Department of Mathematics

Jaypee Institute of Information Technology, Noida

Semester IV

Theory of Data Science (21M22MA213)

Volume, velocity, variety, machine learning, supervised and unsupervised learning, predictions and forecasts, innovation and experimentation, the dark side, big errors, privacy, example, polynomial curve fitting, probability theory, model selection, the curse of dimensionality, decision theory, information theory, regularization and stability, VC dimension., linear models for regression, parameter estimation methods - maximum likelihood method and maximum a posteriori method, regularization, ridge regression, lasso, bias-variance decomposition, bayesian linear regression, mixture models expectation-maximization method for parameter estimation, naive Bayes classifier, Non-parametric techniques for density estimation, Parzen-window method, k-nearest neighbors method, logistic regression, perceptron, Hidden Markov models (HMMS) for sequential pattern classification discrete HMMS and continuous density HMMS, Support vector machine, decision trees, bagging, boosting, gradient boosting, Principal component analysis, partial least squares, factor analysis, fisher discriminant analysis, multiple discriminant analysis, extracting data from web sources using APIs, text classification, metrics, grading text, text summarization.

Course Code		21M22MA2	13	Semester	Even	Semester I	V Se	ession- 2023- 2024
						Month from	m Jan	-June
Course Na	Course Name		ata Scie	ence				
Credits		3 Contact Hours 3-0-0)			
Faculty (Names)		Coordinator	(s)					
		(Alphabetica	lly)					
	COURSE OUTCOMES: After the successful completion of this course, the student will be able to					udent	COGNITIVE LEVELS	
C235.1	explain important terms related to the art of data science. Understand Level (C2)					Understanding Level (C2)		
C235.2	make use of various regression techniques for data modeling.					Applying Level (C3)		
C235.3	analyze different classification techniques for various datasets. Analyzin (C4)					Analyzing Level (C4)		
C235.4	judge quality of dataset based on available information.			Evaluating Level (C5)				
Module	Title o	tle of the Topics in the Module			No. of Lectures			
No.	Modu	odule				for the module		
1.	The art of data ScienceVolume, velocity, variety, machine learning, supervised and unsupervised learning, predictions and forecasts, innovation and experimentation,				6			

Course Description

		the doult side his suman missery example		
		the dark side, big errors, privacy, example, polynomial curve fitting, probability theory,		
		model selection, the curse of dimensionality,		
		decision theory, information theory,		
		regularization and stability, VC dimension.		
2.	Methods for	linear models for regression, parameter		
2.	function	estimation methods - maximum likelihood		
	approximation:	method and maximum a posteriori method,		
	upproximation.	regularization, ridge regression, lasso, bias-	7	
		variance decomposition, bayesian linear		
		regression		
3	Classification based	Bayesian decision theory, Bayes classifier,		
	on Bayesian	minimum error-rate classification, normal		
	decision theory	(Gaussian) density discriminant functions,		
		decision surfaces, maximum-likelihood	6	
		estimation, maximum a posteriori estimation,	0	
		Gaussian mixture models expectation-		
		maximization method for parameter estimation,		
		naive Bayes classifier.		
4	Classification based	Non-parametric techniques for density		
	on non-parametric	estimation, Parzen-window method, k-nearest	5	
	techniques	neighbors method, logistic regression,		
-		perceptron,		
5	Sequential pattern	Hidden Markov models (HMMS) for sequential	F	
	classification	pattern classification discrete HMMS and continuous density HMMS	5	
6	Boosting of	Support vector machine, decision trees, bagging,		
U	classifiers	boosting, gradient boosting	5	
7.	Dimensionality	Principal component analysis, partial least		
7.	reduction	squares, factor analysis, fisher discriminant	4	
	louuotion	analysis, multiple discriminant analysis.	·	
8.	Extracting	Algorithms, extracting data from web sources		
	information from	using APIs, text classification, metrics, grading	4	
	news	text, text summarization.		
	•	Total number of lectures	42	
Evaluatio	n Criteria	li Li		
Components		Maximum Marks		
T1		20		
T2		20		
	ster Examination	35		
TA		25 (Quiz, Assignments, Tutorials, Project)		
Total		100	1 1	
-	-	s in a small group will collect sample data set and ma		
	•	bdel by various selection and assessment methods. B	y this student will	
	make classification mod			

Reco	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text					
book	books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	E. Alpaydin, Introduction to Machine Learning, 2 nd Ed., PHI Learning 2012.					
2.	C. M. Bishop, Pattern Recognition and Machine Learning, Springer 2013.					
3.	T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, 2 nd Ed., Springer 2008					
4.	S. R. Das, Data Science Theories, Models, Algorithms, and Analytics, Apache License, 2016					
5.	S. S. Shwartz and S. B.David, Understanding Machine Learning: from Theory to Algorithms, Cambridge University Press, 2014					
6.	R.O.Duda, P.E.Hart and D.G.Stork, Pattern Classification, John Wiley, 2001					

<u>CO-PO and CO-PSO Mapping:</u>

COs	PO1	PO2	РОЗ	PSO1
C235.1	2	2	-	2
C235.2	3	3	-	3
C235.3	3	3	-	3
C235.4	3	3	-	3

Dissertation (19M27MA211)

Course Description

Course Code		19M27MA211	Semester	Even	Semeste 2024	r IV	Session- 2023-
					Month f	rom	Jan -June
Course Name		Dissertation					
Credits		10		Contact Hours			
Faculty (Names)		Coordinator(s)					
		Teacher(s)					
		(Alphabetically)					
COURSE OU	TCO	MES: After comple	tion of the disse	rtation, stu	udent C	OGN	ITIVE LEVELS
will be able to							
	unde	erstand the research-oriented problems and related			ated U	nders	tanding Level
C250.1 areas		-				(C2)	
C250.2 orga		nize the literature to form a problem in said area of			ou or	Applying Level	
	study. (0				(0	23)	
C250.3	develop the solution of the problem. Applying Level (C3)				ng Level		

C250.4	analyze findings in terms of a report.	Analyzing Level (C4)				
Module No.	Topics in module					
1	Identification of the dissertation problem and literature review in the related field and explore experimental and theoretical tools/ techniques/software/hardware.					
2	Acquire knowledge and analyze various methods/techniques to be used in solving the defined problem and find a suitable methodology.					
3	Utilize latest techniques/software/hardware tools to achieve the proposed objectives and obtain results. Evaluation/analysis of the obtained results and their interpretation.					

Evaluation Criteria

Components	Maximum Marks				
Day to Day Evaluation	40 (To be awarded by supervisor)				
End Term Evaluation	50 (To be awarded by a panel of 3 examiners)				
Special Contribution	10 (To be awarded by a panel of 3 examiners)				
Total	100				
Employability: In this course, the students will be working on research problems in various fields					

Employability: In this course, the students will be working on research problems in various fields of pure and applied Mathematics as per their specialization. The students will be able to learn to use the latest methods/techniques/tools/softwares to achieve the defined objectives of their dissertation. This will help the students to develop mathematical and scientific research temperament which will be beneficial for their future academics and research endeavors.

	PO1	PO2	PO3	PSO1
CO1	2	2	-	2
CO2	2	3	-	3
CO3	2	3	-	3
CO4	2	2	2	3

CO-PO-PSO Mapping