Department of Mathematics

Jaypee Institute of Information Technology, Noida

Semester III

Complex Analysis (19M21MA117)

Function of complex variable, analytic functions, Cauchy Riemann equation, Cauchy's integral theorem and formula, Liouville's theorem, maximum modulus principle, analytic continuation, zeros and singularities, Taylor and Laurent series, residues, Cauchy residue theorem and its applications in evaluation of real integrals, conformal transformations, bilinear transformations

Course C	ode	19M21MA1	117	Semester	Odd	Semest Month	er III Sess from July -	sion- 2023- 2024 Dec
Course N	ame	Complex Analysis						
Credits		4			Contact	Hours	3-1-0	
Faculty		Coordinato	r(s)					
(Names)		Teacher(s) (Alphabetic	cally)					
COURSE	E OUTC	COMES						COGNITIVE LEVELS
After purs	suing the	e above-ment	ioned c	ourse, the stud	ents will b	e able to	:	
C121.1	apply comple	ply the concepts of differentiability and analyticity for functions of omplex variables					Understanding Level (C2)	
C121.2	solve t	the problems of different types of contour integrations.					Applying Level (C3)	
C121.3	explain and ap	ain Taylor's and Laurent's series expansion, singularities, residues apply it to evaluate complex integrals.				Analyzing Level (C4)		
C121.4	apply	conformal an	d biline	ar transformat	ions to solv	ve related	l problems.	Applying Level (C3)
Module No.	Title o Modu	of the le	Topics in the Module			No. of Lectures for the module		
1.	Compl Differe	Complex Differentiation Limit, continuity and differentiability, analytic functions, Cauchy Riemann equation, harmonic functions, harmonic conjugate, construction of analytic functions, exponential function, trigonometric and inverse trigonometric functions, logarithmic function, complex powers, branches of multi valued functions		12				
2.	Compl Integra	lex ation	compl indepe integra	ex line integr endence and d al formulas an	al, Cauch eformatior d their cor	y-Goursa of path sequenc	nt theorem, ; Cauchy's es, Cauchy	10

			inequality, Liouville's theorem, fundamental theorem of algebra, Morera's theorem, maximum modulus principle, Schwarz lemma, analytic continuation.			
3	-	Power Series and Singularities	Taylor and Laurent series and their convergence. zeros and singularities of complex functions, classification of singularities: removable singularity, poles, essential singularities, residue at a pole and at infinity, Cauchy's residue theorem and its applications in evaluation of real integrals: integration around unit circle, integration over semi-circular contours (with and without real poles), integration around rectangular contours. Argument principle, Rouche's theorem.	12		
4		Conformal Transformations	Conformal transformations, bilinear transformations, critical points, fixed points, problems on cross-ratio and bilinear transformation	8		
			Total number of lectures	42		
Eval	luatio	on Criteria				
Com T1 T2 End TA Tota	npone Seme	ents ester Examination	Maximum Marks 20 20 35 25 (Quiz, Assignments, Tutorials) 100			
Proj trans	ect t	based learning: Eations to solve some	ach student in a group of 3-4 will apply the c field problems.	oncepts of conformal		
Reco book	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	1. Churchill, R. V. and Brown, J.W., Complex Variables and Applications, McGraw-Hill, 1996.					
2.	Spiegel, M. R., Complex Variables, McGraw-Hill, 2009.					
3.	Ahlf	fors , L.V., Complex	Analysis, McGraw Hill, New York, 1990.			
4.	Lan	g , S. , Complex Ana	lysis, Springer-Verlag, 2013.			
5.	Gan	nelin , T. W., Compl	lex Analysis, Springer-Verlag, 2008.			

	PO1	PO2	РОЗ	PSO1
C121.1	3	2	-	1
C121.2	3	2	-	2

C121.3	3	2	-	1
C121.4	3	2	-	2

Numerical Analysis (19M21MA212)

Concept of Errors, Roots of algebraic and transcendental equations, Iterative methods, rate of convergence, roots of a system of nonlinear equations, System of linear algebraic equations, direct and iterative methods, Eigenvalues and eigenvectors, Interpolation, divided difference, Gauss interpolation, Lagrange's interpolation, spline interpolation, Numerical differentiation and integration, Newton-Cotes Formulae, Romberg integration, Gaussian quadrature rules, Numerical methods for differential equations, Picard's method, Euler's and modified Euler methods, Taylor's series method, Runge-Kutta 2nd and fourth order methods, multistep methods, solution of simultaneous and higher order equations, boundary value problems, finite difference and shooting methods.

Course C	Code	19M21MA	A212	Semester	Odd	Semest	er III Sessio	on- 2023- 2024	4
						Nionth	Irom July -D	Jec	
Course N	lame	Numerical	Analysi	S					
Credits		3			Contact	Hours	3-0-0		
Faculty		Coordina	ntor(s)						
(Names)		Teacher(s (Alphabet) ically)						
COURSE OUTCOMES					COGNITIV LEVELS	E			
After purs	suing th	e above-me	ntioned c	ourse, the stud	ents will b	e able to	:		
CO1	explain transce	n concepts endental equ	of erro	ors and find	the root	s of al	gebraic and	Understandin Level (C2)	ıg
CO2	solve t to find	he system c eigenvalue	of linear e s and eig	equations using envectors of m	g direct & atrices.	iterative	methods and	Applying I (C3)	Level
CO3	explain	n the concep	ot of inter	rpolation.				Understandin Level (C2)	ng
CO4	apply function	numerical	methods	to find differ	rentiation	and inte	gration of a	Applying I (C3)	Level
CO5	apply	apply numerical methods to solve ordinary differential equations.					Applying I (C3)	Level	
Module No.	Title o Modu	of the le	Topics	in the Module	2			No. of Lectu for the mod	ures lule

1.	Concept of	Fixed-point and floating-point numbers truncation	2			
10	Errors	round-off and maximum absolute errors relative error	-			
	LITUIS	accuracy of the numbers				
			10			
2.	Algebraic and	Iterative method, Newton-Raphson's method.	10			
	transcendental	successive iteration method, rate of convergence, roots				
	equations	of a polynomial: Horner's method, Birge Vita method,				
		Lin's method, Bairstow and Muller's method, Roots				
		of a system of nonlinear equations.				
3.	System of	Gauss elimination method, Gauss-Jordon method,	6			
	linear algebraic	LU-decomposition method, inverse of matrices,				
	equations	Jacobi and Gauss-Seidal iterative methods.				
	- 1	convergence of iteration methods.				
4	Figen values	Power's method to find dominant eigen value and	6			
ч.	and aigan	aigan vactor. Paylaigh mathed aigan values and aigan	U			
		eigen vector, Rayleign method, eigen values and eigen				
	vectors	vectors of a symmetric matrix by Jacobi s, Given s				
	-	and Householder's method.				
5.	Interpolation	Newton's divided difference, Gauss forward and	3			
		backward interpolation, Lagrange's interpolation,				
		spline interpolation.				
6.	Numerical	Approximation of derivatives, Newton-Cotes	6			
	differentiation	Formulae-Trapezoidal, Simpson's, Boole's and				
	and integration	Weddle' rules of integration with errors, Romberg				
8		integration, Gaussian two and three point quadrature				
		rules, double integration by Trapezoidal and				
		Simpson's rules.				
7.	Differential	Picard's method, Euler's and modified Euler methods.	9			
-	equations	Taylor's series method. Runge-Kutta 2 nd and fourth				
	- 1	order methods multisten methods solution of				
		simultaneous and higher order equations boundary				
		value problems: finite difference and shooting				
		methods				
			42			
		I otal number of lectures	42			
Evaluatio	on Criteria					
Compon	ents	Maximum Marks				
T1		20				
T2		20				
End Semester Examination 35		35				
TA		25 (Quiz, Assignments, Tutorials)				
Total		100				
Project b	oased learning: A g	group of 2 to 3 students will be formed. Each group will l	have a group leader			
to develop	p coordination amo	ng the group members. A problem of differential equati	on will be given to			
each grou	each group to find its solution. The group leader will submit a report of findings for the same.					

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, 6 th Ed., New Age International, New Delhi, 2014.
2.	C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 7 th Ed., Pearson Education, 2004.
3.	R. S. Gupta, Elements of Numerical Analysis, 2 nd Ed., Cambridge University Press, 2015.
4.	S. D. Conte and C. deBoor, Elementary Numerical Analysis, An Algorithmic Approach, 3 rd Ed., McGraw-Hill, New York, 1980.
5.	S. C. Chapra and R. P. Canale , Numerical Methods for Engineers, 5th Ed., McGraw Hill, 2006.

	PO1	PO2	PO3	PSO1
CO1	2	1	-	2
CO2	3	2	-	2
CO3	2	1	-	2
CO4	3	2	-	2
CO5	3	2	-	2

Operations Research (19M21MA213)

Convex set, LPP, graphical solutions, simplex method, Big-M method, two phase method, primaldual relationship, dual simplex method, sensitivity analysis, transportation problem, north west corner rule, least cost method, Vogel's approximation method, resolution on degeneracy, optimal solution, assignment problems, Hungarian method, optimality condition, travelling salesmen problem, queuing models, steady-state solutions of Markovian queuing models, inventory models, economic order quantity (EOQ), deterministic inventory problems with and without shortage.

Course Code	19M21MA213	Semester	Odd	Semester III Session- 2023- 2024 Month from July -Dec	
Course Name	Operations Research				
Credits	3			Contact Hours	3-0-0
Faculty	Coordinator(s)				
(Names)	Teacher(s) (Alphabetically)				

COURSE	E OUTCOMES		COGNITIVE LEVELS			
After purs	After pursuing the above-mentioned course, the students will be able to:					
CO1	construct mathematica programming problem variants.	l models for optimization problems and solve linear as (LPP) using graphical, simplex method and its	Applying Level (C3)			
CO2	utilize duality to ana programming problem	Applying Level (C3)				
CO3	solve transportation, as	Applying Level				
			(C3)			
CO4	classify and solve the p	problems on queuing and inventory models.	Analyzing Level (C4)			
Module No.	Title of the Module Topics in the Module		No. of Lectures for the module			
1.	Linear	Introduction, definition of operations research, its	10			
	Programming	scope and Application in different areas, Convex				
	Problems (LPP)	sets, formulation of LPP, graphical solutions,				
		Simplex method, big-M method, two phase				
2	Duality and	method, special cases in simplex method.	7			
2.	Duality and Sonsitivity Analysis	relationship, duality, dual simplex	7			
3	Transportation	Mathematical formulation of transportation	7			
5.	Problems	problem, basic feasible solution-north west corner	,			
		rule, least cost method, Vogel's approximation				
		method, degeneracy, resolution on degeneracy,				
		optimal solution, maximization case in				
		transportation problem, unbalanced transportation				
		problem.				
4.	Assignment	Mathematical formulation of assignment problem,	4			
	Problems	optimality condition, Hungarian method,				
		maximization case in assignment problem, unbalanced assignment problem travelling				
		salesman problem.				
5	Elementary	Markov process, steady-state solutions of	7			
	Queuing Models	Markovian queuing models: M/M/1, M/M/1 with				
		limited waiting space, M/M/C, M/M/C with				
		limited waiting space, M/G/1 model.				
6	Elementary	Inventory control models: economic order quantity	7			
	Inventory Models	(EOQ), deterministic inventory problems with and				
		without shortage.				
		Total number of lectures	42			
Evaluatio	on Criteria					
Compone	ents	Maximum Marks				
T1		20				

T2	20
End	Semester Examination 35
ΤA	25 (Quiz, Assignments, Tutorials)
Tota	al 100
Pro	ject based learning: Each student in a group of 2-3 will collect literature on queueing and
inve	entory models to solve some applicational problem. To make the subject application based,
the	students analyze the optimized way to deal with aforementioned topics.
Rec bool	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text ks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	H. A. Taha , Operations Research- An Introduction, 10 th Edition, New York Macmillan, 2017.
2.	G. Hadley, Linear Programming, Massachusetts, Addition Wesley, 1962.
3.	F. S. Hiller and G. J. Lieberman, An Introduction to Operations Research, 10th Edition, San
	Francisco Holden Day, 2017.
4	H. M. Wagner, Principles of Operations Research with Applications to Managerial Decisions,
	Prentice Hall of India Pvt. Ltd., 1975.
5.	N. D. Vohra, Quantitative Techniques in Management, 5 th Edition, TMH, 2017.

	PO1	PO2	PO3	PSO1
CO1	3	2	-	2
CO2	3	2	-	2
CO3	3	2	-	3
CO4	3	2	-	2

Operations Research Lab (19M25MA212)

Introduction to MATLAB, linear programming problems (LPP), simplex method, Big-M method, two phase method, dual of a primal problem, dual simplex method, sensitivity analysis, transportation problem, assignment problems, travelling salesmen problem.

Course Code	19M25MA212	Semester	Odd	Semest	er III Session- 2023- 2024
				Month	from July -Dec
Course Name	Operations Research Lab				
Credits	1		Contact Hours 0-0-2		0-0-2
	Coordinator(s)				

Faculty (Names)	Teacher (Alphab	r(s) petically)					
COURSE	OUTCOMES			COGNITIVE LEVELS			
After purs	suing the above-n	nentioned c	course, the students will be able to:				
CO1	understand the	understand the basics of MATLAB to solve linear programming problems.					
CO2	solve dual pro- optimal solution	solve dual problem using MATLAB and perform sensitivity analysis of optimal solution of LPP.					
CO3	solve transporta	tion proble	ems with the help of MATLAB.	Applying Level (C3)			
CO4	solve assignme	nt problem:	s with the help of MATLAB.	Applying Level (C3)			
CO5	solve travelling	salesman u	using MATLAB.	Applying Level (C3)			
Module No.	Title of the Module	List of E	xperiments	СО			
1.	Linear programming problems	CO1					
2.	Duality and sensitivity analysis	 Const 6. Const metho Const soluti Const soluti Const soluti 	truct code to write the dual of a primal problem. truct code to solve LPP using dual simplex od. truct code to analyze the sensitivity of optimal on if cost coefficients are changed. truct code to analyze the sensitivity of optimal on if resource vector components are changed. truct code to analyze the sensitivity of optimal on if a constraint is added.	CO2			
3.	Transportation problem	10. Const LPP.	truct code to solve transportation problem as a	CO3			
4.	Assignment problem	CO4					
5.	Travelling salesman problem	CO5					
Evaluatio	on Criteria						
Compone Lab Test 1 Lab Test 2 TA	ents 1 2	Мах	timum Marks 20 20 60 (Quiz, Assignments, Tests, Viva)				

Tota	al 100						
Pro	ject based learning: Each student in a group of 2-3 will collect literature on travelling						
sale	salesman problem to develop algorithm and can generate code on the same.						
Reco bool	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	R. Pratap, Getting started with MATLAB: A quick introduction for scientists and engineers,						
	Oxford university press, 2016.						
2.	H. A. Taha, Operations Research - An Introduction, Tenth Edition, Pearson Education, 2017.						
3.	N. Ploskas and N. Samaras, Linear programming using MATLAB, Springer Optimization and Its Applications 127, Springer, 2017.						
4.	S. K. Mishra and B. Ram, Introduction to linear programming with MATLAB, CRC Press, 2018.						
5.	R. H. Kwon, Introduction to linear optimization and extensions with MATLAB, CRC Press, 2014.						
6.	P. Venkataraman, Applied Optimization with MATLAB programming, John Wiley & Sons, 2002						

	PO1	PO2	PO3	PSO1
C01	3	2	-	2
CO2	3	2	-	2
CO3	3	2	-	2
CO4	3	2	-	2
CO5	3	2	-	2

Numerical Analysis Lab (19M25MA211)

Basic programming concepts of MATLAB, Algebraic/ transcendental equations, system of linear algebraic equations, Lagrange's interpolation, divided difference, differential coefficients, numerical integrals, solution of ordinary differential equations.

Course Code	19M25MA211	Semester	Odd	Semest	ter III Session- 2023- 2024
				Month	from July -Dec
Course Name	Numerical Analysis Lab				
Credits	01		Contact Hours 0-0-2		0-0-2
	Coordinator(s)				

Faculty (Names)	Teacher(s (Alphabe	s) tically)						
COURSE	COUTCOMES			COGNITIVE LEVELS				
After pursuing the above-mentioned course, the students will be able to:								
CO1	understand the transcendental eq	Applying Level (C3)						
CO2	develop the prog MATLAB.	ram to s	olve system of linear algebraic equations using	Applying Level (C3)				
CO3	solve interpolatio	n probler	ns using MATLAB.	Applying Level (C3)				
CO4	develop the progr	am for de	erivatives and integrals using MATLAB.	Applying Level (C3)				
CO5	construct the pro MATLAB.	ogram for	r solutions of ordinary differential equations in	Applying Level (C3)				
Module No.	Title of the Module	List o	f Experiments	СО				
1.	Algebraic/ transcendental equations	1. To eq 2. To eq 3. To mo	 find a real root of an algebraic/ transcendental uation by using Newton-Raphson method. find a real root of an algebraic/ transcendental uation by using Successive iteration method. find a root of an equation by using Muller's ethod. 	CO1				
2.	System of linear algebraic equations	4. Im so 5. Im sy 6. Im sy	aplementation of Gauss-Elimination method to lve a system of linear algebraic equations. aplementation of Gauss-Jordon method to solve a stem of linear algebraic equations. aplementation of Gauss-Seidel method to solve a stem of linear algebraic equations.	CO2				
3.	Interpolation	7. Im int 8. Im for	aplementation of Lagrange's formula for terpolation. aplementation of Newton's divided difference rmula for interpolation.	CO3				
	Numerical differentiation and integration	CO4						
4. Evaluatio	Differential equations on Criteria	12. To eq 13. To eq 14. To sh	o compute the solution of ordinary differential uations by using Euler's method. o compute the solutions of ordinary differential uations by using Runge-Kutta methods. o solve two point boundary value problem by ooting and finite difference method.	CO5				

Components	Maximum Marks
Lab Test 1	20
Lab Test 2	20
ТА	60 (Quiz, Assignments, Tests, Viva)
Total	100

Project based learning: A group of 2 to 3 students will be formed. Each group will have a group leader to develop coordination among the group members. A problem of differential equation will be given to each group to find its solution with the help of MATLAB. The group leader will submit a report of findings with output for the same.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	R. Pratap, Getting started with MATLAB: A quick introduction for scientists and engineers,
	Oxford university press, 2016.
2.	B. S. Grewal , Numerical Methods in Engineering & Science: With Programs in C, C++ &

2. **B. S. Grewa**l, Numerical Methods in Engineering & Science: with Programs in C, C++ & MATLAB, 11th Ed., Khanna, 2014.

- **3. S. Nomura**, C Programming and Numerical Analysis: An Introduction, 1st Ed, Morgan & Claypool Publishers, 2018.
- **4. S. S. Otto**, Introduction to Programming and Numerical Methods in MATLAB, 1st Ed. Springer, 2005.
- **5. D. Vaughan Griffiths and I. M. Smith,** Numerical Methods for Engineers, 2nd Ed., CRC Press, 2006.
- 6. S. C. Chapra, Applied Numerical Methods with Matlab for Engineers and Scientists, 2nd Ed. Tata McGraw Hill, New Delhi, 2008.

CO-PO-PSO Mapping

	PO1	PO2	PO3	PSO1
CO1	3	2	-	2
CO2	3	2	-	2
CO3	3	2	-	2
CO4	3	2	-	2
CO5	3	2	-	2

Graph Theory (21M22MA215)

Graphs and related definitions, Different types of graphs, labelled and weighted graphs, Tree and cut sets, fundamental circuit, spanning tree, binary tree, separability, network flows, Planarity of graph, thickness and crossing, modular arithmetic and Galois field, vector and vector spaces, basis, orthogonal vectors and spaces, Matrix representation and graph coloring, enumeration and graph theoretic algorithms.

Course C	ode	21M22MA	215	Semester	Odd	Semester III Session- 2023- 2024		
						Month	from July	-Dec
Course N	ame	Graph The	ory					
Credits		3			Contact	Hours	3-0-0	
Faculty		Coordinat	or(s)					
(Names)		Teacher(s) (Alphabetic	cally)					
COURSE	E OUT(COMES						COGNITIVE LEVELS
After purs	suing th	e above-ment	tioned c	ourse, the stud	lents will b	e able to):	
CO1	explai	in basics of g	raphs ar	nd its types.				Understanding Level (C2)
CO2	explai	in trees and th	ieir app	lications.				Understanding Level (C2)
CO3	solve spaces	problems rela s.	ated to j	planarity of gr	aphs, Galo	is field a	and vector	Applying Level (C3)
CO4	constr	construct matrix representations and chromatic polynomials.				•	Applying Level (C3)	
CO5	apply	graph theore	tic algo	rithms to solve	various pr	oblems.		Applying Level (C3)
Module No.	Title o Modu	of the 1le	Торіс	s in the Modu	ıle			No. of Lectures for the module
1.	Basic graph terminology undir utility isome Hami labell		Graph undire utility isomo Hamil labelle	aphs and related definitions, directed and directed graph, Konigsberg bridge problem, lity problem, paths and circuits, subgraphs, morphism, Euler graph, operations on graph, miltonian graph, travelling salesman problem, belled and weighted graphs.			7	
2.	Tree a	Tree and cut set Definition, distance, centre in a tree, rooted and binary tree, counting trees, fundamental circuit, spanning tree, connectivity, separability. Fundamental cut set and network flows.				8		
3.	Plana	Planarity Planar graph, detection of planarity, geometric and combinatorial dual, thickness and crossings			5			
4.	Vector spaces of a graph Vector and vector spaces, basis, orthogonal vectors and spaces. Modular arithmetic and Galois field.			6				
5.	Matrix repress and gr colori	x sentation raph ng	Variou Graph chrom	us matrix rep coloring, four natic number, c	presentation color and f hromatic p	ns of th five color oolynomi	he graph. r theorem, al.	7

6	Enumeration and graph theoretic algorithms	Types of enumeration, counting labeled trees, Polya's counting theorem, algorithms: connectedness and components. Shortest path algorithm, depth first and breadth first search.	9				
		Total number of lectures	42				
Eval	luation Criteria						
Com T1 T2 End TA Tota	nponents Semester Examination al	Maximum Marks 20 20 35 25 (Quiz, Assignments, Tutorials) 100					
Proj empl their	Project based learning: A group of 2 to 3 students will explore more applications in the said area of employability and will use these to solve the real problems. Their findings will be evaluated on the basis of their report as well as viva voce.						
Reco book	ommended Reading mass, Reference Books, Jou	Aterial: Author(s), Title, Edition, Publisher, Year or rnals, Reports, Websites etc. in the IEEE format)	f Publication etc. (Text				
1.	 N. Deo, Graph Theory with Applications to Engineering and Computer Science, Dover publications, 2016. 						
2.	R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer, 2012.						
3.	A. Bickle, Fundamentals of Graph Theory, American Mathematical Society, 2020.						
4.	V. K. Balakrishnan, Graph Theory, Discrete Mathematics with Applications, Tata McGraw Hill Publishing Co. Ltd. 2004.						
5.	C. Vasudev, Graph T	neory with Applications, New Age International, 20	006.				

<u>CO-PO-PSO Mapping</u>

	PO1	PO2	PO3	PSO1
C01	3	1	-	2
CO2	3	2	-	2
CO3	3	3	-	2
CO4	3	3	-	2
CO5	3	3	-	3
Avg	3	3	-	2

Fluid Dynamics (22M22MA211)

Equation of continuity, velocity potential and stream function, incompressible flows, circulation, Equations of motion, Bernoulli's theorem, Kelvin's theorem, vortex motion, Irrotational motion in two-dimensions, sink and doublets, circle theorem, conformal mapping, theorem of Blasius, Strokes stream function, motion of a sphere, Navier-Stokes equations, flow between two coaxial cylinders, energy equation, dynamical similarity, Boundary layer thickness, Prandlt's boundary layer, Blasius solution, solution by Karman- Pohlhausen methods, dimensional analysis, large Reynold's numbers, temperature distribution in Couette flow.

L	Lecture-wise Breakup							
Course Code		22M22MA	211	Semester	Odd	Ser Mc	nester III S	Session- 2023- 2024
Course Name		Fluid Dyna	mics					ly -Dec
Credits		3			Contact 3-0-0 Hours		3-0-0	
Faculty		Coordinat	or(s)					
(Names)		Teacher(s) (Alphabeti	cally)					
COURSE OUTCOMES				COGNITIVE LEVELS				
CO1	O1 explain the basic principle of continuity equation and different types of fluid motions.				Understanding Level (C2)			
CO2	identify the fluid properties and different forms of momentum equation.					Applying Level (C3)		
CO3	expla prob	explain the theorems on potential flows and solve related problems.					lve related	Applying Level (C3)
CO4	solve	e problems or	n lamir	ar flows in d	lifferent geo	met	ries.	Applying Level (C3)
CO5	expla appli	ain and analy ications.	se the o	concepts of b	oundary lay	er fl	ows and its	Analyzing Level (C4)
Module No.	Title Mod	e of the lule	Торіс	es in the Mo	dule			No. of Lectures
1.	Kinematics Lagrangian and Eulerian descriptions, equation of continuity, stream lines, path lines and streak lines, vorticity, velocity potential and stream function, compressible and incompressible flows, circulation, rotational and irrotational motions.			8				
2.	Dynamics Equations of motion, inviscid case Bernoulli's theorem, Kelvin's theorem				cid case, theorem,	8		

		constancy of circulation, equations referred to moving axes, impulsive actions, vortex motion and its elementary properties, motions due to circular and rectilinear vortices.			
3.	3. Potential Flow Irrotational motion in two-dimensions, complex-velocity potential sources, stream function, source, sink and doublets, circle theorem, method of images, conformal mapping, theorem of Blasius, Strokes stream function, motion of a sphere.		8		
4.	Laminar Flow	Stress components in a real fluid, Navier- Stokes equations, plane Poiseiuille and Couette flows between two parallel plates, flow through a pipe of uniform cross section in the form of circle, flow between two coaxial cylinders, energy equation, dynamical similarity.	9		
5.	Boundary Layer Flows	Boundary layer thickness, displacement thickness, Prandlt's boundary layer, laminar boundary layer equations, Blasius solution, solution by Karman- Pohlhausen methods, separation of boundary layer flow, dimensional analysis, large Reynold's numbers, similar solutions, flow past a flat plate, temperature distribution in Couette flow and in flow past a flat plate.	9		
		Total number of lectures	42		
Evalu	ation Criteria				
Comp T1 T2 End So TA Total	ComponentsMaximum MarksT120T220End Semester Examination35TA25 (Quiz, Assignments, Tutorials)Total100				
Projec flows	ct based learning: Stu and its applications.	idents in small groups will be assigned the proble	em of boundary layer		
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.					
(Text	books, Reference Boo	oks, Journals, Reports, Websites etc. in the IEEE	format)		
1.	5. vv. x uan, Foundat	ion of Fluid Mechanics, 5 rd Ed., Prentice Hall, 1	970.		
2	F. Chorlton, Textboo	k of Fluid Dynamics, C.B.S. Publishers, 2005.			
3. P	P. K. Kundu and I. M	I. Cohen, Fluid Mechanics, Academic Press, 20	05.		
4. F	F rank M. White, Flui	d Mechanics, 6 th Ed., Tata McGraw-Hill, New I	Delhi, 2008.		

5. H. Schlichting and K. Gersten, Boundary Layer Theory, 9 th Ed., Springer, 2017.

6. R. W. Fox and A.T. McDonald, Introduction to Fluid Mechanics, Wiley, 1985.

<u>CO</u>	PO1	PO2	PO3	PSO1
CO1	2	2	-	2
CO2	2	2	-	2
CO3	2	2	-	2
CO4	3	2	-	3
C05	3	2	-	3
Avg	2	2		3

CO-PO and CO-PSO Mapping:

Wave Propagation (22M22MA212)

Analysis of stress and strain, Mohr's circle diagram, Generalized Hook's Law, different types of symmetry, Plane waves, Principle of superposition, D'Alembert's formula, Spherical waves, Poisson and Helmholtz's formula, P and S waves and their characteristics, Reflection and refraction of plane P, SV and SH waves at an interface, Surface waves: Rayleigh, Love, Torsional and Stoneley waves, Interior structure of the Earth, Location and causes of Earthquake, Earthquake magnitude.

Course C	Code	22M22MA212	Semester	Odd	Semes	ter III	Ses	sion- 2023- 2024
					Montl	n from	July	-Dec
Course N	Name	Wave Propagation	l					
Credits		3		Contac Hours	et	3-0-0		
Faculty		Coordinator(s)						
(Names)		Teacher(s) (Alphabetically)						
COURSE OUTCOMES						COGNITIVE LEVELS		
After pursuing the above-mentioned course, the students will be able to:								
CO1 explain the concepts of mechanics, stress-strain relation and material symmetry.				Analyzing Level (C4)				

CO2	analyze elastic	waves and solve wave equation.	Analyzing	
	determine the r	Evaluating		
CO3	at different inte	Level (C5)		
CO4	explain internal	structure of Earth and causes of earthquake.	Evaluating	
		Title of the Topics in the Module		
Module No.	Title of the Module	Topics in the Module	No. of Lectures	
1.	Mechanics of solids	Analysis of stress, principal stresses, principal planes, maximum shearing stresses, Mohr's circle diagram, equations of deformation and strain, strain in form of displacement, compatibility concept, need and physical significance, stress strain relation, generalized Hook's Law, different types of symmetry,	13	
2.	Elastic waves	density function, Airy's stress function. General form of progressive waves, harmonic waves, plane waves, the wave equation, principle of superposition, progressive types solutions of wave equation, stationary type solutions of wave equation in Cartesian, Cylindrical and Spherical coordinates systems, exponential form of harmonic waves, D'Alembert's formula, inhomogeneous wave equation, spherical waves. Expansion of a spherical wave into plane waves, Sommerfield's integral. Kirchoff's solution of the wave equation, Poisson and Helmholtz's formula.	13	
3.	Equation of motion	Reduction of equation of motion to wave equations, P and S waves and their characteristics, polarization of plane P and S waves, Snell's law of reflection and refraction. reflection of plane P and SV waves at a free surface, partition of reflected energy, reflection at critical angles, reflection and refraction of plane P, SV and SH waves at an interface, special cases of liquid-liquid interface, liquid- solid interface and solid-solid interface, surface waves, Rayleigh, Love, Torsional and Stoneley waves.	12	
4.	Introduction to Seismology	Interior structure of the earth, earthquakes, location of earthquakes, causes of earthquakes, observation of earthquakes, aftershocks and foreshocks, earthquake magnitude, seismic moment, energy released by earthquakes.	4	
		Total number of lectures	42	
Evaluati	on Criteria		<u> </u>	

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25 (Quiz, Assignments, Tutorials)
Total	100

Project based learning: Students in small groups will be assigned the problem of seismic waves to explore the different characteristics in various geomedia.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.(Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- **1. Bath M.,** Mathematical Aspects of Seismology, Elsevier Publishing Company, 2013.
- 2. Ewing W. M., Elastic Waves in Layered Media, Creative Media Partners LLC, 2015.
- Achenbach J. D., Wave Propagation in Elastic Solids, North Holland Publishing Company, New York, 2016.
- 4. Stein S., and Wysession M., An Introduction to Seismology, Earthquakes and Earth Structure, Blackwell Publishing Ltd., 2013.
- 5. **Bullen K. E., and Bolt B. A.,** An Introduction to the Theory of Seismology, Cambridge University Press, 1985.

<u>CO-PO and CO-PSO Mapping:</u>

COs	PO1	PO2	PO3	PSO1
C01	2	2	-	2
CO2	3	3	-	3
CO3	3	3	-	3
CO4	3	3	-	3
Avg	3	3		3

Data Structures (22M22MA213)

Course Code	22M22MA213	Semeste	er Odd	Seme	ster III	Session- 2023- 2024
				Mont	h from	July -Dec
Course Name	Data Structures					
Credits	3		Contact H	lours	2-0-2	

Faculty (Names)		Coordinat	or(s)						
		Teacher(s) (Alphabeti	cally)						
COURS	COURSE OUTCOMES COGNITIVE LEVELS								
After pur	After pursuing the above-mentioned course, the students will be able to:								
CO1	unde stack	rstand and a and queues	pply the linear structure such as linear list, in various practical problems.	Applying Level (C3)					
CO2	cons	truct hash fu	nction for data security and compression.	Applying Level (C3)					
CO3	analy	yze efficienc	y of various operations using trees.	Analyzing Level (C4)					
CO4	analy	yze the conce	epts of data structures using graphs.	Analyzing Level (C4)					
Module No.	Title of the ModuleTopics in the Module		No. of Lectures for the module						
1.	Line	ar lists	Sequential and linked representations of linear list, comparison of insertion, deletion and search operations for sequential and linked lists, doubly linked lists, circular lists. Sorting of linked list- insertion sort, exchange sort, selection sort.	5					
2.	Stacl queu	ks and es	Sequential and linked implementations of stacks, Applications of stacks in parenthesis matching. Sequential and linked implementations of Queues.	4					
3.	Hashing One way hashing functions and their properties, hashing as a search structure, hash table, uses of hash tables in text compression and cryptography.		4						
4.	Tree	s	Binary trees and their properties, tree traversal methods and algorithms, heaps as priority queues, heap implementation, insertion and deletion operations.	5					

5.		Search trees	Binary search trees, search efficiency, insertion and deletion operations, importance of balancing.	4				
6.	Graphs Directed and undirected graphs properties, connectivity in graphs applications, implementation -adjacency matrix and linked adjacency chains, graph traversal – breadth first and depth first spanning trees.			6				
Tot	al nu	mber of lectures		28				
			List of Practical					
Wri	 Write C++ programs to implement the following: Traversal, insertion, deletion in a linear array. Traversal, insertion, deletion in a linked list. Doubly linked list. Circular linked list. Sorting- insertion sort, exchange sort, selection sort. Stacks and queues using linked list. Binary tree traversal. Insertion and deletion in heap. Insertion and deletion in binary search tree. Adjacency matrix representation. 							
Eva	luati	on Criteria						
Con	Components Maximum Marks							
T1			20					
T2			20					
End	Sem	ester Examination	35					
TA			25 (Quiz, Assignments)					
Tot	al		100					
Project based learning: Students in small groups will be assigned the problem of security and confidentiality of data using hashing; a data of practical use to design their tree or graph for information retrieval. They will prepare corresponding computer programs.								
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format).								
	E Hanowitz & Sahni and D Mahta Eurodamentala of Data Structures in China 2nd Ed							
1.	E. Horowitz, S. Sahni and D. Mehta, Fundamentals of Data Structures in C++, 2 nd Ed., University Press, 2016.							
2.	S. S 2005	ahni, Data Struct 5.	ures, Algorithms, and Applications in C++,	WCB/McGraw-Hill,				
3.	A.N	1. Tenenbaum, D	ata Structures Using C, Pearson Ed, India, 19	990.				

- 4. N. Dale, C++ Plus Data Structures, Jones & Bartlett Learning; 5th Ed. 2011
- 5. A. Drozdek, Data Structures and Algorithms in C++, 4th Ed., Cengage Learning, 2013.

<u>CO-PO and CO-PSO Mapping:</u>

СО	PO1	PO2	PO3	PSO1
CO1	2	3	-	2
CO2	3	2	-	3
CO3	3	3	-	3
CO4	3	3	-	3
Avg	3	3		3