<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	17M21EC112	Semester: Odd	Semester I Session 2020-21 Month from July to December
Course Name	Digital Integrated Circuit Design		
Credits	3	Contact Hours	3-0-0

Faculty (Names)	Coordinator(s)	Dr. Shamim Akhter
(ivanics)	Teacher(s) (Alphabetically)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to digital IC Design	Review of digital logic gate design and digital integrated circuit design, MOS transistor technology and operation.	6
2.	MOS inverter circuits	Analytical modeling of CMOS inverter (DC and Transient): Noise margins, power estimation, delay calculations, sizing of inverter chain.	7
3.	Static MOS gate circuits	Analytical modeling of CMOS gate circuits (DC and Transient), complex CMOS gates, Multiplexer circuits, Flip flop and latches	7
4.	High speed CMOS logic design	Load capacitance calculations, improved delay calculations with input slope, optimizing paths with logical effort.	11
5.	Transfer gate and dynamic logic design	Pass Transistor, charge sharing, sources of charge loss, TG logic, Dynamic D-Latch	6
6.	Introduction to semiconductor memory design.	MOS Decoders, Static RAM cell design, SRAM column I/o circuitry.	5
		Total number of Lectures	42

Recommended Reading material: (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)

1.	J. M. Rabaey, A. Chandrakasan, B. Nikolic: Digital Integrated Circuit: A design perspective, 2nd Edition, Pearson Education, Delhi-2005
2.	Weste, Neil HE, and David Money Harris. CMOS VLSI Design. Pearson/Addison Wesley, 2010. Geiger,
3.	J. M. Rabaey., and Massoud Pedram, eds. Low power design methodologies. Vol. 336. Springer Science & Business Media, 2012.

Detailed Syllabus Lecture-wise Breakup

Course Code	20M51EC122	Semester: ODD	Semester: I Session: 2020-2021	
		(specify Odd/Even)	Month from: June - Dec	
Course Name	Fundamentals of semic	onductor Devices		
Credits	4	Contact Hours 3-0-0		
Faculty (Names	s) Coordinator(s)	Dr. Akansha Bansal		
	Teacher(s) (Alphabetically)	Dr. Akansha Bansal		

COURSE	OUTCOMES- At the completion of the course, students will be able to	COGNITIVE LEVELS
CO1	To understand the basics of semiconductor band diagram, carrier	Understanding Level (C2)
	transport	
CO2	To understand the working of basic semiconductor diodes and its	Understanding Level (C2)
	application	
CO3	Analyze the critical parameters and characteristics of the standard	Analyzing Level (C3)
	MOSFET	
CO4	Applying the basic semiconductor knowledge to design special	Applying Level (C4)
	application devices	

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Basics of semiconductor physics	Introduction to semiconductors, energy bands. Fundamentals of band structure and Fermi-Dirac distribution, Density of states	5
2.	Carrier concentration and carrier transport	Intrinsic and equilibrium carrier concentration, High doping effects, incomplete ionization, Drift diffusion and continuity equations	6
3.	P-N junctions & its applications	PN junction under equilibrium and bias, generation recombination, Applications of PN junction and its breakdown	5
4.	Metal semiconductor Junction	Introduction to Schottky junction, Schottky junction under equilibrium and bias.	4
5.	Metal oxide semiconductor capacitor	MOS: Introduction, Ideal MOS system- flatband and threshold voltage, CV high and low frequencies	4
6.	MOSFET	MOSFET: Introduction, Gradual channel approximation, substrate bias effedt and short channel effects in MOSFET	7
7.	Compound semiconductors	Basics of heterojunctions, band diagram, Heterojunction transistors	5
8.	Optoelectronics devices	Basics of solar cells and LED, recombination, Solar cell: Shockley Quiesser Limit, LED: light extraction and design issues	6

		Total number of Lectures	42
Evaluation Criteria			
Components	Maximum Marks		
T1	20		
T2	20		
End Semester Examination	35		
ТА	25		
Total	100		

Recommended Reading material:	Author(s), Title,	, Edition, Publish	er, Year of Publication etc.	(Text books,
Reference Books, Journals, Reports,	Websites etc. in	the IEEE format)	

1.	Sanjay K. Bannerjee, Solid State Electronic Devices, Pearsons 2014. (Text book)
2.	Donald A. Neamen, "An Introduction to Semiconductor Devices", McGraw Hill, 2005 (Reference book)
3.	David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 2015 (Reference book)

Detailed Syllabus Lecture-wise Breakup

Course Code	17M22EC113	Semester:	Semester: I Session: 2020-21
		(specify Odd/Even)	Month: July-Dec
Course Name	HDL Based Digital Des	ign	
Credits	3	Contact Hours 3-1-0	
Faculty (Name	s) Coordinator(s)	Dr. Shruti Kalra	
	Teacher(s) (Alphabetically)		

COURSE	OUTCOMES- At the completion of the course, students will be able to	COGNITIVE LEVELS
CO1	Recall the basics combinational and sequential circuits	Remembering Level (C1)
CO2	Understand the concepts of Verilog hardware description language and distinguish between good and bad coding practices	Understanding Level (C2)
CO3	Learn to model synchronous and Asynchronous digital circuits	Applying Level (C3)
CO4	Fault analysis and case studies on complex digital circuits	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction to Verilog	Overview of Digital Design with Verilog HDL, Hierarchical Modeling Concepts, Modules and Ports, Gate-Level Modeling, Dataflow Modeling, Behavioral Modeling, Tasks and Functions, Useful Modeling Techniques	9
2.	Advanced topics in Verilog	Timing and Delays, Switch-Level Modeling, User-Defined Primitives, Programming Language Interface, Logic Synthesis with Verilog HDL, modeling memory and register banks, introduction to the concept of pipelining.	9
3.	Synchronous Finite State Machine	Flip-Flops, Triggering of Flip-Flops, Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Flip- Flops Excitation Tables, Design Procedure	9
4.	Asynchronous Finite State Machines	Asynchronous Analysis, Design of Asynchronous Machines, Flow table realization, reduction, state assignments and design, Cycle and race analysis. Hazards, Essential Hazards, and its removal	10
5.	Fault Analysis	s-a-0, s-a-1 fault analysis using path sensitization method, Boolean Difference Method	5
	42		

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25(Attendance, Performance. Assignment/Quiz)
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Monk S. Programming FPGAs: Getting Started with Verilog. McGraw Hill Professional; 2016.
2.	Li Y. Computer principles and design in Verilog HDL. John Wiley & Sons; 2015.
3.	Ciletti M. Advanced digital design with the Verilog HDL. Prentice hall; 2009.
4.	Sutherland S. The Verilog PLI Handbook: a user's guide and comprehensive reference on the Verilog programming language interface. Springer Science & Business Media; 2013.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Subject Code		Semester (specify Odd/Even)	Semester Session – ODD 2021 Month from: July to December
Subject Name	Modeling and Simulation of Semiconductor Devices		
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	
(Names)	Teacher(s) (Alphabetically)	

Course Objectives:

The aim of the "*Modeling and Simulation of Semiconductor Devices*" course is to understand the performance of modern electronic devices using TCAD and Compact Modeling tools. Principles of the DC, AC, RF, Noise, Large-Signal, Temperature, and Optoelectronic modeling of semiconductor devices are explained and their applications to modern devices (CMOS, FinFET, 1D-Photonic Crystal based devices such as Omnidirectional Dielectric Mirrors, Antireflection Coatings and Polarizing Beam Splitters) are analyzed

S. No.	Course Outcomes	Cognitive Levels/
		Blooms Taxonomy
CO1	Develop an understanding of semiconductor physics,	Understanding (Level II)
	different modeling techniques and models.	
CO2	Perform mathematical modeling for different transport	Applying (Level III)
	equations and given boundary conditions.	
CO3	Analyze the electrical performances of Semiconductor	Analyzing (Level IV)
	devices.	
CO4	Analyze the electrical performances of Optical and Photonic	Analyzing (Level IV)
	devices.	

Module No.	Subtitle of the Module	Topics	No. of Lectures
1.	Introduction	Review of semiconductor electronics, band model for solids, Distinguish among activities of analysis, modeling, simulation and design, Transform the equivalent circuit form of a device model into a mathematical form, and vice-versa, Semi-classical Bulk Transport – Qualitative Model	8
2.	Fundamentals of Models	Fundamental equations for semiconductor devices: current equations, Poisson equation, study cases, continuity equations, Semi-classical Bulk Transport – EM field and Transport Equations. Drift- Diffusion Transport Model – Equations, Boundary Conditions, Mobility and Generation / Recombination	1
3.	Modeling and design strategy of MOSFET	MOSFET: basic theories and models, MOSFET parameters, Body effects, transconductance, speed of response, channel-length modulation, MOSFET design, control of the threshold voltage. MOSFET Model: Structure and Characteristics, Qualitative Model, Equations, Boundary Conditions and Approximations, Surface Potential based and Threshold based solutions, Parameter Extraction	1
4.	Modeling and design strategy of Photonic Devices	Introduction to optical and photonic devices, Electromagnetic waves in homogeneous material, Waves scattering on interfaces and thin slabs, light cone, dispersion relation, Modeling of one-dimensional photonic crystal: physical origin of gaps,lattice defects, bound states. Photonic crystal slabs and Bloch surface wave based design.	10
5.	Recent Trends	Introduction to recent trends in semiconductor devices	2
Total number of Lectures			

Evaluation Criteria

Components		Maximum Marks
T1	20	
T2	20	
End Semester Examination	35	
ТА	25	
Total	100	

Recom Publishe	mended Reading (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, er, Year of Publication etc. in IEEE format)		
1.	Sophocles J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University, 2016		
2.	Arora, N., MOSFET Models for VLSI Circuit Simulation, Springer-Verlag, 1993		
3. Selberherr, S., Analysis and Simulation of Semiconductor Devices, Springe Verlag, 1984			
4.	IEEE, Elsevier, and IOPscience Journals		

Detailed Syllabus

Lecture-wise Breakup

Subject	17M21EC112	Semester: ODD	Semester: I Session:2020-2021
Code			Month from July to December
Subject Name	Photonics Materials & Devices for Communications		
Credits	4	Contact Hours	3-1-0

Faculty	Coordinator(s)	Dr. Amit Kumar Goyal
(Names)	Teacher(s) (Alphabetically)	Dr. Amit Kumar Goyal

COURSE OU	COGNITIVE LEVELS	
CO1	Develop an understanding of photonic components and optical fiber technology.	Understanding Level (C2)
CO2	Design and analyze different types of Photonic/Nano-photonic devices and components.	Applying Level (C3)
CO3	Classify the material system/technologiesalong with their fabrication processes to design efficient photonic devices for communication.	Analyzing Level (C4)
CO4	Analytically evaluate the various photonic devices.	Evaluating Level (C5)

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Basics of Photonics, Optical fibers and	 Photonics, integrated photonics and their brief history, Basic photonic technologies and components, Brief introduction to Maxwell's equations, wave equation, Electromagnetic waves at different dielectric interfaces. Overview of Optical fibers, types (step-index and graded index), single-mode and multimode along with their condition, birefringent 	10

		fiber, numerical aperture,Optical fiber	
		communications, Dispersion and scattering	
		losses in fiber, budget analysis.	
	Ontional managemides	Ortical monomides elegation Cuided	
2.	and Photonic	optical waveguides classification, Guided	10
	Devices	modes in optical waveguides, Dispersion of	
		guided modes, Single-mode 5-D optical	
		Optical power splitter Directional coupler	
		thermo optical switches Mach Zahnder	
		interferometer Arrayed Wayeguide Grating	
		(AWG) based MUX/DEMUX Add drop	
		(Awd)-based MOA/DEMOA, Add-drop multiplayar Design of photonic devices:	
		Ream Propagation Mathad and Margatili's	
		Mothed	
	Eurodomontal of	Nere rhotenice. Dhotenic emutel (DhC)	
3.	Nano-Photonic	Nano-photomics: Photomic crystal (PhC)	6
	Devices and	DbC MUX/DEMUX, DbC Eilters, DbC fibers	
	Components	Nano wires Packaging of photonic devices	
		Pacent studies on PhC based devices for	
		communication applications	
		Destance materials estaction of materials like	
4.	Photonic Materials	silicon silico Lithium Nichoto Compound	10
	and Fabrication	Silicon, Silica, Lithium Niobate, Compound	
	Technologies	semiconductor and Polymers. Fabrication and	
		process techniques like Lithography,	
		Deposition, and Diffusion etc. Parameter	
		ineasurement and techniques, recent studies	
	Coupled mode	Pagia concents of coupled mode theory	
5.	Theory and Davides	Mode coupling: co directional and contra	8
	Theory and Devices	directional Mode coupling in corrugated	
		wayaguidas Short period and long period	
		gratings in optical fibers and optical	
		wayaguidas Properties of short period and	
		long period gratings. Application of gratings	
		in communication and Recent trends	
		in communication, and recent trends.	
Total number of Lectures			44
Evaluation Criteria			
Components Maximum Marks			
T1 20			
12 End Seme	ster Examination 3	0 5	
TA 25			

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition, 2000.	
2.	John M. Senior, Optical Fiber Communications, 2nd Edition, PHI, 2002.	
3.	H Nishihara, M Haruna and T Suhara, Optical integrated Circuits, McGraw-hill, 1989.	
4.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.	
5.	C. R. Pollock and M. Lip Son, Integrated Photonics, Kluwer Pub., 2003.	
6.	T. Tamir, (ed), Guided-wave optoelectronics, (2nd edition), Springer-Verlag, 1990.	
7.	Clifford Pollock, Fundamentals of Optoelectronics, Richard Irwin Inc., Chicago, 1995.	
8.	Journal articles i.e. IEEE, Springer, IOPscience, Elsevier and Video lectures from nanohub, NPTEL, MIT video lectures	
9.	https://nptel.ac.in/courses/117/108/117108142/	

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	17M12EC124	Semester: Odd (specify Odd/Even)	Semester: Ist Session: 2020-21 Month from: July to Dec
Course Name	Reliability Engineeri	ng	
Credits	3	Contact Hours	3-1-0
Faculty (Names) Coordinator(s)		Dr. Ruby Beniwal	
	Teacher(s) (Alphabetically)		

COURSE OUTCOMES- At the completion of the course, students will be able to		COGNITIVE LEVELS
CO1	Recall the use of different electronic circuits and networks used in Engineering.	Remembering
		Level (C1)
CO2	Illustrate various mathematical model with engineering knowledge and specialist	Understanding
	techniques to prevent or to reduce the likelihood or frequency of failures	Level (C2)
CO3	Apply reliability methods on time independent and time dependent failure models	Applying Level
		(C3)
CO4	Optimize reliability for time independent and time dependent failure models through	Analyzing Level
	various testing methods	(C4)

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction of Reliability and Reliability concept	Reliability Concepts, Definition, Importance and Various Measures. Reliability Mathematics: Probability, Distributions reliability Vs quality-reliability function-MTTF – hazard constant failure rate model – time dependent failure models	8
2.	Markov Process and Reliability model	Markov Processes, Probability Plots. Reliability Models: Block Diagrams, Graphs, Fault Trees, BDD, Markov, Petri Nets, Multistates, degraded systems, three state devices – covariate models, static models, dynamic models, physics of failure models.	8
3.	Reliability Data Analysis	Multistates, Flow Limited and Statistical. Reliability Analysis using different Models Failure Data Analysis. Reliability design process – system effectiveness – economic analysis and life cycle	8
4.	Reliability Engineering	Weibull distribution – normal distribution	10

			 the lognormal distribution. Serial configuration parallel configuration combined series parallel systems system structure function, minimal cuts and minimal paths Markov analysis load sharing systems, 	
			standby system, sectioned solids.	
5.	Optimization of S Reliability	ystem	Reliability Optimization, Testing, Demonstration and design. Maintainability and Availability Concepts, Measures and Analysis. Optimization techniques for system reliability with redundancy	8
			Total number of Lectures	42
Evaluation (Criteria			
ComponentsMaximum MatT120T220End Semester Examination35TA25(Attendance)		Maximum Ma 20 20 35 25(Attendanc	arks e, Performance. Assignment/Quiz)	
Total		100		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Charles E. Ebling, "An introduction to Reliability and Maintainability Engg", Tata McGraw-Hill, 2017.	
2.	Patrick D T o'connor, "Practical Reliability Engineringt", John-Wiley and Sons inc, 2011.	
3.	Balagurusawy ,"Reliability Engineering", McGraw Hill, 2002	
4.	Mangey Ram and J. Paulo Davim," Recent Advances in System Reliability Engineering" Academic Press 2019	