit to a local polluted site-Urban/Rural /Industrial / Agricultural, Study of simple ecosystems.	6
Total number of Lectures			42

EVALUATION:

Mid Semester Examination - 30 marks (To be held along with T-2 Exam)

End Semester Examination - 40 marks

Teachers Assessment (TA) - 30 marks

PBL Component: Field work on environmental matters involving real-world learning associating issues to current or past environmental disturbances, involves constructive analytical thinking to suggest sustainable solutions for environmental crisis resolution. Students submit their field work report/e-poster/PowerPoint presentation.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Benny Joseph, Environmental Studies Simplified, 3 rd Edition, McGraw Hill Education, India, Published 2 nd August, 2017		
2.	Erach Bharucha, Textbook of Environmental Studies for UG Courses, 3 rd Edition, Orient Black Swan, Published 1 st Jan 2013		
3.	Issues of the Journal: Down to Earth, Published by Centre for Science and Environment (CSE), Delhi		