<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Co	ode	14M1NCI339)	Semester Odd (specify Odd/)	l Even)	Semeste Month f	er M.T from .	Fech (III) S Jul-Dec	ession 2018-19	
Course Na	me	Wireless Sen	ireless Sensor and Actuator Networks							
Credits			3		Contact I	Hours		3-0-0 (3 hrs per week)		
Faculty (N	(ames)	Coordinato	r(s)	Dr. Adwitiya S	Sinha					
Teacher(s) (Alphabetics			ally)	Dr. Adwitiya S	Sinha					
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS	
C140.1	Develo deploy	op distribution ment	models	for deterministic	e or stochast	tic networ	k	Understan (Level 2)	d Level	
C140.2	Design standar	ning communic rds	ation pr	otocols for wire	less sensor	network		Apply Lev (Level 3)	vel	
C140.3	Develo	p mathematica	al model	s for energy con	sumption			Creation I (Level 6)	.evel	
C140.4	Analys	se medium acco	ess mecl	nanisms, routing	protocols			Analyze L (Level 4)	level	
C140.5	Analys cluster	se cross layer s ing	chemes,	including load	balancing a	nd node		Analyze L (Level 4)	level	
C140.6	Performance evaluation of sleep scheduling strategy with dataEvaluation Levelprediction and aggregation methods(Level 5)					n Level				
C140.7	Develop Coverage Maximization models for optimizing network lifetime (Level 6)				Level					
Module No.	Title o Modu	f the le	Topics	s in the Module					No. of Lectures for the module	
1.	Review sensor networ	v of Wireless and actuator ks	Introdu actuato spectru and Tv and ma	Introduction to wireless networks and mainly on sensor and actuator networks, Terminology, Introductin radio spectrum, Applications, Propagation mechanism-Free space and Two Ray model, Functions: aggregation, dissemination and management				5		
2.	Wirele Netwo Requir	ss Sensor rk rements	Netwo Challe Harves	rk scenarios, Ty nges, Sensor con sting, Distributed	pes of deplo nponents an 1 sensor net	oyment sta nd charact work	rategie eristic	s, s, Energy	5	
3.	Techno simula	ologies and tors used	Network Simulator, Glomosim, Qualnet 4				4			
4.	Sensor Archite Standa	Network ectures & rds	IEEE Sensor Network Standard/ZigBee, Single-hop and Multi-hop communication, Sink mobility, Transmission Power Control (levels of transmission), In-Network Data Processing5				5			
5.	Broad Routin Sensor Actuat	casting & g in Wireless and or Networks	Overvi broadc connec	ew of broadcast asting in sensor ctivity criteria,Ro	ing techniq actuator ne outing alogs	ues, backl tworks, co	oone a overag	nd e and	7	
6.	Issues	and	Sleep s	scheduling Mode	els & Analy	sis, Clust	ering,	Load	6	

	Challenge	es balancing, Energy Hole and Connectivity Gap problem,				
		Poissonian and Gaussian distributed network				
7	, Designing and Proto	Energy Models, Network Lifetime Maximization, Scheduling & Coverage Optimization. MAC protocols-Low duty cycle and Wake up concepts, Cross layer issues & methods – Optimizing number of Clusters & Cluster Head rotations, Data and Flow Aggregation with analysis	6			
8	Case Stud	lies Case study of Internet of things applications & open source projects	4			
		Total number of Lectures	42			
Eval	uation Criteria					
Com	ponents	Maximum Marks				
Test-	1	20				
Test-	1	20				
End S	Semester Examin	ation 35				
TA		25 (Quiz + Evaluative Assignment + Class Test + Attendance)	25 (Quiz + Evaluative Assignment + Class Test + Attendance)			
Tota	1	100				
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	Wireless Sensor and Actuator Networks Algorithms and Protocols for Scalable Coordination and Data Communication, Edited by Amiya Nayak and Ivan Stojmenovic John Wiley & Sons, Inc.,2010.					

Feng Zhao, Leonidas Guibas, Wireless Sensor Networks: An Information Processing Approach, Morgan

William Stallings, Wireless Communications & Networks, 2nd Edition, Pearson Education India, 2009

Kazem Sohraby, Daniel Minoli, Taieb Znati, Wireless Sensor Networks: Technology, Protocols, and

Andrea Conti, Davide Dardari, and Roberto Verdone, Wireless Sensor and Actuator Networks

2.

3.

4.

5.

Kauffman Publication, 2004

Applications, Wiley-Blackwell; 1st edition, 2007

Technologies, Analysis and Design, Academic Press, Elsevier, 2008

Lecture-wise Breakup

Subject Code		2 17M1NCI131		Semester Odd (specify Odd/Even)	Semester - 2 nd Month from Jul to Dec	
Subje	ect Nam	e Flexible Com	outer Net	works		
Credi	ts	3		Contact Hours	3	
Facult	ty	Coordinator(s)	1. Sai	ngeeta Mittal		
(Nam	ames) Teacher(s) 1. Sangeeta Mittal (Alphabetically)					
Cour	se Out	comes				
CO#	D# Course Outcome					Cognitive Level (Bloom's Taxonomy)
1.	Explain the current network-traffic characteristics and modern networking scenarios					Understanding (level - 2)
2.	Asse	ss limitations of clas	sical netw	orking techniques in suppo	orting recent applications	Analyzing (level-4)
3.	Explain Software Defined Network architecture, need and concepts					Understanding (level - 2)
4.	. Experiment with Openflow based southbound API in Mininet emulator					Applying(level-3)
5.	Evaluate SDN using Pox and OpenDaylight SDN Controllers					Evaluating(level-5)
6.	Buil data	d traffic engineering transport in SDN	modules	for load balancing, quality	of service and multicast	Creating(level-6)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Modern Networking Elements	Fast Ethernet , Gigabit WiFi, 4G/5G Cellular , Cloud Computing , IoT	3
2.	Basics of Modern Network Traffic	Types of Network Traffic, Real time characteristics, Big Data, Cloud Computing and Mobile Traffic, QoS and QoE – Difficulties in achieving them	4
3.	Drivers and Components of Flexible Networking	Evolving Requirements SDN and NFV	2
4.	Introduction to Software Defined Network (SDN)	Architecture , Characteristics, Standards, Open Development Initiatives	3
5.	SDN Data Plane and Open Flow	Data Plane Functions, OpenFlow logical network Device – Flow Tables, Group Tables, Openflow Protocol	6
6.	SDN Control Plane	Control Plane Architecture , OpenDaylight Project - Architecture and APIs	6
7.	SDN Application Plane	Application Plane Architecture, Data center networking and Information center networking over SDN	6
8.	Network Function	Virtualization Approach, NFV use	4

	Virtualization (NFV) - Concepts	cases, NFV and SDN	
9.	NFV Infrastructure	Virtualized Network Functions, Virtual LAN, Virtual Tenant Network	6
		Total number of Lectures	40

Detailed Syllabus Lecture-wise Breakup

Subject (t Code 17M11CS111			Semester (specify Odd/Even)	Semester Ode Month from	l Session 2019-2020 July 19 to December 20	
Subject N	Name	Data structure &	Algorith	ms for Big Data			
Credits		3		Contact Hours	3(L)		
Faculty		Coordinator(s)	Dr. Ama	marjeet Prajapati			
(Inames)		Teacher(s) (Alphabetically)	Dr. Am	arjeet Prajapati			
S.N.]	DESCRI	PTION	(B)	OGNITIVE LEVEL LOOM TAXONOMY)	
C110.1	Define with v	e basic concepts o various Big Data to	f Big Da echnolog	ta and relating them to th ies (e.g., Hadoop, Spark	em)	Remember Level (Level 1)	
C110.2	Explat Differ other	in Hadoop cluster entiate Hadoop D storage techniques	architec istribute s, e.g., N	ture and its components a d File System (HDFS) fro FS and UNIX file system	om	Understand Level (Level 2)	
C110.3	Const MapR proble	struct data structure and algorithms for HDFS and Reduce and further applying them to different Big Data lems.				Apply Level (Level 6)	
C110.4	Apply using	hashing on large Locality Sensitive	hashing on large scale multi-dimensional data sets Apply Level (Level 3)				
C110.5	Analy (e.g.,] for sol	ze and apply adva B and B+ Tree, R lving big data pro	ze and apply advance data structures and algorithmsAnalyze Lev3 and B+ Tree, R and R+ Tree, Matrix multiplication)(Level 4)ving big data problems(Level 4)				
C110.6	Evalua Machi	ate Streaming Alg	orithms, oop syste	Sublinear optimization, ems		Evaluate Level (Level 5)	
Module No.	Sub	title of the Module	То	pics in the module		No. of Lectures for the module	
1.	Intro Data	oduction to Big	Mo Va	tivation, Application, Domair rious tools and services	ns for Big Data,	2	
2.	Basi	c Statistics	Va tes	Various types of parametric and non-parametric test		2	
3.	File	system	Int Ty	Introduction to HDFS, Read and write operation, Types of failures		3	
4.	Map	Reduce	Int sch	Introduction to MapReduce, Mapreduce Job scheduling		3	
5.	Basi conc	c data structures cepts	Artagg	array: searching, sorting, ggregation on BIG DATA		4	
6.	Mat	rix Multiplication	Ma DA	ttrix Multiplication for BIG ATA		2	

7.	File systems	Various file systems like HDFS and Toku FS etc. Variable-sized rows, Concurrency-control mechanisms, Multithreading, Transactions, logging, ACID compliant, crash recovery	5
7.	Graphs	Spanning Tree (Min/Max), Searching (BFS), Shortest Path etc.	6
8.	Indexing strategies Trees	large Arrays, Hashing, AVL, B-tree, Tries, R and R+ Trees, Prefix Trees, Accumulo, Bigtable, bLSM, Cassandra, HBase,Hypertable, LevelDB are LSM trees, divide & conquer, mapreduce	6
9.	Bloom filters, HyperLogLog, Count–2 min sketch	Bloom filters, HyperLogLog, Count–2 min sketch	4
10	Applications (may use spark)	Streaming Algorithms, Sublinear optimization, Machine Learning Problems, Hadoop systems	2
11	Mathematical Foundation	Sparse: Vector Spaces, Matrix algebra, LSI,SVD, PSD	3
Total numb	er of Lectures		42

Recomm Reference	ended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, e Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Journals: IEEE Transactions on Knowledge and Data Engineering, ACM Transactions on Intelligent Systems and Technology (TIST), ACM Transactions on Knowledge Discovery from Data (TKDD)
2.	2. Tier-1 Conferences: SIGKDD, ICDE - International Conference on Data Engineering, CIKM - International Conference on Information and Knowledge Management, ICDM - IEEE International Conference on Data Mining, SDM - SIAM International Conference on Data Mining, PKDD - Principles of Data Mining and Knowledge Discovery, IEEE Big Data
3.	3. Online courses: http://grigory.us/big-data-class.html https://courses.engr.illinois.edu/cs598csc/fa2014/
4.	4. Book: Mahmoud Parsian, "Data Algorithms: Recipes for Scaling Up with Hadoop and Spark", O'Reilly Media, July 2015.

Detailed Syllabus Lecture-wise Breakup

Subject Code	17M11CS112	Semester Odd (specify Odd/Even)	Semester Even Session 2018 - 19 Month from July to December	
Subject Name	Machine Learning and	Data Mining		
Credits	3	Contact Hours	3	

Faculty	Coordinator(s)	Bharat Gupta
(Names)	Teacher(s)	Bharat Gupta

COURSE	OUTCOMES	COGNITIVE LEVELS
C112.1	Differentiate between Classification, Clustering and Association Rules techniques.	C2
C112.2	Apply and Compare different classification techniques, e.g., k-Nearest Neighbours, Naïve Bayes, ID3 Decision Trees, Support Vector Machine, Ensemble methods, etc.	C3
C112.3	Apply and compare different clustering techniques, e.g., k-means, k-mediods, etc.	C3
C112.4	Apply Apriori algorithm to generate the frequently used rules in a market basket analysis.	C3
C112.5	Apply different dimensionality reduction techniques e.g. PCA, SVD, Factor Analysis, Linear Discriminant Analysis, etc., in big data scenarios.	C3
C112.6	Use Artificial Neural Network techniques, i.e., Back propagation, Feed forward Network, Kohonen Self-Organising Feature Maps, Learning Vector Quantization, etc, for solving classification and clustering problems.	C3

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1	Introduction	Introduction to Machine Learning, Data Mining and Knowledge Discovery in Data Bases, Data Types	2
2	Classification	Introduction to classification, k-Nearest Neighbours, Naïve Bayes, Decision Trees	6
3	Regression	Linear Regression with One Variable, Linear Regression with Multiple Variables, Logistic Regression	4
4.	Clustering	Introduction, Different type of Clustering Methods, Partitioning Clustering Methods, Hierarchical Clustering Methods, k-means, k-medoids	6
5.	Association Rules	Frequent itemsets, Apriori algorithm, Association rules	4

6.	Dimensionality Reduction		Introduction, Subset Selection, PCA, SVD, Factor Analysis, Multidimensional Scaling, Linear Discriminant Analysis	8	
7.	Artificial Neural Methods		Cost Function, Back propagation, Feed forward Network, Network training, Error Propagation, Application of Neural Networks	8	
8.	Ensemble	Methods	Ensemble methods of classification-Bagging, Boosting, and Random Forest	4	
Total num	ber of Lectu	ires		42	
Evaluation	n Criteria				
Componer	nts	Ν	Aaximum Marks		
T1			20		
T2			20		
End Seme	ster Examin	ation	35		
ТА			25 (Attendance (10), Quiz performance (15))		
Total			100		
Recommen Reference	nded Readii Books, Jourr	ng materia nals, Repor	al: Author(s), Title, Edition, Publisher, Year of Publication etc. (rts, Websites etc.)	Text books,	
1		Jiawei H Publishe	Ian, Micheline Kamber, Data Mining, Morgan Kaufmann ers,Elsevier,2005		
2		Kimbal	l R. and Ross M ,The Data Warehouse Toolkit", Wiley		
3	3. Pujari, A		Arun K,Data mining and statistical analysis using SQL, U	niversities press	
4	•	Pang-Ni	ng Tan, Michael Steinbach, Vipin Kumar, Introduction to	Data Mining	
5. Soumer data", 1		Soumen data", N	Chakrabarti, Mining the Web: Discovering knowledge fr Aorgan Kaufmann, Elsevier	om hypertext	
6. Alex, Be McGrav		Alex, Be McGraw	rson,Stephen J.Smith, Data Warehousing, data mining ar 7-Hill,2004	nd OLAP,	
7. Inmon W.H.,Building the Data Warehouse ,4 th Edition, Wiley					
8. Anahor Wesley		Anahory Wesley	ry S. and Murray D, Data Warehousing in the Real World, Addison-		
9	9. Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, Pre Hall,2003			Topics, Prentice	
10. Mattison R. ,Web Warehousing and Knowledge Management", Tata McG Hill.			ata McGraw-		
11. David H			Iand, Heikki Mannila and Padhraic Smyth ,Principles of I	Data Mining,PHI	

12.	Transactions on Database Systems (ACM)
13	IEEE Transactions on Knowledge & Data Engineering
14	The VLDB Journal The International Journal on Very Large Data Bases

Syllabus Description

Course Code	17M12CS115 (C142)	Semester Odd	Semester3 rd Session2019 - 2020Month from JulytoDecember
Subject Name	3D Graphics and Animation		
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator	Dr. Suma Dawn
	Teacher(s)	Dr. Suma Dawn

COURSE	OUTCOMES	COGNITIVE LEVELS
C142.1	Explain the theories of 3D objects and various media environments.	Understanding Level (Level 2)
C142.2	Propose solutions to given case studies by illustrating various methods and environments related to 3D graphics such as geometry, transformations and modeling, visibility detection, lighting, illumination, etc.	Creating Level (Level 6)
C142.3	Create multimedia-rich content, specifically comic frames and animations.	Creating Level (Level 6)
C142.4	Design dynamic and interactive animations using scripting to implement fun games and create richer content.	Creating Level (Level 6)
C142.5	Critique and compare various advanced animation principles such as rigid body dynamics, natural phenomena and modelling, 3D object manipulation, etc.	Evaluating Level (level 5)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module		
1.	Introduction	Fundamentals of 2D and 3D graphics and Animation Designing	1		
2.	3D Graphics	3D Primitives, Geometry, transformations and Modeling; Visibility Detection; Lighting, Illumination, and Shading, Texture Mapping; Sub-division Surfaces, Implicit surfaces and voxels, creating complex geometry; Imaging and Rendering. Related Programming, 2D and 3D object creation	22		
3.	Animation	Fundamentals; Motion Creation, Animating articulated structures, kinematics and inverse kinematics; Creation of simple animation with and without actionscripting.	17		
4.	Introduction to Advanced Animation and Principles.	Physically based modeling and simulation, rigid body dynamics; Natural Phenomena and Modeling (plants, arms, etc), and other Simulation; 3D object manipulation, Visualization and other advanced algorithms and topics.	2		
	Total number of Lectures				

Evaluation	A. THEORY Examination		Marks
Criteria	I. Test1		20
	II. Test2		20
	III. End Term		35
	B. Internal - including Assignments, Quizzes, attendance		25
		Total	100

Recommende	d Reading material: (APA format)	
1.	Parent, R. (2012). Computer animation: algorithms and techniques. Newnes.	
2.	Walnum, C. (1995). 3-D Graphics Programming with OpenGL(Vol. 1, p. 996). Que Corporation.	
3.	Buss, S. R. (2003). <i>3D computer graphics: a mathematical introduction with OpenGL</i> . Cambridge University Press.	
4.	Giambruno, M. (2002). 3D graphics and animation. New Riders Publishing.	
5.	Rogers, D. F. (2000). An introduction to NURBS: with historical perspective. Elsevier.	
6.	Newman, W. M., & Sproull, R. F. (1979). Principles of interactive computer graphics. McGraw-Hill, Inc	
7.	Watt, A., & Policarpo, F. (2005). <i>Advanced game development with programmable graphics hardware</i> . AK Peters/CRC Press.	
8.	Ferguson, R. S. (2013). Practical algorithms for 3D computer graphics. AK Peters/CRC Press.	
9.	Pakhira, M. K. (2010). Computer Graphics, Multimedia and Animation. PHI Learning Pvt. Ltd	
10.	Perkins, T. (2007). Adobe Flash CS3 Professional Hands-On Training. Peachpit Press.	
11.	Springer's Multimedia Tools and Applications	
12.	IEEE Transactions on Multimedia	
13.	ACM Transactions on Multimedia Computing, Communications and Applications	
14.	Interactive Multimedia Electronic Journal of Computer-Enhanced Learning.	

Detailed Syllabus Lab-wise Breakup

Course Code		17M15CS111	Semester: OD	emester: ODD Session 2018 - Month from Ju		8 -2019 July to Dec, 2018			
Course Name		Advanced Algorithms Lab							
Credits		1		Contact H	Hours		2		
Faculty (N	ames)	Coordinator(s)	Deepti Singh	Deepti Singh					
		Teacher(s) (Alphabetically)	Dr. Nisha Cha	urasia					
COURSE	OUTCO	OMES					COGNITIVE LEV	/ELS	
C170.1	Impler solving	nent algorithms and us g computing problems.	e appropriate ac	lvanced data	a structure	es for	Level 3: Apply		
C170.2	Design progra these s	n algorithms using the mming strategies, and trategies.	divide-and-con l further recite	quer, greed algorithms	y and dyr s that en	namic nploy	Level 1: Remember Level 5: Evaluate		
C170.3	Illustra import	ate the mathematical ant flow algorithms.	foundation of	network flo	ows and	some	Level 2: Understand Level 3: Apply	Level 2: Understand Level 3: Apply	
C170.4	Impler validat	nent randomized algo the their correctness and	orithms to solv complexity.	e various	problems	, and	Level 3: Apply Level 4: Analyze		
C170.5	Unders Compl	stand P, NP, polyno leteness.	mial reduction	reduction, NP-hardness, and NP- Level 2: Understar Level 4: Analyze		d			
C170.6 Comprehend and select algorith specific manner.		orithm design	approaches	in a pro	blem	Level 6: Create			
ModuleTitle of the ModuleNo.			Lis	t of Expe	rimen	ts	СО		
1. Funda structu proble		lamentalsof d tures and algorith lem solving	data Searching mic Linked I dynamic t	Searching, Sorting, time complexity, Heaps, Array Linked List, Trees, Fibonacci heaps, splay tree dynamic trees.		ty, Heaps, Arrays, eaps, splay trees,	CO1		
2.	Divide Techniqueand ConquerConquer Solving Matrix multiplication problem and subset- sur problem using divide-and-conquer approach			em and subset- sum proach	CO2				
3. Greedy Algorithms		Greedy Problem,I Knapsack schedulin Huffman	Greedy Approximation algorithms- Set Cover Problem,K Centers Problem,Fractional and 0/1 Knapsack, Coinage problem; Bin packing; Job scheduling, Graph coloring; and Text compression using Huffman coding and Shannon-Fano coding.		CO2				
4.	4. Dynamic Programming Technique		hing approach, Dynamic rectangle	Fundamentals of Dynamic programming based solution approach, Printing Shortest Common Supersequence, Dynamic Programming on Trees, Maximum sum rectangle in a 2D matrix.		CO2			
5. Graph Algorithms		Solve and Shortest Spanning Shortest problem,	Solve and analyze Graph problems, Algorithms. All Pair Shortest Problem Subset-sum problem. Minimum Spanning Trees (Prim's and Kruskal algorithms); Shortest Path using Dijkstra's algorithm, K-clique problem, Graph Coloring problem.		CO1, CO2				

6.	Flows in Network	Network flows - max flow and min-cost flow/circulation, Edmonds-Karp algorithm	CO3
7.	Tractable and Non- Tractable Problems	One Way of Coping with NP-Hardness. Randomized Rounding. Vertex Cover and Travelling Salesman Problem.	CO4, CO5
8.	Project	Project	CO6
Evaluation Criteria Components Maximum Marks Lab Test# 120 Lab Test# 2 20 D2D work 60 Total 100			
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			

1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, MIT Press, 3rd Edition, 2009
----	--

2.	Hochbaum "Approximation Algorithms for NP-Hard Problems", 1996.
----	---

3. Ahuja, Magnanti and Orlin, "Network Flows: Theory, Algorithms and Applications", 1993.

4.	Horowitz and Sahni, Fundamentals of Computer Algorithms, Computer Science Press, 197
----	--

5. Study material on //fileserver2

Lab-wise Breakup

Course Code	17M15CS112	Semester: ODD		Semester: I Session 2018 -2019 Month from: July-Dec			
Course Name	Machine Learning and Data Mining Lab						
Credits	1		Contact Hours		2		
Faculty (Names)	Coordinator(s)	Bharat Gupta					
	Teacher(s) (Alphabetically)	Bharat Gupta					

COURSE	COGNITIVE LEVELS					
C173.1	C173.1 Understanding basic syntax in Python					
C173.2	Understanding Control Flow and looping in Python	Understanding Level (C2)				
C173.3	Apply and Compare different classification techniques, Logistic Regression e.g., k-Nearest Neighbours, Support Vector Machine, etc.	Apply Level (C3)				
C173.4	Apply clustering techniques k-Means on a dataset	Apply Level (C3)				
C173.5	Apply dimensionality reduction technique e.g. PCA on a dataset.	Apply Level (C3)				
C173.6	Analyse the real world problem to identify the appropriate data science techniques for classification, clustering and Association rules	Analyse Level (C4)				

Module No.	Title of the Module	List of Experiments					
1.	Python basic syntax	Practicing basic python commands	CO1				
2.	Control Flow and looping in Python	 Write a python program that displays the sum of all digits for a user entered number. Write a python function leap_year that prints all the leap years between ranges. The user will enter lower and upper year boundary inside the function. Write a program that outputs all possible strings formed by using the characters a, c, t, o, and g. a particular character can appear only once and all the characters should be used in the formation of string. Write a python script that takes input from file 	CO1				
		4. Write a python script that takes input from file representing a paragraph, and writes to a file named					

		 out.txt with all the stop words (a, an, the) removed. 5. Write a recursive function in python to print a Fibonacci series. The Fibonacci sequence is the series of numbers: 0,1,1,2,3,5,8,13,21,34,etc 6. Write a program for sorting the integer data by using quick sort. 					
3.	K-NN	 Implement the KNN (K Nearest Neighbours) algorithm in python. Your program should have different functions as follows: 1. HandleData: Open the dataset from CSV and split into test/train (datasets). A ratio of 67/33 for train/test is a standard ratio used for splitting data. 2. Similarity: Calculate the distance between two data instances. The Euclidean distance is used for calculating the difference. It is defined as the square root of the sum of the squared differences between the two arrays of numbers. Only first 4 attributes are used for calculating the distance. 3. Neighbours: Locate k most similar data instances. 4. Response: Generate a response from a set of data instances. It is a function for getting the majority voted response from a number of neighbors. It devises a predicted response based on those neighbors. 5. Accuracy: Summarize the accuracy of predictions. An easy way to evaluate the accuracy of the model is to calculate a ratio of the total correct predictions out of all predictions made, called the classification accuracy. 6. Main: Take split = 0.67, k=3. 	CO3				
4.	Weka Toolkit	 Apply the KNN algorithm in Weka tool on the iris dataset. Compare the results of your implemented algorithm with algorithm of Weka tool. Implement the linear Regression. The data will be taken as input from the file. Select the appropriate dataset from the website https://archive.ics.uci.edu/ml/index.php". Justify the reason why the dataset has been selected. Apply the Linear regression in Weka tool on the same dataset. Compare the results of your implemented algorithm with algorithm of Weka tool. 	CO3				
5.	Clustering	 Remove the label column of the Parkinson_dataset.csv dataset and implement the following: a) Perform K-Means clustering and Hierarchical clustering. b) Use Manhattan distance c) Use Average merging Strategy in Hierarchical 	CO4				

		clustering.				
		d) Use three different K values in K-Mean clustering				
		a) Validate using PMSE and compare both the				
		tochniques				
		techniques.				
	Logistic regression	Divide the Parkinson, dataset csy dataset in training and	CO3			
6	and SVM	testing dataset randomly and implement the following:	005			
		a. Classify the disease using Logistic regression and				
		SVM				
		b. Find out the accuracy of classification Model.				
		c Perform 5-fold cross- validation				
		d Compare the result of both techniques using				
		mathlatlih				
		matplotito.				
7	scikit-learn toolkit	Implementation of the following algorithms in scikit-learn	CO5			
		a. Principal components analysis (PCA)				
		b. Decomposing signals in components (matrix				
		factorization problems)				
		C. K-means				
8	Mini Project	1. Specify the broad topic of your mini project based on	CO6			
U		the Machine Learning and Data mining.				
		2. Study minimum 6 quality research papers based on the				
		selected topic.				
		3. Do the SWOT analysis of selected research				
		papers/reports.				
		4. Identify the research problem.				
		5. Propose your novelty/improvement in terms of				
		algorithm/new feature.				
		6. Design the architecture for the proposed problem.				
		7. Design the test bed.				
		8. Design a set of experiments to be carried out for the				
		proposed problem.				
		9. Perform the experimental analysis (in Python language				
		10. Propore your report				
		10. Frepare your report.				
		contribution				
Evoluction	Critorio	controuton.				
Evaluation	Cinterna					
Component	S	Maximum Marks				
$\begin{array}{ccc} Lab Test1 & 20 \\ Tab Test2 & 20 \end{array}$						
Mini Projec	t Regularity performa	20				
Total	, regularity, performation	100				

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	Jiawei Han, Micheline Kamber, Data Mining, Morgan Kaufmann Publishers, Elsevier, 2005						
2.	Kimball R. and Ross M, The Data Warehouse Toolkit", Wiley						
3.	Pujari, Arun K, Data mining and statistical analysis using SQL, Universities press						
4.	Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining						
5.	Soumen Chakrabarti, Mining the Web: Discovering knowledge from hypertext data", Morgan Kaufmann, Elsevier						
6.	Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall,2003						
7.	Mattison R., Web Warehousing and Knowledge Management", Tata McGraw-Hill.						
8.	David Hand, Heikki Mannila and Padhraic Smyth ,Principles of Data Mining,PHI						
9.	Transactions on Database Systems (ACM)						
10.	IEEE Transactions on Knowledge & Data Engineering						
11.	The VLDB Journal The International Journal on Very Large Data Bases						

Lab-wise Breakup

Course Code		17M15CS113		Semester		Semester Session 2018 -2019			
				Odd Month from Ju			lly to Dec, 2018		
Course Name		Cloud Techno	ology	' Lab					
Credits		1			Contact Hours			2 Hours	
Faculty (Names)		Coordinator(s	5)	Dr Prakash Ku	mar				
		Teacher(s) (Alphabeticall)	y)	Dr. Prakash Kumar					
COURSE (OUTCO	OMES						COGNITIVE LEVELS	
C171.1	De De	monstrate the are ployment models e	chitect etc.	ture and layers	of Cloud S	Service M	odels,		
C171.2	Un alo	Understand the working of CloudSim and run different scheduling alogorithms.					Apply (level 3)		
C171.3		Analyze various Scheduling algorithms and compare their performances					Analyze (level 4)		
C171.4 Aj		ply and evaluate nniques.	the energy aware algorithms for using DVFS				Evaluate (level 5)		
Module Title of the Module List of Experiments						СО			

No.	The of the woodule	List of Experiments					
1.		Create Virtual Machines (VMs) on CloudSim.	CO1				
2.	CloudSim installations and Use	Allocate different Cloudlets to VMs and Data Centers using different scheduling algorithms					
3.	Analyze various Scheduling	Create different Data Centers and allocate the VMs to them and analyze the outcomes	CO3				
4.	algorithms in different scenarios on cloudsim	Assign the cloudlets and change the scheduling techniques for various scenarios					
5.	Evaluate Energy Aware Simulations using DVFS	Apply and evaluate energy aware algorithms using DVFS techniques	CO4				
<i>n</i> .							
Evaluation	Criteria						
Components Lab Test# 1 Lab Test# 2		Jaximum Marks 20 20					

D2D work	60
Total	100

Reco Refe	ecommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, eference Books, Journals, Reports, Websites etc. in the IEEE format)							
1.	K. Hwang, Geoffrey C. Fox, Jack J. Dongarra, "Distributed and Cloud Computing- From Parallel Processing to the Internet of Things", Morgan Kauffman Publishers, Elsevier.							
2	George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud" O'REILLY publication.							
3	"Virtualization Overview", White paper, VM Ware.							
4.	Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya, <u>CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and</u> <u>Evaluation of Resource Provisioning Algorithms</u> , Software: Practice and Experience, Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644, Wiley Press, New York, USA, January 2011.							
5.	Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajkumar Buyya, Mihai Alexandru, <u>Energy-aware Simulation with DVFS</u> , Simulation Modelling Practice and Theory, Volume 39, No. 1, Pages: 76-91, ISSN: 1569-190X, Elsevier Science, Amsterdam, The Netherlands, November 2013.							
6.	Rajkumar Buyya, Rajiv Ranjan and Rodrigo N. Calheiros, <u>Modeling and Simulation of Scalable Cloud</u> <u>Computing Environments and the CloudSim Toolkit: Challenges and Opportunities</u> , Proceedings of the 7th High Performance Computing and Simulation Conference (HPCS 2009, ISBN: 978-1-4244-4907-1, IEEE Press, New York, USA), Leipzig, Germany, June 21 - 24, 2009 Keynote Paper.							
m.								

Lecture-wise Breakup

Course Code		18M11GE	E111 Semester Odd Semester I Session			2018 -2019				
			Month from July 20				8 to Dec 2018			
Course Na	Course Name		Research Methodology & Intellectual Property Rights							
Credits		2		Contac Hours	Contact 2-0 Hours					
Faculty		Coordina	ntor(s)	Prof. E	B.P. Chan	nola				
(Names)		Teacher(s (Alphabet	s) tically)	Prof. E	B.P. Chan	nola				
COURSE	OUTC	COMES							COGNITIVE LEVELS	
After pursu	ing the	e above mer	ntioned	course, the	e students	s will be	e able to:			
C01	under	rstand the basic concepts and types of research						Understanding Level (C2)		
CO2 defir analy		e a research problem, its formulation, methodologies and yze research related information						Analyzing Level (C4)		
CO3 follo relate		w research ethics, understand IPR, patents and their filing ed to their innovative works.							Understanding Level (C2)	
CO4	under test o	stand and analyze the statistical data and apply the relevant f hypothesis in their research problems						Analyzing Level (C4)		
Module No.	Title Mod	of the ule	Topics in the Module						No. of Lectures for the module	
1.	Rese	arch	What is research? Types of research. What is not research? How to read a Journal paper?					at is not	3	
2.	rt writing	How to write report? Use of Mendeley in report writing. How to write a research paper? Problem identification and solving.				n report Problem	4			
3.	Ethic and F meth	s, IPR Research odologies	Research ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in research process and common methodologies to attempt solution to research paper.					8		

	I. Basics of statistics and probability distributions		Basic statistical concepts. Handling of raw data, Some common probability distributions.	7
	5.	Test of hypothesis and regression analysis	Hypothesis testing. Parametric and non-parametric data, Introduction to regression analysis.	8
			Total number of Lectures	30
	(Cour	se delivery metho	d: open ended discussion, guided self-study, lectures)	
Eva	luation	n Criteria		
Viva Viva End Assi Tota	ComponentsMaximum MarksViva –1 before T2 1 Exam15Viva –2 after End Sem.20End Semester Examination35Assignments30 (Quiz, Assignments)Total100			
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Stuart Melville and Wayne Goddard , Research methodology: An Introduction for Science & Engineering Students, Kenwyn, South Africa : Juta& Co. Ltd., 1996.			
2.	Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, New Delhi, 2009.			
3.	Kumar, Ranjit, Research Methodology: A Step by Step Guide for Beginners, 2nd Edition, Sage Publications Ltd., 2005.			
4.	Ramappa, T., Intellectual Property Rights Under WTO, S. Chand, New Delhi, 2008.			
5.	Wayne Goddard and Stuart Melville, Research Methodology: An Introduction, Kenwyn, South Africa : Juta& Co, 2001.			

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	18M12CS117	Semester (Od	ld)	Semeste Month	er I Session 2018 -2019 from July - December
Course Name	Blockchain Technology and Applications				
Credits	03	Contact H		Iours	(L+T) (3+1)
Faculty (Names)	Coordinator(s)	Dr. P. Raghu Vamsi			
	Teacher(s) (Alphabetically)	Dr. P. Raghu Vamsi			

COURSE OUTCOMES		COGNITIVE LEVELS
C141.1	Understand the structure of a blockchain and why/when it is better than a simple distributed database	Understand Level (Level 2)
C141.2	Analyze the incentive structure in a blockchain based system and critically assess its functions, benefits and vulnerabilities	Evaluate Level (Level 5)
C141.3	Evaluate the setting where a blockchain based structure may be applied, its potential and its limitations	Apply Level (Level 3)
C141.4	Attain awareness of the new challenges that exist in monetizing businesses around blockchains and smart contracts	Analyze Level (Level 4)
C141.5	Describe and apply the differences between the most prominent blockchain structures and permissioned blockchain service providers, as well as rising alliances and networks	Apply Level (Level 3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Blockchain Basics	What is Blockchain (BC), public ledgers, BC as public ledgers; BC history - Bitcoin and Cryptocurrency, BC 2.0, Smart contracts; BC architecture – Blocks in BC, transactions and distributed consensus; BC conceptualization - The Chain and the Longest Chain, Cryptocurrency to Blockchain 2.0, Permissioned Model of Blockchain.	4
2.	Cryptographic Primitives	Cryptographic Hash Function, Properties of a hash function, Hash pointer and Merkle tree, Digital Signature, Public Key Cryptography, A basic cryptocurrency	5
3.	Distributed Consensus	Distributed consensus in open environments, Consensus in a Bitcoin network; Bitcoin Consensus - Proof of Work (PoW) – basic introduction, Hashcash PoW, Beyond Consensus in Bitcoin - Bitcoin PoW, Attacks on PoW and the monopoly problem, Proof of Stake, Proof of Burn and Proof of Elapsed Time; Consensus in Bitcoin (The Miners) - The life of a Bitcoin Miner, Mining Difficulty, Mining Pool.	6
4.	Smart contracts – 1	Smart contracts, Solidity, REMIX IDE, Ethereum Blockchain, Ethereum Virtual Machine.	8
5.	Smart contracts – 2	Decentralized applications (Dapps), Truffle development, Design improvements, Application models and standards	7

6.	Use cases	Blockchain for Voting, Government Use-cases – Public distribution system, Blockchain for Tax Payments, Blockchain for Managing Land Registry Records	3	
7.	Other Blockchain frameworks	IBM Hyperledge fabric	7-10	
9.	Research aspects in Blockchain	Consensus protocols, Identity management, Strong and weak synchronization, avoiding forks, Mining improvements.	3	
		Total number of Lectures	42-45	
Eval	Evaluation Criteria			
Com	ponents	Maximum Marks		
T1	1	20		
T2		20		
End	Semester Examination	35		
ТА		25		
Tota	1	100		
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Drescher, Daniel. "Blockcha	ain basics", Apress, 2017.		
2	Mougayar, William. "The business blockchain: promise, practice, and application of the next Internet technology". John Wiley & Sons, 2016.			

3. Dannen, Chris. "Introducing Ethereum and Solidity", Berkeley: Apress, 2017.

4. Prusty, Narayan. "Building Blockchain Projects", Packt Publishing Ltd, 2017.

5. Pilkington, Marc. "Blockchain technology: principles and applications" Research handbook on digital transformations, 2016.

6.	Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder. Bitcoin and			
	Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press, 2016.			

7. Swan, Melanie, "Blockchain: Blueprint for a new economy", O'Reilly Media, Inc., 2015.

8. Antonopoulos, Andreas M. "Mastering Bitcoin: unlocking digital cryptocurrencies", O'Reilly Media, Inc., 2014.