<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17CI171	Semester Odd	d	Semester I Session 2018 -2019 Month July-Dec '2018	
Course Name	Name Software Development Fundamentals 1 Lab				
Credits	2		Contact I	Hours	4

Faculty (Names)	Coordinator(s)	Dr. Chetna Dabas and Sarishty Gupta		
	Teacher(s) (Alphabetically)	Amanpreet Kaur, Amarjeet Prajapati, Ankit Vidyarthi, Ankita Verma, Ankita Wadhwa, Aparajita Nanda, Archana Purwar, Arpita Jadhav, Bharat Gupta, Chetna Dabas, Deepti Singh, Dharamveer Rajpoot, Kavita Pandey, K. Rajalakshmi, Mradula Sharma, Nisha Chaurasia, Niyati Aggarwal, Parul Aggarwal, Prashant Kaushik, Purtee Kohli, Rohit Pal Singh, Sakshi Aggarwal, Sarishty Gupta, Shardha Porwal, Sherry Garg, Shikha Jain, Somya Jain, Sonal, Vikas Hassija		

COURSE	OUTCOMES	COGNITIVE LEVELS
C172.1	Design HTML code for building web pages using lists, tables, hyperlinks, and frames.	Apply Level (C3)
C172.2	Develop python programs for constructs such as lists, tuples, dictionaries, conditions, and loops using Python 3.6.	Apply Level (C3)
C172.3	Design simple SQL queries using MySQL to create database tables and retrieve the data from a single table.	Apply Level (C3)
C172.4	Develop C programs for datatypes, expressions, conditional structure, and iterative control structure and pattern generation using Code Blocks and Virtual Lab.	Apply Level (C3)
C172.5	Design C programs for array, structure, and functions using Code Blocks and Virtual Lab.	Apply Level (C3)

Module No.	Title of the Module	List of Experiments	
1.	Introduction to HTML	Experiments to create web pages using tags, lists, tables, frames, forms.	
2.	Python	Experiments to develop python programs using data types (number, string, list), operators, simple input output operations, control flow (if -else, while)	2
3.	MySQL	Experiments to create MySQL queries using operations like ADD, DELETE, UPDATE, SELECT	3
4.	C Programming (Part-1)	Experiments to develop C programs using datatypes, expressions, conditional structure (if-else), and iterative control structure (do-while, while, for).	4
5.	C Programming (Part-2)	Experiments to develop C programs using for array, structure, and functions.	5

Evaluation Criteria		
Components	Maximum Marks	
Evaluation 1	15	
Lab Test 1	20	
Evaluation 2	20	
Evaluation 3	15	
Lab Test 2	20	
TA	10	
Total	100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) H. Cooper and H. Mullish, Jaico Publishing House. "Spirit of C", 4th Edition, Jaico Publishing House, 2006 1. Herbert Schildt. "The Complete Reference C", 4th Edition, TMH, 2000 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Prentice-Hall India, New Delhi, 2002 3. Peter Norton, "Introduction to Computers", 5th edition, Tata McGraw-Hill, Delhi., 2005. 4. Balaguruswamy, Programming in ANSI C, 2nd Edition, TMH, 2001. 5. Ashok N. Kamthane, "Programming with ANSI and Turbo C", Pearson Education, Delhi, 2003 6. B. A. Forouzan, R. F. Gilberg "Computer Science: A Structured Programming Approach 7. Using C", 2nd Edition, Thomson Press, New Delhi, 2006. https://www.w3schools.com/html/ 8. https://www.w3schools.com/sql/ 9. https://www.w3schools.com/python/ 10. User manuals supplied by department for HTML, SQL and Python 11.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11CI111	Semester Odd		Semester I Session 2018 -2019 Month July-Dec '2018	
Course Name	Software Development Fundamentals-I				
Credits	4		Contact H	ours	3 (L)+1 (T)

Faculty (Names)	Coordinator(s)	Archana Purwar
	Teacher(s) (Alphabetically)	Adwitiya Sinha, Amanpreet Kaur, Chetna Dabas, Dharamveer Rajput, Parul Agarwal, Rohit Pal, Sakshi Agarwal, Sonal, Shradha Porwal

COURSE	OUTCOMES	COGNITIVE LEVELS
C109.1	Solve puzzles, formulate flowcharts, algorithms and develop HTML code for building web pages using lists, tables, hyperlinks, and frames	Apply Level (Level 3)
C109.2	Show execution of SQL queries using MySQL for database tables and retrieve the data from a single table.	Understanding Level (Level 2)
C109.3	Develop python code using the constructs such as lists, tuples, dictionaries, conditions, loops etc. and manipulate the data stored in MySQL database using python script.	Apply Level (Level 3)
C109.4	Develop C Code for simple computational problems using the control structures, arrays, and structure.	Apply Level (Level 3)
C109.5	Analyze a simple computational problem into functions and develop a complete program.	Analyze Level (Level 4)
C109.6	Interpret different data representation , understand precision, accuracy and error	Understanding Level (Level 2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Scripting Language & Algorithmic Thinking	Introduction to HTML, Tagging vs Programming, Problem Solving, Algorithmic thinking, introductory algorithms and flowchart	5
2.	Developing simple software applications with scripting and visual languages	Developing simple applications using python; data types (number, string, list)), operators, simple input output, operations, control flow (if -else, while)	4
3.	Elementary Database	Introduction to data base system, Single Table applications, basic operations ADD,DELETE,UPDATE,SELECT, ALTER,Introduction to primary key	4

4.	C Programming	Syntax and semantics, data types and variables, expressions and assignments, array and struct, simple I/O, conditional and iterative control structures Programs on unit conversion, approximating the square root of a number, finding the greatest common divisor, average, sum, min, max of a list of numbers, common operations on vector, matrix, polynomial, strings, programs for pattern generation	15	
5.	Functions in C Programming	Functions and parameter passing (numbers, ,characters, array, structure), recursion, e.g. factorial, Fibonacci, Scope of variable	8	
6.	Data base connectivity Using MySql	Creating Web pages with Database, Creating Web pages with Database	2	
7.	Aspects of numerical computing	Data representation, Understanding precision, accuracy, error, Introduction to Scientific Computation	4	
		Total number of Lectures	42	
Evaluation	n Criteria			
Componer T1		Maximum Marks 20		
T2		20		
		35		
TA		25 ()		
Total		100		
Recomme	Recommended Reading material: Author(s) Title Edition Publisher Year of Publication etc. (Text books			

H	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	H. Cooper and H. Mullish, Jaico Publishing House. "Spirit of C", 4 th Edition, Jaico Publishing House, 2006			
2.	Herbert Schildt. "The Complete Reference C", 4 th Edition, TMH, 2000			
3.	Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2 nd Edition, Prentice-Hall India, New Delhi, 2002			
4.	Peter Norton, "Introduction to Computers", 5 th edition, Tata McGraw-Hill, Delhi., 2005			
5.	Balaguruswamy, Programming in ANCI C", 2 nd Edition, TMH, 2001.			
6.	Ashok N. Kamthane, "Programming with ANSI and Turbo C", Pearson Education, Delhi, 2003			
7.	Rajaraman V., "Fundamentals of Computer", 3 rd Edition, Prentice-Hall India, New Delhi, 2005.			
8.	Avi Silberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6 th edition, McGraw-Hill, 2010.			
9.	B. A. Forouzan, R. F. Gilberg "Computer Science: A Structured Programming Approach Using C", 2 nd Edition, Thomson Press, New Delhi, 2006.			
10.	User manuals supplied by department for SQL and Python			

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Course Code	15B11HS112	Semester: Odd	Semester: I	Session	2018 -2019
-------------	------------	---------------	-------------	---------	------------

		Month from July 18 to Dec 18			
Course Name	English				
Credits	3	Contact Hours 2-1-0			
Faculty (Names)	Coordinator(s)	Ms Puneet Pannu, Dr Anshu Banwari			
	Teacher(s) (Alphabetically)	Dr Anshu Banwari, Dr Monali Bhattacharya, Dr Nilu Chaudhary, Dr Santosh Dev, Ms Puneet Pannu, Dr. Santoshi Sengupta, Dr Ekta Srivastava			

COURSE	COURSE OUTCOMES				
C114.1	Develop an understanding and appreciate the basic aspects of English as a communication tool.	Understand (C2)			
C114.2	Apply the acquired skills in delivering effective presentations	Apply (C3)			
C114.3	Demonstrate an understanding of different forms of literature and rhetorical devices	Understand (C2)			
C114.4	Examine literature as reflection of individual and society	Analyse (C4)			
C114.5	Compose different forms of professional writing	Create (C6)			
C114.6	Apply Phonetics through theory and practice for better pronunciation	Apply (C3)			

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	English as a Communication Tool	Basic aspects of English LSRW: Listening, Speaking, Reading, Writing Non Verbal Communication: Body Language, Voice Modulation, Posture Gambits Phonetics: Pronunciation, Stress, Rhythm, Intonation	10
2.	Language through Literature	Short Stories 'Too Bad by Isaac Asimov 'The Castaway by Rabindranath Tagore Poems 'The Highwayman by Alfred Noyes 'Where the mind is without fear by Rabindranath Tagore '"If" by Rudyard Kipling 'Ode to Clothes by Pablo Nerruda One act Play 'Refund by Fritz Karinthy Famous Speech 'Swami Vivekanand's Chicago Speech	10
3.	Professional Application/Writing	Textual Organization Letter Writing Circulars Notices Agenda Minutes Report Writing	8
		Total number of Lectures	28
Evaluation	ı Criteria		
Compone		Aaximum Marks	
T1		20	
T2		20	

End S TA Tota	Semester Examination 35 25 (Assignment, Creative Project, Test, Oral Questions) 100
	mmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference s, Journals, Reports, Websites etc. in the IEEE format)
1.	C.L.Bovee, J.V.Thill, M.Chaturvedi , <i>Business Communication Today</i> ,9 th Ed, Pearson Education, copyright@ Dorling Kinderslay (India) Pvt Ltd,2009
2.	Kelly M. Quintanilla and S.T.Wahl, Business and Professional Communication, Sage Publications Pvt India Ltd,2011
3.	S. Kumar and Pushp Lata, Communication Skills, Oxford University Press,1st, Ed. 2011
4.	R.K Bansal, and J.B Harrison, Spoken English for India, Orient Longman
5	Alfred Noyes, "The Highwayman", Oxford University Press, USA, Sep 1999
6	Rabindranath Tagore, "Where the Mind is without Fear", BK Classics
7	Rudyard Kipling, "If", If Handbook, Creative Editions, 2014
8	Pablo Neruda, "Ode To Clothes" Late & Posthumous Poems
9	Isaac Asimov, "Too Bad", Robot Visions, ROC Books, New York, NY, USA, 1991
10	RabindraNath Tagore, "The Castaway", Selected Short Stories, Introduction & translated by William Radice", Penguin Classics
11	Fritz Karinthy, "The Refund", A Play in One Act adapted by Percival Wilde, French's Acting Edition, London
12	Swami Vivekananda & Sankar Srinivasan, "Sisters & Brothers of America: Speech at World Parliament of Religions, Chicago, 1893", Creative Space Independent Publishing Platform, 2015

Detailed Syllabus

Lecture-wise Breakup

Course Co	de	15B11MA111	Semester Odd Semester I Session 2		2018 -2019			
			Month from July 2018		8- Dec 2018			
Course Na	ıme	Mathematics-1						
Credits		4	Contact		Hours	rs 3-1-0		
Faculty (N	(ames	Coordinator(s)	Prof. Sanjeev	Sharma, Dr.	Dinesh I	Bisht		
		Teacher(s) (Alphabetically)	Dr.Amita Bhagat, Dr.Anuj Bhardwaj, Dr.Anuj Kumar, Dr. Dinesh Bisht, Dr. Lokendra Kumar, Dr. Neha Ahalawat, Dr. Pankaj Kumar Srivastava, Prof. R. C. Mittal, Prof. Sanjeev Sharma, Dr. Sudhakar Chaudhary, Dr.Yogesh Gupta					
COURSE	COURSE OUTCOMES COGNITIVE LEVELS							
After pursu	ing the	above mentioned cours	se, the students v	will be able	to:			
C105.1		n the concepts of limits I variables.	s, continuity and	differential	oility of fi	unctions of	Understanding Level (C2)	
C105.2		explain the Taylor's series expansion of functions of several variables and apply thin finding maxima and minima of functions. Applying Level (C3)					1100	
C105.3	make use of double and triple integrals to find area and volume of curves and surfaces. Applying Level (C3)							
C105.4	explain the concepts of vector calculus and apply Green's, Stoke's and Gauss divergence theorems in engineering problems. Applying Level (C3)							

C105.5		solve the ordinary differential equations and explain the concepts of Laplace transform for solving engineering problems. (C3) Applying Level Applying Level					
C105.6		utilize matrix algebra for solving a system of linear equations and explain eigenvalues, eigenvectors, diagonalization and quadratic form.					
Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module				
1.	Partial differentiation	Chain rule, change of variables, Taylor's series for function of two or more variables, maxima and minima of function of two variables, Jacobians.	7				
2.	Double integrals	Change of order and change of variables, Gamma and Beta functions, Applications to areas and volumes, Equations to curves and surfaces, Plots of some well known curves and surfaces.	7				
3.	Vector Differentiation	Gradient, divergence and curl, Normal and tangent to a plane surface.	3				
4.	Vector Integration	Line integrals, Green's Theorem in a plane, surface integrals, Gauss and Stokes theorems.	7				
5.	Differential Equations	1					
6.	Laplace Transform	Laplace Transform, inverse Laplace transform, Dirac delta and unit step function, Solution of IVPs.	6				
7.	Matrices	Linear dependence and independence of rows, row echelon form, Rank, Gauss elimination method, Eigen values and vectors, symmetric matrices, Reduction to diagonal form Quadratic forms.					
	- "	Total number of lectures	42				
Compos T1 T2 End Ser TA Total	mester Examination	Maximum Marks 20 20 35 25 (Quiz, Assignments, Tutorials) 100					
		al: Author(s), Title, Edition, Publisher, Year of Publication es, Reports, Websites etc. in the IEEE format)	etc. (Text				
	n, R. K. &Iyenger, S. F w Delhi, 2008.	R. K., Advanced Engineering Mathematics, 3 rd Ed., Narosa	Publishing House,				
	Prasad, C., (a) Mathematics for Engineers (b) Advanced Mathematics for Engineers, Prasad Mudranalaya, 1982.						
3.		, Linear Algebra, 3 rd Ed, Schaum Outline Series, 2001.					
	omas, G. B and Finney disson Wesley), New De	y, R. L., Calculus and Analytical Geometry, 9th Ed., Pearselhi, 2000.	on Education Asia				
5. Ste	wart, J., Calculus, Early	y Trancendentals, 7th Ed., Cengage Learning, 2012.					
6. Sin		ial Equations with Applications and Historical Notes, 2nd I	Ed. McGraw Hill,				

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11PH111	Semester: Odd		Semester: I, Session: 2018-2019 Month from: July to December		
Course Name	PHYSICS-1					
Credits	4		Contact Hours		4	

Faculty (Names)	Coordinator(s)	R. K. Dwivedi & Suneet Kumar Awasthi		
	Teacher(s) (Alphabetically)	Alok Pratap Singh Chauhan, Anuj Kumar, Anuraj Panwar, Anshu D. Varshney, Bhubesh Chander Joshi, D. K. Rai, Dinesh Tripathi, Himanshu Pandey, Manoj Tripathi, Prashant Chauhan, S. C. Katyal, Vikas Malik		

COURSE	OUTCOMES	COGNITIVE LEVELS
C101.1	Recall the basic principles of physics related to optics, relativity, quantum mechanics, atomic physics and thermodynamics.	Remembering (Level 1)
C101.2	Illustrate the various physical phenomena with interpretation based on the mathematical expressions involved.	Understanding (Level 2)
C101.3	Apply the concepts/principles to solve the problems related to wave nature of light, relativity, quantum mechanics and atomic physics.	Applying (Level 3)
C101.4	Analyze and examine the solution of the problems using physical and mathematical concepts involved.	Analyzing (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Physical Optics	Analytical treatment of interference, Intensity distribution of fringe system, Fresnel's Biprism, Newton's rings, Michelson interferometer, Diffraction (limited to Fraunhoffer class) from Single slit, double slit and Diffraction grating, Polarization, Phenomenological understanding of Birefringence, Principles of use of uniaxial crystals in practical polarizers, compensators and wave plates, Production and analysis of completely polarized light. Optical activity, Polarimeter	15
2.	Relativity	Michelson-Morley experiment, Lorentz transformations, Addition of velocities, Mass variation with velocity, Massenergy relation.	5
3.	Radiation	Black body radiation, Wein's law, Rayleigh Jeans law, Planck's law of radiation.	3
4.	Quantum Mechanics	Wave-particle duality, Compton scattering, Matter waves, Heisenberg's uncertainty principle, Schrödinger wave equation and its applications to the free particle in a box, potential barrier and Harmonic oscillator.	9
5.	Atomic Structure	Origin of spectral lines, spin and orbital angular momentum, Quantum numbers, Atoms in magnetic field, Zeeman effect.	4
6.	Thermodynamics	Review of the basic laws of thermodynamics, Entropy and Clausius-Cleyperon equation.	4

	Total number of Lectures	40
Evaluation Criteria		
Components	Maximum Marks	
T1 -	20	
T2	20	
End Semester Examination	35	
TA	25 [2 Quiz (10 M), Attendance (10 M) and Cass performance	$(5 \mathrm{M})$
Total	100	· -

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) 1. A. K. Ghatak, Optics, Tata McGraw Hill. 2. E. Hecht, Optics, Pearson Education. 3. F. A. Jenkins and H. E. White, Fundamentals of optics, Tata McGraw Hill. 4. R. S. Sirohi, Wave Optics, Orient and Longman. 5. Reshnick, Relativity, New Age. A. Beiser, Concepts of Modern Physics, Mc Graw Hill International. 6. Mark W. Zemansky, *Thermodynamics*, Tata McGraw Hill. 7.

Detailed Syllabus Lab-wise Breakup

Course Code	15B17PH171	Semester Odd		Semester I Session 2018 -2019		
				Month 1	from: July - December	
Course Name	Physics Lab-1					
Credits	01	Contact Hours 02				
Faculty (Names)	Coordinator(s)	Himanshu Pandey and Anshu D. Varshney				
	Teacher(s) (Alphabetically)	Alok Pratap Singh Chauhan, Amit Verma, Anuj Kumar, Anuraj Panwar, Anshu D. Varshney, Bhubesh Chander Joshi, D. K. Rai, Dinesh Tripathi, Manoj Kumar, Manoj Tripathi, N. K. Sharma, Navendu Goswami, Prashant Chauhan, S. C. Katyal, Sandeep Chhoker, Swati Rawal, Vikas Malik, Vivek Sajal				

COURSE	OUTCOMES	COGNITIVE LEVELS
C170.1	Recall optics and modern physics principles behind the experiments.	Remembering (C1)
C170.2	Explain the experimental setup and the principles involved behind the experiments performed.	Understanding (C2)
C170.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C170.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C170.5	Interpret and justify the results.	Evaluating (C5)

M	odule	Title of the Module	List of Experiments	CO	
---	-------	---------------------	---------------------	----	--

No.			
1.	Optics	 To determine the wavelength of sodium light with the help of Newton's rings setup To determine the wavelength of sodium light with the help of Fresnel's Bi-prism To find the specific rotation of cane- sugar solution by a polarimeter at room temperature, using half-shade / Bi-quartz device. To determine the dispersive power of the material of a prism with the help of a spectrometer. To determine the wavelength of prominent spectral lines of mercury light by a plane transmission grating using normal incidence method 	1-5
2.	Modern Physics	6. To study the Photoelectric effect and determine the value of Planck's constant.7. Determination of Planck's constant by measuring radiation in a fixed spectral range.	1-5
3.	Electricity and Magnetism	 8. To verify Stefan's law by electrical method. 9. To determine the resistance per unit length of Carey Foster's bridge wire and specific resistance of the material of the given wire using Carey Foster's bridge. 10. To study the variation of magnetic field with distance, along the axis of Helmholtz galvanometer, and to estimate the radius of the coil. 	1-5
Evaluation	Criteria		
Components Max Mid Term Viva (V1) End Term Viva (V2) D2D Total		ximum Marks 20 20 60 100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Dey and Dutta, *Practical Physics*, Kalyani Publication.

2. Experiment hand-outs.

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15GE111	Semester Odd (specify Odd/Even)		Semester Ist Session 2018 -2019 Month from January		
Course Name	Engineering Drawing and Design					
Credits	1.5		Contact I	Hours	3	3Hrs

Faculty (Names)	Coordinator(s)	Rahul Kumar		
	Teacher(s) (Alphabetically)	Deepak Kumar, Rahul Kumar		

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Recall the use of different instruments used in Engineering Drawing and Importance of BIS and ISO codes.	Remembering (Level I)
CO2	Illustrate various types of mathematical curves and scale.	Understanding (Level II)
СОЗ	Classify different types of projection and Construct Orthographic projection of Point, Line, Plane and Solid.	Applying (Level III)
CO4	Construct Isometric Projection and Conversion of Orthographic view to Isometric view and vice-versa.	Applying (Level III)
CO5	Construct Engineering model in Drawing software(AutoCAD) and Compare it with conventional drawing.	Analyzing (Level IV)

Module No.	Title of the Module	List of Experiments	CO
1.	 Introduction to Engineering Drawing Principles of Engineering Drawing and the significance, Usage of Drawing Instruments Single stroke Vertical and Inclined Gothic Lettering 		CO1
2.	Conic Sections	Conic sections and Special Curves	CO2
3.	Orthographic Projections	 Projection of Point Projection of Line Projection of Plane 	CO3
4.	 Projection of Solid having axis perpendicular to Principal Plane Projections of Regular Solids Projection of Solid having axis inclined to Principal Plane 		CO3
5.	 Sections and Sectional Views of Right		CO3
6.	Isometric Projections	Isometric View of Solids	CO4
7.	Overview of Computer Graphics	Demonstrating knowledge of theory of CAD software	CO5
8.	Annotations, layering & other functions	Draw a Solid structure using Layer command	CO5
Evaluation	Evaluation Criteria		
Components I. TA (Attendance + D2D) II. Mid Sem Exam III. End Sem Exam Total		Maximum Marks 60 (10+50) 20 20 100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. N.D. Bhatt, V.M. Panchal & P.R. Ingle, Engineering Drawing, Charotar Publishing House
- 2. B. Agrawal & C.M. Agrawal, Engineering Graphics, TMH Publication

3.	K.L. Narayana & P. Kannaiah, Text book on Engineering Drawing, Scitech Publishers
4.	M.B. Shah & B.C. Rana, Engineering Drawing and Computer Graphics, Pearson Education