## Jaypee Institute of Information Technology, Noida

## Semester III

## Complex Analysis (19M21MA117)

Function of complex variable, analytic functions, Cauchy Riemann equation, Cauchy's integral theorem and formula, Liouville's theorem, maximum modulus principle, analytic continuation, zeros and singularities, Taylor and Laurent series, residues, Cauchy residue theorem and its applications in evaluation of real integrals, conformal transformations, bilinear transformations

## Course Description

| Course C |  | 19M21MA117 |  | Semester | Odd | Semester III Session- 2023-2024 <br> Month from July -Dec |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Course Name |  | Complex Analysis |  |  |  |  |  |  |
| Credits |  | 4 |  |  | Contact Hours |  | 3-1-0 |  |
| Faculty <br> (Names) |  | Coordinator(s) |  |  |  |  |  |  |
|  |  | Teacher(s) <br> (Alphabetically) |  |  |  |  |  |  |
| COURSE OUTCOMES |  |  |  |  |  |  |  | COGNITIVE <br> LEVELS |
| After pursuing the above-mentioned course, the students will be able to: |  |  |  |  |  |  |  |  |
| C121.1 | apply the concepts of differentiability and analyticity for functions of complex variables |  |  |  |  |  |  | Understanding Level (C2) |
| C121.2 | solve the problems of different types of contour integrations. |  |  |  |  |  |  | Applying Level (C3) |
| C121.3 | explain Taylor's and Laurent's series expansion, singularities, residues and apply it to evaluate complex integrals. |  |  |  |  |  |  | Analyzing Level (C4) |
| C121.4 | apply conformal and bilinear transformations to solve related problems. |  |  |  |  |  |  | Applying Level (C3) |
| Module <br> No. | Title of the Module |  | Topics in the Module |  |  |  |  | No. of Lectures for the module |
| 1. | Complex <br> Differentiation |  | Limit, continuity and differentiability, analytic functions, Cauchy Riemann equation, harmonic functions, harmonic conjugate, construction of analytic functions, exponential function, trigonometric and inverse trigonometric functions, logarithmic function, complex powers, branches of multi valued functions |  |  |  |  | 12 |
| 2. | Complex Integration |  | complex line integral, Cauchy-Goursat theorem, independence and deformation of path; Cauchy's integral formulas and their consequences, Cauchy |  |  |  |  | 10 |


|  |  | inequality, Liouville's theorem, fundamental theorem of algebra, Morera's theorem, maximum modulus principle, Schwarz lemma, analytic continuation. |  |
| :---: | :---: | :---: | :---: |
|  | Power Series and Singularities | Taylor and Laurent series and their convergence. zeros and singularities of complex functions, classification of singularities: removable singularity, poles, essential singularities, residue at a pole and at infinity, Cauchy's residue theorem and its applications in evaluation of real integrals: integration around unit circle, integration over semi-circular contours (with and without real poles), integration around rectangular contours. Argument principle, Rouche's theorem. | 12 |
|  | Conformal <br> Transformations | Conformal transformations, bilinear transformations, critical points, fixed points, problems on cross-ratio and bilinear transformation | 8 |
| Total number of lectures |  |  | 42 |
| Eva <br> Com <br> T1 <br> T2 <br> End <br> TA <br> Tota | Criteria <br> nts <br> ster Examination | $\begin{aligned} & \text { Maximum Marks } \\ & 20 \\ & 20 \\ & 35 \\ & 25 \text { (Quiz, Assignments, Tutorials) } \\ & \mathbf{1 0 0} \end{aligned}$ |  |
| Project based learning: Each student in a group of 3-4 will apply the concepts of conformal transformations to solve some field problems. |  |  |  |
| Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) |  |  |  |
| 1. | Churchill, R. V. and Brown, J.W., Complex Variables and Applications, McGraw-Hill, 1996. |  |  |
| 2. | Spiegel, M. R., Complex Variables, McGraw-Hill, 2009. |  |  |
| 3. | Ahlfors , L.V., Complex Analysis, McGraw Hill, New York, 1990. |  |  |
| 4. | Lang, S., Complex Analysis, Springer-Verlag, 2013. |  |  |
| 5. | Gamelin, T. W., Complex Analysis, Springer-Verlag, 2008. |  |  |

## CO-PO-PSO Mapping

|  | PO1 | PO2 | PO3 | PSO1 |
| :---: | :---: | :---: | :---: | :---: |
| C121.1 | 3 | 2 | - | 1 |
| C121.2 | 3 | 2 | - | 2 |


| $\mathbf{C 1 2 1 . 3}$ | 3 | 2 | - | $\mathbf{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{C 1 2 1 . 4}$ | $\mathbf{3}$ | 2 | - | 2 |

## Numerical Analysis (19M21MA212)

Concept of Errors, Roots of algebraic and transcendental equations, Iterative methods, rate of convergence, roots of a system of nonlinear equations, System of linear algebraic equations, direct and iterative methods, Eigenvalues and eigenvectors, Interpolation, divided difference, Gauss interpolation, Lagrange's interpolation, spline interpolation, Numerical differentiation and integration, Newton-Cotes Formulae, Romberg integration, Gaussian quadrature rules, Numerical methods for differential equations, Picard's method, Euler's and modified Euler methods, Taylor's series method, Runge-Kutta $2^{\text {nd }}$ and fourth order methods, multistep methods, solution of simultaneous and higher order equations, boundary value problems, finite difference and shooting methods.

## Course Description

| Course Code |  | 19M21MA212 |  | Semester | Odd | Semester III Session- 2023-2024 <br> Month from July -Dec |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Course Name |  | Numerical Analysis |  |  |  |  |  |  |
| Credits |  | 3 |  |  | Contact Hours |  | 3-0-0 |  |
| Faculty (Names) |  | Coordinator(s) |  |  |  |  |  |  |
|  |  | Teacher(s) <br> (Alphabetically) |  |  |  |  |  |  |
| COURSE OUTCOMES |  |  |  |  |  |  |  | COGNITIVE <br> LEVELS |
| After pursuing the above-mentioned course, the students will be able to: |  |  |  |  |  |  |  |  |
| CO1 | explain concepts of errors and find the roots of algebraic and transcendental equations. |  |  |  |  |  |  | Understanding Level (C2) |
| CO2 | solve the system of linear equations using direct \& iterative methods and to find eigenvalues and eigenvectors of matrices. |  |  |  |  |  |  | Applying Level (C3) |
| CO3 | explain the concept of interpolation. |  |  |  |  |  |  | Understanding <br> Level (C2) |
| CO4 | apply numerical methods to find differentiation and integration of a function. |  |  |  |  |  |  | Applying Level (C3) |
| CO5 | apply numerical methods to solve ordinary differential equations. |  |  |  |  |  |  | Applying Level (C3) |
| Module <br> No. | Title of the <br> Module |  | Topics in the Module |  |  |  |  | No. of Lectures for the module |


| 1. | Concept of Errors | Fixed-point and floating-point numbers, truncation, round-off and maximum absolute errors, relative error, accuracy of the numbers. | 2 |
| :---: | :---: | :---: | :---: |
| 2. | Algebraic and transcendental equations | Iterative method, Newton-Raphson's method. successive iteration method, rate of convergence, roots of a polynomial: Horner's method, Birge Vita method, Lin's method, Bairstow and Muller's method, Roots of a system of nonlinear equations. | 10 |
| 3. | System of linear algebraic equations | Gauss elimination method, Gauss-Jordon method, LU-decomposition method, inverse of matrices, Jacobi and Gauss-Seidal iterative methods, convergence of iteration methods. | 6 |
| 4. | Eigen values and eigen vectors | Power's method to find dominant eigen value and eigen vector, Rayleigh method, eigen values and eigen vectors of a symmetric matrix by Jacobi's, Given's and Householder's method. | 6 |
| 5. | Interpolation | Newton's divided difference, Gauss forward and backward interpolation, Lagrange's interpolation, spline interpolation. | 3 |
| 6. | Numerical differentiation and integration | Approximation of derivatives, Newton-Cotes Formulae-Trapezoidal, Simpson's, Boole's and Weddle' rules of integration with errors, Romberg integration, Gaussian two and three point quadrature rules, double integration by Trapezoidal and Simpson's rules. | 6 |
| 7. | Differential equations | Picard's method, Euler's and modified Euler methods, Taylor's series method, Runge-Kutta $2^{\text {nd }}$ and fourth order methods, multistep methods, solution of simultaneous and higher order equations, boundary value problems: finite difference and shooting methods. | 9 |
|  |  | Total number of lectures | 42 |
| Evaluation Criteria |  |  |  |
| Comp <br> T1 <br> T2 <br> End S <br> TA <br> Total | nts <br> ster Examination | ```Maximum Marks 20 20 35 25 (Quiz, Assignments, Tutorials) 100``` |  |
| Project based learning: A group of 2 to 3 students will be formed. Each group will have a group leader to develop coordination among the group members. A problem of differential equation will be given to each group to find its solution. The group leader will submit a report of findings for the same. |  |  |  |

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, $6^{\text {th }}$ Ed., New Age International, New Delhi, 2014.
2. C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, $7^{\text {th }}$ Ed., Pearson Education, 2004.
3. R. S. Gupta, Elements of Numerical Analysis, $2^{\text {nd }}$ Ed., Cambridge University Press, 2015.
4. S. D. Conte and C. deBoor, Elementary Numerical Analysis, An Algorithmic Approach, $3^{\text {rd }}$ Ed., McGraw-Hill, New York, 1980.
5. $\begin{aligned} & \text { S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, 5th Ed., McGraw Hill, } \\ & \text { 2 }\end{aligned}$ 2006.

## CO-PO-PSO Mapping

|  | PO1 | PO2 | PO3 | PSO1 |
| :---: | :---: | :---: | :---: | :---: |
| CO1 | 2 | 1 | - | 2 |
| CO2 | 3 | 2 | - | 2 |
| CO3 | 2 | 1 | - | 2 |
| CO4 | 3 | 2 | - | 2 |
| CO5 | 3 | 2 | - | 2 |

## Operations Research (19M21MA213)

Convex set, LPP, graphical solutions, simplex method, Big-M method, two phase method, primaldual relationship, dual simplex method, sensitivity analysis, transportation problem, north west corner rule, least cost method, Vogel's approximation method, resolution on degeneracy, optimal solution, assignment problems, Hungarian method, optimality condition, travelling salesmen problem, queuing models, steady-state solutions of Markovian queuing models, inventory models, economic order quantity (EOQ), deterministic inventory problems with and without shortage.

Course Description

| Course Code | 19M21MA213 | Semester Odd | Semester III Session- 2023-2024 <br> Month from July -Dec |  |
| :--- | :--- | :--- | :--- | :--- |
| Course Name | Operations Research |  |  |  |
| Credits | 3 | Contact Hours | 3-0-0 |  |
| Faculty <br> (Names) | Coordinator(s) |  |  |  |
|  | Teacher(s) <br> (Alphabetically) |  |  |  |


| COURSE OUTCOMES | COGNITIVE <br> LEVELS |  |  |
| :---: | :--- | :--- | :--- |
| After pursuing the above-mentioned course, the students will be able to: |  |  |  |
| CO1 | construct mathematical models for optimization problems and solve linear <br> programming problems (LPP) using graphical, simplex method and its <br> variants. | Applying Level <br> (C3) |  |
| $\mathbf{C O 2}$ | utilize duality to analyse the sensitivity of optimal solution of linear <br> programming problems. | Applying Level <br> (C3) |  |
| CO3 | solve transportation, assignment and travelling salesman problems. | Applying Level <br> (C3) |  |
| $\mathbf{C O 4}$ | classify and solve the problems on queuing and inventory models. | Analyzing Level <br> (C4) |  |
| Module <br> No. | Title of the Module | Topics in the Module |  |
| $\mathbf{1 .}$ | Linear <br> Programming <br> Problems (LPP) | Introduction, definition of operations research, its <br> scope and Application in different areas, Convex <br> sets, formulation of LPP, graphical solutions, <br> Simplex method, big-M method, two phase <br> method, special cases in simplex method. | (0. |


| T2 | 20 |
| :--- | :--- |
| End Semester Examination $\quad 35$ |  |
| TA | 25 (Quiz, Assignments, Tutorials) |
| Total | $\mathbf{1 0 0}$ |$|$| Project based learning: Each student in a group of 2-3 will collect literature on queueing and |
| :--- | :--- |
| inventory models to solve some applicational problem. To make the subject application based, |
| the students analyze the optimized way to deal with aforementioned topics. |

## CO-PO-PSO Mapping

|  | PO1 | PO2 | PO3 | PSO1 |
| :---: | :---: | :---: | :---: | :---: |
| CO1 | 3 | 2 | - | 2 |
| CO2 | 3 | 2 | - | 2 |
| CO3 | 3 | 2 | - | 3 |
| CO4 | 3 | 2 | - | 2 |

## Operations Research Lab (19M25MA212)

Introduction to MATLAB, linear programming problems (LPP), simplex method, Big-M method, two phase method, dual of a primal problem, dual simplex method, sensitivity analysis, transportation problem, assignment problems, travelling salesmen problem.

Course Description

| Course Code | 19M25MA212 | Semester Odd | Semester III Session- 2023- 2024 <br> Month from July -Dec |
| :--- | :--- | :--- | :--- | :--- |
| Course Name | Operations Research Lab |  |  |
| Credits | 1 | Contact Hours | $0-0-2$ |
|  | Coordinator(s) |  |  |


| Faculty <br> (Names) | Teacher(s) <br> (Alphabetically) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| COURSE OUTCOMES |  |  |  | COGNITIVE <br> LEVELS |
| After pursuing the above-mentioned course, the students will be able to: |  |  |  |  |
| CO1 | understand the basics of MATLAB to solve linear programming problems. |  |  | Applying Level (C3) |
| CO2 | solve dual problem using MATLAB and perform sensitivity analysis of optimal solution of LPP. |  |  | Applying Level (C3) |
| CO3 | solve transportation problems with the help of MATLAB. |  |  | Applying Level (C3) |
| CO4 | solve assignment problems with the help of MATLAB. |  |  | Applying Level (C3) |
| CO5 | solve travelling salesman using MATLAB. |  |  | Applying Level (C3) |
| Module <br> No. | Title of the Module | List of Experiments |  | CO |
| 1. | Linear programming problems | 1. Construct code to solve linear programming problem (LPP) using Graphical method. <br> 2. Construct code to solve linear programming problem (LPP) using Simplex method. <br> 3. Construct code to solve LPP using Big-M method. <br> 4. Construct code to solve LPP using two phase method. |  | CO1 |
| 2. | Duality and sensitivity analysis | 5. Construct code to write the dual of a primal problem. <br> 6. Construct code to solve LPP using dual simplex method. <br> 7. Construct code to analyze the sensitivity of optimal solution if cost coefficients are changed. <br> 8. Construct code to analyze the sensitivity of optimal solution if resource vector components are changed. <br> 9. Construct code to analyze the sensitivity of optimal solution if a constraint is added. |  | CO2 |
| 3. | Transportation problem | 10. Construct code to solve transportation problem as a LPP. |  | CO3 |
| 4. | Assignment problem | 11. Construct code to solve an assignment problem as a LPP. |  | CO4 |
| 5. | Travelling salesman problem | 12. Construct code to solve travelling salesman problem. |  | CO5 |
| Evaluation Criteria |  |  |  |  |
| Compon <br> Lab Test <br> Lab Test <br> TA | nts | Max |  |  |

Project based learning: Each student in a group of 2-3 will collect literature on travelling salesman problem to develop algorithm and can generate code on the same.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. R. Pratap, Getting started with MATLAB: A quick introduction for scientists and engineers, Oxford university press, 2016.
2. H. A. Taha, Operations Research - An Introduction, Tenth Edition, Pearson Education, 2017.
3. N. Ploskas and N. Samaras, Linear programming using MATLAB, Springer Optimization and Its Applications 127, Springer, 2017.
4. S. K. Mishra and B. Ram, Introduction to linear programming with MATLAB, CRC Press, 2018.
5. R. H. Kwon, Introduction to linear optimization and extensions with MATLAB, CRC Press, 2014.
6. P. Venkataraman, Applied Optimization with MATLAB programming, John Wiley \& Sons, 2002

## CO-PO-PSO Mapping

|  | PO1 | PO2 | PO3 | PSO1 |
| :---: | :---: | :---: | :---: | :---: |
| CO1 | 3 | 2 | - | 2 |
| CO2 | 3 | 2 | - | 2 |
| C03 | 3 | 2 | - | 2 |
| CO4 | 3 | 2 | - | 2 |
| C05 | 3 | 2 | - | 2 |

## Numerical Analysis Lab (19M25MA211)

Basic programming concepts of MATLAB, Algebraic/ transcendental equations, system of linear algebraic equations, Lagrange's interpolation, divided difference, differential coefficients, numerical integrals, solution of ordinary differential equations.

## Course Description

| Course Code | 19M25MA211 | Semester Odd | Semester III Session- 2023- 2024 <br> Month from July -Dec |  |
| :--- | :--- | :--- | :--- | :--- |
| Course Name | Numerical Analysis Lab |  |  |  |
| Credits | 01 |  | Contact Hours | $0-0-2$ |
|  | Coordinator(s) |  |  |  |


| Faculty (Names) | Teacher(s) (Alphabetically) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| COURSE OUTCOMES |  |  |  | COGNITIVE LEVELS |
| After pursuing the above-mentioned course, the students will be able to: |  |  |  |  |
| CO1 | understand the basics of MATLAB to find real roots of algebraic/ transcendental equations. |  |  | Applying Level (C3) |
| CO2 | develop the program to solve system of linear algebraic equations using MATLAB. |  |  | Applying Level (C3) |
| CO3 | solve interpolation problems using MATLAB. |  |  | Applying Level (C3) |
| CO4 | develop the program for derivatives and integrals using MATLAB. |  |  | Applying Level (C3) |
| CO5 | construct the program for solutions of ordinary differential equations in MATLAB. |  |  | Applying Level (C3) |
| Module <br> No. | Title of the Module | List of Experiments |  | CO |
| 1. | Algebraic/ transcendental equations | 1. To find a real root of an algebraic/ transcendental equation by using Newton-Raphson method. <br> 2. To find a real root of an algebraic/ transcendental equation by using Successive iteration method. <br> 3. To find a root of an equation by using Muller's method. |  | CO1 |
| 2. | System of linear algebraic equations | 4. Implementation of Gauss-Elimination method to solve a system of linear algebraic equations. <br> 5. Implementation of Gauss-Jordon method to solve a system of linear algebraic equations. <br> 6. Implementation of Gauss-Seidel method to solve a system of linear algebraic equations. |  | CO2 |
| 3. | Interpolation | 7. I <br> 8. | mplementation of Lagrange's formula for terpolation. <br> mplementation of Newton's divided difference ormula for interpolation. | CO3 |
|  | Numerical differentiation and integration | $\begin{array}{rr} 9 . & \mathrm{T} \\ \text { us } \\ \text { 10. } \\ \text { 11. } \end{array}$ | o find differential coefficients of 1st and 2nd orders sing interpolation formulae. <br> o evaluate integrals by using Trapezoidal rule. To evaluate integrals by using Simpson method. | CO4 |
| 4. | Differential equations | 12. To compute the solution of ordinary differential equations by using Euler's method. <br> 13. To compute the solutions of ordinary differential equations by using Runge-Kutta methods. <br> 14. To solve two point boundary value problem by shooting and finite difference method. |  | CO5 |
| Evaluation Criteria |  |  |  |  |


| Components | Maximum Marks |
| :--- | :---: |
| Lab Test 1 | 20 |
| Lab Test 2 | 20 |
| TA | 60 (Quiz, Assignments, Tests, Viva) |
| Total | $\mathbf{1 0 0}$ |
| Pr |  |

Project based learning: A group of 2 to 3 students will be formed. Each group will have a group leader to develop coordination among the group members. A problem of differential equation will be given to each group to find its solution with the help of MATLAB. The group leader will submit a report of findings with output for the same.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. R. Pratap, Getting started with MATLAB: A quick introduction for scientists and engineers, Oxford university press, 2016.
2. B. S. Grewal, Numerical Methods in Engineering \& Science: With Programs in C, C++ \& MATLAB, $11^{\text {th }}$ Ed., Khanna, 2014.
3. S. Nomura, C Programming and Numerical Analysis: An Introduction, $1^{\text {st }}$ Ed, Morgan \& Claypool Publishers, 2018.
4. S. S. Otto, Introduction to Programming and Numerical Methods in MATLAB, $1^{\text {st }}$ Ed. Springer, 2005.
5. D. Vaughan Griffiths and I. M. Smith, Numerical Methods for Engineers, $2^{\text {nd }}$ Ed., CRC Press, 2006.
6. S. C. Chapra, Applied Numerical Methods with Matlab for Engineers and Scientists, $2^{\text {nd }}$ Ed. Tata McGraw Hill, New Delhi, 2008.

## CO-PO-PSO Mapping

|  | PO1 | PO2 | PO3 | PSO1 |
| :---: | :---: | :---: | :---: | :---: |
| CO1 | 3 | 2 | - | 2 |
| CO2 | 3 | 2 | - | 2 |
| CO3 | 3 | 2 | - | 2 |
| CO4 | 3 | 2 | - | 2 |
| CO5 | 3 | 2 | - | 2 |

## Graph Theory (21M22MA215)

Graphs and related definitions, Different types of graphs, labelled and weighted graphs, Tree and cut sets, fundamental circuit, spanning tree, binary tree, separability, network flows, Planarity of graph, thickness and crossing, modular arithmetic and Galois field, vector and vector spaces, basis, orthogonal vectors and spaces, Matrix representation and graph coloring, enumeration and graph theoretic algorithms.

Course Description


| Enumeration and <br> graph theoretic <br> algorithms | Types of enumeration, counting labeled trees, <br> Polya's counting theorem, algorithms: <br> connectedness and components. Shortest path <br> algorithm, depth first and breadth first search. |  |  |
| :--- | :--- | :--- | :--- |
| Total number of lectures |  |  |  |
| Evaluation Criteria <br> Components <br> T1 <br> T2 <br> End Semester Examination <br> TA <br> Total | Maximum Marks <br> 20 |  |  |
| Project based learning: A group of 2 to 3 students will explore more applications in the said area of |  |  |  |
| employability and will use these to solve the real problems. Their findings will be evaluated on the basis of |  |  |  |
| their report as well as viva voce. |  |  |  |

## CO-PO-PSO Mapping

|  | PO1 | PO2 | PO3 | PSO1 |
| :---: | :---: | :---: | :---: | :---: |
| CO1 | 3 | $\mathbf{1}$ | - | 2 |
| CO2 | 3 | 2 | - | 2 |
| C03 | 3 | 3 | - | 2 |
| C04 | 3 | 3 | - | 2 |
| CO5 | $\mathbf{3}$ | $\mathbf{3}$ | - | 3 |
| Avg | $\mathbf{3}$ | $\mathbf{3}$ | - | 2 |

Equation of continuity, velocity potential and stream function, incompressible flows, circulation, Equations of motion, Bernoulli's theorem, Kelvin's theorem, vortex motion, Irrotational motion in two-dimensions, sink and doublets, circle theorem, conformal mapping, theorem of Blasius, Strokes stream function, motion of a sphere, Navier-Stokes equations, flow between two coaxial cylinders, energy equation, dynamical similarity, Boundary layer thickness, Prandlt's boundary layer, Blasius solution, solution by Karman- Pohlhausen methods, dimensional analysis, large Reynold's numbers, temperature distribution in Couette flow.

Lecture-wise Breakup

| Course C | Code | 22M22MA211 |  | Semester | Odd | Semester III <br> Month from | $\begin{aligned} & \text { Session- 2023- } 2024 \\ & \text { ly -Dec } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Course Name |  | Fluid Dynamics |  |  |  |  |  |
| Credits |  | 3 |  |  | Contact Hours | 3-0-0 |  |
| Faculty (Names) |  | Coordinator(s) |  |  |  |  |  |
|  |  | Teacher(s) (Alphabetically) |  |  |  |  |  |
| COURSE OUTCOMES |  |  |  |  |  |  | COGNITIVE <br> LEVELS |
| After pursuing the above mentioned course, the students will be able to: |  |  |  |  |  |  |  |
| CO1 | explain the basic principle of continuity equation and different types of fluid motions. |  |  |  |  |  | Understanding Level (C2) |
| CO2 | identify the fluid properties and different forms of momentum equation. |  |  |  |  |  | Applying Level (C3) |
| CO3 | explain the theorems on potential flows and solve related problems. |  |  |  |  |  | Applying Level (C3) |
| CO4 | solve problems on laminar flows in different geometries. |  |  |  |  |  | Applying Level (C3) |
| CO5 | explain and analyse the concepts of boundary layer flows and its applications. |  |  |  |  |  | Analyzing Level (C4) |
| Module No. | Title of the Module |  | Topics in the Module |  |  |  | No. of Lectures |
| 1. | Kinematics |  | Lagrangian and Eulerian descriptions, equation of continuity, stream lines, path lines and streak lines, vorticity, velocity potential and stream function, compressible and incompressible flows, circulation, rotational and irrotational motions. |  |  |  | 8 |
| 2. | Dynamics |  | Equations of motion, inviscid case, Bernoulli's theorem, Kelvin's theorem, |  |  |  | 8 |


|  |  |  | constancy of circulation, equations referred to moving axes, impulsive actions, vortex motion and its elementary properties, motions due to circular and rectilinear vortices. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 3. | Potential Flow | Irrotational motion in two-dimensions, complex-velocity potential sources, stream function, source, sink and doublets, circle theorem, method of images, conformal mapping, theorem of Blasius, Strokes stream function, motion of a sphere. | 8 |
|  | 4. | Laminar Flow | Stress components in a real fluid, NavierStokes equations, plane Poiseiuille and Couette flows between two parallel plates, flow through a pipe of uniform cross section in the form of circle, flow between two coaxial cylinders, energy equation, dynamical similarity. | 9 |
|  | 5. | Boundary Layer Flows | Boundary layer thickness, displacement thickness, Prandlt's boundary layer, laminar boundary layer equations, Blasius solution, solution by Karman- Pohlhausen methods, separation of boundary layer flow, dimensional analysis, large Reynold's numbers, similar solutions, flow past a flat plate, temperature distribution in Couette flow and in flow past a flat plate. | 9 |
|  |  |  | Total number of lectures | 42 |
| Eval Com T1 T2 End TA Tota |  | Criteria ents <br> ester Examination | Maximum Marks $\begin{aligned} & 20 \\ & 20 \\ & 35 \\ & 25 \text { (Quiz, Assignments, Tutorials) } \\ & \mathbf{1 0 0} \\ & \hline \hline \end{aligned}$ |  |
| Project based learning: Students in small groups will be assigned the problem of boundary layer flows and its applications. |  |  |  |  |
| Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) |  |  |  |  |
| 1. | S. W. Yuan, Foundation of Fluid Mechanics, $3^{\text {rd }}$ Ed., Prentice Hall, 1976. |  |  |  |
| 2 | F. Chorlton, Textbook of Fluid Dynamics, C.B.S. Publishers, 2005. |  |  |  |
| 3. | P. K. Kundu and I. M. Cohen, Fluid Mechanics, Academic Press, 2005. |  |  |  |
| 4. | Frank M. White, Fluid Mechanics, $6^{\text {th }}$ Ed., Tata McGraw-Hill, New Delhi, 2008. |  |  |  |

5. H. Schlichting and K. Gersten, Boundary Layer Theory, 9 th Ed., Springer, 2017.
6. R. W. Fox and A.T. McDonald, Introduction to Fluid Mechanics, Wiley, 1985.

## CO-PO and CO-PSO Mapping:

| $\mathbf{C O}$ | PO1 | PO2 | PO3 | PSO1 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{C O 1}$ | 2 | 2 | - | 2 |
| $\mathbf{C O 2}$ | 2 | 2 | - | 2 |
| $\mathbf{C O 3}$ | 2 | 2 | - | 2 |
| $\mathbf{C O 4}$ | 3 | 2 | - | 3 |
| $\mathbf{C O 5}$ | 3 | 2 | - | 3 |
| $\mathbf{A v g}$ | 2 | 2 |  | 3 |

## Wave Propagation (22M22MA212)

Analysis of stress and strain, Mohr's circle diagram, Generalized Hook's Law, different types of symmetry, Plane waves, Principle of superposition, D'Alembert's formula, Spherical waves, Poisson and Helmholtz's formula, P and S waves and their characteristics, Reflection and refraction of plane P, SV and SH waves at an interface, Surface waves: Rayleigh, Love, Torsional and Stoneley waves, Interior structure of the Earth, Location and causes of Earthquake, Earthquake magnitude.

Course Description

| Course Code | 22M22MA212 | Semester Odd | $\begin{array}{l}\text { Semester III Session- 2023- 2024 } \\ \text { Month from July -Dec }\end{array}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| Course Name | Wave Propagation |  |  |  |
| Credits | 3 | $\begin{array}{l}\text { Contact } \\ \text { Hours }\end{array}$ | $3-0-0$ |  |
| $\begin{array}{l}\text { Faculty } \\ \text { (Names) }\end{array}$ | Coordinator(s) | $\begin{array}{l}\text { Teacher(s) } \\ \text { (Alphabetically) }\end{array}$ |  |  |
|  |  |  |  |  |
| COURSE OUTCOMES | $\begin{array}{l}\text { COGNITIVE } \\ \text { LEVELS }\end{array}$ |  |  |  |
| After pursuing the above-mentioned course, the students will be able to: |  |  |  |  |
| CO1 |  |  |  |  | \(\left.\begin{array}{l}explain the concepts of mechanics, stress-strain relation and <br>

material symmetry.\end{array} $$
\begin{array}{l}\text { Analyzing } \\
\text { Level (C4) }\end{array}
$$\right]\).

| CO 2 | analyze elastic waves and solve wave equation. |  | Analyzing <br> Level (C4) |
| :---: | :---: | :---: | :---: |
| CO 3 | determine the reflection and refraction profile of seismic waves at different interfaces. |  | Evaluating Level (C5) |
| CO4 | explain internal structure of Earth and causes of earthquake. |  | Evaluating Level (C5) |
| Module No. | Title of the Module | Topics in the Module | No. of Lectures |
| 1. | Mechanics of solids | Analysis of stress, principal stresses, principal planes, maximum shearing stresses, Mohr's circle diagram, equations of deformation and strain, strain in form of displacement, compatibility concept, need and physical significance, stress strain relation, generalized Hook's Law, different types of symmetry, density function, Airy's stress function. | 13 |
| 2. | Elastic waves | General form of progressive waves, harmonic waves, plane waves, the wave equation, principle of superposition, progressive types solutions of wave equation, stationary type solutions of wave equation in Cartesian, Cylindrical and Spherical coordinates systems, exponential form of harmonic waves, D'Alembert's formula, inhomogeneous wave equation, spherical waves. Expansion of a spherical wave into plane waves, Sommerfield's integral. Kirchoff's solution of the wave equation, Poisson and Helmholtz's formula. | 13 |
| 3. | Equation of motion | Reduction of equation of motion to wave equations, P and S waves and their characteristics, polarization of plane $P$ and $S$ waves, Snell's law of reflection and refraction. reflection of plane P and SV waves at a free surface, partition of reflected energy, reflection at critical angles, reflection and refraction of plane P , SV and SH waves at an interface, special cases of liquid-liquid interface, liquidsolid interface and solid-solid interface, surface waves, Rayleigh, Love, Torsional and Stoneley waves. | 12 |
| 4. | Introduction to Seismology | Interior structure of the earth, earthquakes, location of earthquakes, causes of earthquakes, observation of earthquakes, aftershocks and foreshocks, earthquake magnitude, seismic moment, energy released by earthquakes. | 4 |
|  |  | Total number of lectures | 42 |
| Evaluation Criteria |  |  |  |


| Components Maximum Marks |  |
| :--- | :--- |
| T1 | 20 |
| T2 | 20 |
| End Semester Examination | 35 |
| TA | 25 (Quiz, Assignments, Tutorials) |
| Total | 100 |
| Project based learning: Students in small groups will be assigned the problem of seismic |  |
| waves to explore the different characteristics in various geomedia. |  |
| Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication |  |
| etc.(Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) |  |

## CO-PO and CO-PSO Mapping:

| COs | PO1 | PO2 | PO3 | PSO1 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{C O 1}$ | 2 | 2 | - | 2 |
| $\mathbf{C O 2}$ | 3 | 3 | - | 3 |
| $\mathbf{C O 3}$ | 3 | 3 | - | 3 |
| $\mathbf{C O 4}$ | 3 | 3 | - | 3 |
| $\mathbf{A v g}$ | 3 | 3 |  | 3 |

Data Structures (22M22MA213)
Course Description

| Course Code | 22M22MA213 | Semester Odd | Semester III <br> Month from | Suly -Dession- 2023-2024 |
| :--- | :--- | :--- | :--- | :--- |$|-$|  |  |
| :--- | :--- |
| Course <br> Name | Data Structures |
| Credits | 3 |


| Faculty (Names) | Coordinator(s) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Teacher(s) <br> (Alphabetically) |  |  |  |
| COURSE OUTCOMES |  |  |  | COGNITIVE <br> LEVELS |
| After pursuing the above-mentioned course, the students will be able to: |  |  |  |  |
| CO1 | understand and apply the linear structure such as linear list, stack and queues in various practical problems. |  |  | Applying Level (C3) |
| CO 2 | construct hash function for data security and compression. |  |  | Applying Level (C3) |
| $\mathrm{CO3}$ | analyze efficiency of various operations using trees. |  |  | Analyzing Level (C4) |
| $\mathrm{CO4}$ | analyze the concepts of data structures using graphs. |  |  | Analyzing Level (C4) |
| Module No. | Title of the Module | Topics in the Module |  | No. of Lectures for the module |
| 1. | Linear lists | Sequential and linked representations of linear list, comparison of insertion, deletion and search operations for sequential and linked lists, doubly linked lists, circular lists. Sorting of linked listinsertion sort, exchange sort, selection sort. |  | 5 |
| 2. | Stacks and queues | Sequential and linked implementations of stacks, Applications of stacks in parenthesis matching. Sequential and linked implementations of Queues. |  | 4 |
| 3. | Hashing | One way hashing functions and their properties, hashing as a search structure, hash table, uses of hash tables in text compression and cryptography. |  | 4 |
| 4. | Trees | Binar trave priori inser | ry trees and their properties, tree rsal methods and algorithms, heaps as ity queues, heap implementation, tion and deletion operations. | 5 |


| 5. | Search trees | Binary search trees, search efficiency, <br> insertion and deletion operations, <br> importance of balancing. |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | Directed and undirected graphs, <br> properties, connectivity in graphs, <br> applications, implementation -adjacency <br> matrix and linked adjacency chains, graph <br> traversal - breadth first and depth first, |  |
| 6. | Graphs |  |  |
| spanning trees. |  |  |  |

4. N. Dale, C++ Plus Data Structures, Jones \& Bartlett Learning; $5^{\text {th }}$ Ed. 2011
5. A. Drozdek, Data Structures and Algorithms in C++, $4^{\text {th }}$ Ed., Cengage Learning, 2013.

## CO-PO and CO-PSO Mapping:

| CO | PO1 | PO2 | PO3 | PSO1 |
| :---: | :---: | :---: | :---: | :---: |
| CO1 | 2 | 3 | - | 2 |
| CO2 | 3 | 2 | - | 3 |
| CO3 | 3 | 3 | - | 3 |
| CO4 | 3 | 3 | - | 3 |
| $\mathbf{A v g}$ | 3 | 3 |  | 3 |

