Detailed Syllabus

Lecture-wise Breakup

			Semester E	Even	Semes	ter II Sess	ion 2018 -2019
Course C	ode 15B11M	A211	Semester 1	JVCII			2019- June 2019
Course Name			Mathematics 2				
Credit		4		Contact			3-1-0
	Coordina	tor(s)	Dr. Lokendra Kumar & Dr. Amita			Bhagat	
F 1/		()					r. D. C. S. Bisht,
Faculty	Teache	r(s)	(s) Dr. Neha Ahlawat, Dr. Neha Singhal, Dr. Pa				
(Names	6) (Alphabet		Priyanka Sang	al, Prof.	R.C. Mit	tal, Prof. Sar	njeev Sharma, Dr.
			S	heetal De	shwal, D	r. Yogesh C	upta
COURSE	OUTCOMES						COGNITIVE
COURSE	OUTCOMES						LEVELS
After pursu	ing the above mer						
C106.1	apply different m second order.	nethods	for solving ordin	nary diffe	rential e	quations of	Applying Level (C3)
C106.2	explain different	tests/me	ethods of conver	rgence for	r infinite	series.	Understanding Level (C2)
C106.3		nd the series solution of differential equations and use it to instruct Legendre's polynomials and Bessel's functions.				Applying Level (C3)	
C106.4	classify the parti-	assify the partial differential equations and apply Fourier series to ad their solution.				Applying Level (C3)	
C106.5	explain Taylor's	explain Taylor's & Laurent's series expansion, singularities, residues					Understanding
	and transformation						Level (C2)
C106.6	apply the concep		•		ne proble	ms of	Applying Level
	complex differen	aplex differentiation and integrations.					(C3)
Module	Title of the	e of the Topics in the Module				No. of	
No.	Module						Lectures for
							the module
1.	Second Order	II .	r Differential I	-			5
	Linear		constant coeff				
	Differential Equations	Param	cients, Change	oi var	iabie, v	ariation of	
2.	Convergence of		ergence of ser	ies Test	ts of co	nvergence	7
2.	Series and	II .	-			_	/
	Series and Alternating Series, Absolute & Conditional Fourier Series Convergence, Uniform Convergence. Fourier						
	Series.						
3.	Series Solution	Series	Solutions, Bo	essel Fu	nction,	Recurrence	7
	and Special	Relati	ons and Orthog	gonality.	Legendre	e functions,	
	Functions	Recur	rence relations a	and Ortho	gonality	•	
4.	Partial	Classi	fication and So	olution of	f PDE, I	Equation of	5

	Differential	vibrating string, Solution of one dimensional wave	
	Equations	& heat equations.	
5.	Complex	Limit, Continuity and Differentiability of	3
	Variables	Functions of Complex Variables, Analytic	
		Functions, Cauchy's Riemann Equations.	
6.	Complex	Cauchy Integral Theorem, Cauchy Integral	4
	Integration	Formula and Applications.	
7.	Series	Taylor and Laurent Series Expansion, Poles and	4
	Expansion	Singularities.	
8.	Contour	Residues, Cauchy's residue theorem and its	5
	Integration	applications.	
9.	Conformal	Bilinear transformation	2
	Mapping		
Total nu	ımber of Lectures		42
Evaluati	ion Criteria		
Compon	ients	Maximum Marks	
T1		20	
T2		20	
End Sem	nester Examination	35	
TA		25 (Quiz, Assignments, Tutorials)	

Recommended Reading material:

Total

Jain, R. K. & Iyenger, S. R. K., Advanced Engineering Mathematics, 3rd Ed., Narosa 1. Publishing House, New Delhi, 2008.

100

Brown, J.W. & Churchill, R.V., Complex Variables and Applications, 6th Ed., McGrawHill, 2. 1996.

- Prasad, C., (a) Mathematics for Engineers (b) Advanced Mathematics for Engineers, Prasad 3. Mudranalaya, 1982.
- Kreysizg, E., Advanced Engineering Mathematics, 9th Edition, John Wieley& Sons, Inc., 4.
- Simmons, G. F., Differential Equations with Applications and Historical Notes, 2nd Ed. 5. McGraw Hill, 1991.
- Spiegel, M.R., Complex Variables, Schaum's outline series, MacGraw-Hill, 2009.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11PH211	Semester: Even		Semester: II Session 2018 -2019 Month from: January to June		
Course Name	PHYSICS-2					
Credits	4		Contact H	Iours	4	

Faculty (Names)	Coordinator(s)	Manoj Kumar & Suneet Kumar Awasthi
	Teacher(s) (Alphabetically)	Alok Pratap Singh Chauhan, Amit Verma, Anuj Kumar, Anuraj Panwar, Anshu Varshney, Bhubesh Chander Joshi, Dinesh Tripathi, Himanshu Pandey, Manoj Tripathi, Prashant Chauhan, R. K. Dwivedi, S. C. Katyal, Vikas Malik

COURSE	OUTCOMES	COGNITIVE LEVELS
C102.1	Recall the basic concepts relating to electromagnetic theory, statistical physics, lasers, fiber optics and solid state physics.	Remembering (C1)
C102.2	Illustrate the various physical phenomena with interpretation based on the mathematical expressions involved.	Understanding (C2)
C102.3	Apply the basic principles in solving variety of problems related to lasers, electromagnet theory, fiber and solid state physics.	Applying (C3)
C102.4	Analyze and examine the solution of the problems using physical and mathematical concepts involved in the course.	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module			
1.	Electromagnetism and Optical Fiber	Coulomb's law, Gauss law and its applications, Treatment of electrostatic problems by solution of Laplace and Poisson's equations, Biot-Savart law, Ampere's law, Maxwell's equations in free space and dielectric media. Electromagnetic waves, Derivations of expressions for energy density and energy flux (Poynting vector) in an electromagnetic field, Radiation pressure. Propagation of EM waves through boundary-Reflection, Refraction, Absorption and Total Internal Reflection. Light propagation in fibers and Graded Index fibers, Numerical Aperture and Attenuation, Single and Multimode.	17			
2.	Statistical Distributions and Lasers	Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac distributions and their applications. Principle and working of laser, Einstein A and B coefficients, Ruby Laser.	09			
3.	Solid State Physics	Basic ideas of bonding in solids, Crystal structure, Bragg's law X-ray diffraction, Band theory of solids, Distinction between metals, semiconductors and insulators. Electronic conduction in metals, Intrinsic and extrinsic (n and p-type) semiconductors and their electrical conductivity. p-n junction and Hall effect in semiconductors.	14			
	Total number of Lectures 40					
Evaluatio	Evaluation Criteria					

Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
TA	25 [2 Quiz (10 M), Attendance (10 M) and Cass performance (5 M)]	
Total	100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 D. J. Griffiths, Introduction to electrodynamics, Pearson India.
 G. Keiser, Optical Fiber Communications, Tata Mc Graw Hill Education.
 A. Beiser, Concepts of Modern Physics, Mc Graw Hill International.
 S. O. Pillai, Solid State physics, New Age International (P) Limited.
 B. G. Streetman & S. Banerjee, Solid State Electronic Devices, Prentice-Hall India.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11EC111	Semester - Ev	ven .		er II Session 2018 -2019 From Jan to June	
Course Name	Electrical Science -1					
Credits	4		Contact I	Hours	4	

Faculty (Names)	Coordinator(s)	Ms Monika (JIIT – 62), Dr Ashish Gupta (JIIT – 128)
	Teacher(s) (Alphabetically)	Dr Ankit Garg, Mr Atul Kumar Srivastava, Mr Gopal Rawat, Dr Kaushal Nigam, Dr Neetu Joshi, Dr Rachna Singh, Dr Reema Budhiraja, Mr Ritesh Sharma, Dr Sajaivir Singh, Dr Shruti Kalra, Dr Vijay Khare, Dr Vimal Kr. Mishra

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Recall the concepts of voltage, current, power and energy for different circuit elements.	Remembering (Level I)
CO2	Apply the Kirchhoff laws to identify the node voltages and branch currents, apply different network theorems in the complex networks.	Applying (Level III)
СОЗ	Demonstrate the physical model for given Sinusoidal AC signal and construct the phasor diagrams.	Applying (Level III)
CO4	Explain V-I characteristics of Diodes and Illustrate the construction and operation of Bipolar Junction Transistor (BJT) for different configurations.	Analyzing (Level IV)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic Concepts	Voltage, Current, Power and Energy analysis for Circuit elements (R, L, C), Independent and Dependent Sources, Kirchhoff's Laws, Voltage Divider rule, Current Divider rule, Star-Delta Transformation, Source transformation,	6
2.	DC Circuit Analysis	Mesh and Supermesh Analysis, Nodal and super nodal Analysis,	4
3.	Network Theorems	Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	6
4.	Sinusoidal Steady State Analysis	Physical Model for a Sinusoid, Average Value, Effective Value, Phasor presentation, Addition of Phasor using Complex Numbers, Concepts of impedance and admittance. Network Analysis and Theorems: Mesh and Nodal analysis, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem	8
5.	Diodes & Applications	PN Junction, Biasing the PN Junction, Current–Voltage Characteristics of a PN Junction, PN Junction Diodes, Half Wave Rectifier & Full Wave Rectifier, Clipper & Clamping Circuits, Zener Diodes and applications, Line and load regulations	8
6.	Bipolar Junction Transistor	Transistor Construction and Basic Transistor Operation, Transistor Characteristics (CE, CB, CC), Transistor Biasing	11

	& Stability, Small Signal BJT Amplifier (using h-parameter model)	
	Total number of Lectures	43
Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
TA	25 (Assignment = 12, Quiz = 5, Attendance = 8)	
Total	100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", sixth edition, John Wiley & Sons.

2. Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 7th Edition, Prentice Hall of India.

Detailed Syllabus

Course Code	15B11CI211	Semester Even (specify Odd/Even)		Semeste 2019 Month fro		Session ry to May	2018 -
Course Name	Software Development Fundamental - 2						
Credits	4		Contact I	Hours		3 (L)+ 1 (T	()

Faculty (Names)	Coordinator(s)	Dr. Aparajita Nanda, Sarishty Gupta		
		Aditi Sharma, Aparajita Nanda, Arpita Jadhav Bhatt, Manju, Monali Mavani, Sakshi Aggarwal, Sangeeta, Sarishty Gupta, Sonal		

COURSE OUTCOMES		COGNITIVE LEVELS			
CO1	Develop C programs using structures, pointers, functions, and files.	Apply Level (C3)			
CO2	Solve problems related to data storage, retrieval, searching, and sorting by utilizing stack/queue.	Apply Level (C3)			
CO3	Make use of linked list to solve various problems.	Apply Level (C3)			
CO4	Apply binary tree data structure to perform operations like searching, insertion, deletion, and traversing.	Apply Level (C3)			
CO5	Explain basic features of object-oriented design such as objects, classes, encapsulation, polymorphism, inheritance, and abstraction	Understand Level (C2)			
CO6	Develop C++ programs using OOPs concepts like encapsulation				

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Advanced C programming	Revision of Functions, Pointers, Pointer arithmetic, Handling 1 D and 2 D array using its pointer notation, sending these in function, Handling structures using pointer. FILE handling (binary and text), Linear and binary search, insertion, selection, and bubble sort.	14
2.	Implementations and applications of elementary data structures	Stacks, Stack and Stack applications (array based implementation. Queue and queue applications, Circular Queue and Deque using array, Linked list, Link list application, link list based storage, sparse matrix, Binary trees, Binary tree Implementation: array and pointer based	15
3.	Object Oriented Programming	Introduction to of Object-Oriented Programming using C++, objects, classes, methods, implementing functions in the class, use of scope resolution operator, Access Modifiers, static functions and static data members, constructor and destructors, Inheritance: single, multiple, multi-level and hybrid, Polymorphism: function and operator overloading, virtual member functions, abstract base classes and pure virtual functions, Introduction to SDLC.	16

	Total number of Lectures	45
Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
TA	25 (Assignments (10) +Attendance & Class Performanc	e (10)+
Tutorial (5))		
Total	100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) H. Cooper and H. Mullish, Jaico Publishing House. "Spirit of C", 4th Edition, Jaico Publishing 1. House, 2006 Herbert Schildt. "The Complete Reference C", 4th Edition, TMH, 2000 2. Brian W. Kernighan and Dennis M. Ritchie ,"The C Programming Language", 2nd Edition, 3. Prentice-Hall India, New Delhi, 2002 Ellis Horowitz, Sartaj Sahni Fundamentals of Data Structures in C, 2008, Silicon press 4. E Balaguruswamy, Object Oriented Programming With C++, 4th Edition, TMH, 2008 5 Manuals provided by the department 6.

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17PH271	Semester Even		Semeste	er II Session 2018-2019
				Month:	from Jan-June
Course Name	Physics Lab-2				
Credits	1		Contact H	Iours	2

Faculty (Names)	Coordinator(s)	Vivek Sajal and Anshu Varshney
	Teacher(s) (Alphabetically)	Alok Pratap Singh Chauhan, Amit Verma, Anuj Kumar, Anuraj Panwar, Bhubesh Chander Joshi, D. K. Rai, Dinesh Tripathi, Himanshu Pandey, Manoj Kumar, Manoj Tripathi, N. K. Sharma, Navendu Goswami, Prashant Chauhan, S. C. Katyal, Sandeep Chhoker, Swati Rawal, Vikas Malik,

COURSE	OUTCOMES	COGNITIVE LEVELS
C171.1	Recall laser, fibre optics, semiconductor and solid state physics principles behind the experiments.	Remembering (C1)
C171.2	Explain the experimental setup and the principles involved behind the experiments performed.	Understanding (C2)
C171.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C171.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C171.5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	СО
1.	Semiconductor Physics	 1(a) To determine the band gap in a semiconductor using its p-n junction diode. 1(b) To draw the I-V characteristic of Solar cell and find maximum power and fill factor. 2(a) To measure resistivity of semiconductor at different temperatures by Four Probe Method. 2(b) To determine Band Gap of the semiconductor. 3(a) To study the Hall effect in semiconductor and to determine its allied coefficients. 3(b) To study the magneto resistance of given semiconductor 	1-5
2.	Solid State Physics	 material. 4. To study the Magnetostriction in metallic rod with the help of Michelson interferometer arrangement. 5. To find the susceptibility of a paramagnetic substance (FeCl₃) in the form of liquid or a solution. 6. Study of dielectric (constant) behavior and determination of Curie's temperature of ferroelectric ceramics. 	1-5
3.	Modern Physics	7(a) To determine the value of specific charge (e/m) of an electron by Thomson's method. (b) To determine the velocity of ultrasonic wave in the medium of liquid using ultrasonic interferometer and to determine the compressibility of the given liquid. 8. To determine the value of specific charge (e/m) of an electron by Magnetron method.	1-5

		9(a) To determine Planck"s Constant using LEDs of known wavelength. (b) To study the photovoltaic cell and hence verify the inverse square law.	
4.	Optical Fiber	10(a) To determine the numerical aperture of a given multimode optical fiber. (b) To measure the power loss at a splice between two multimode fibers and to study the variation of splice loss with Longitudinal and Transverse misalignments of the given fibers.	1-5
Evaluation 6	Criteria		
Components	s	Maximum Marks	
Mid Term V	iva (V1)	20	
End Term Vi	iva (V2)	20	
D2D		60	
Total		100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Dey and Dutta, Practical Physics

2.

Lab Manuals

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17EC171			Semeste	er II, Session 2018-2019
		(specify Odd/l	Even)	Month 1	from January to May
Course Name	Electrical Science Lab-1				
Credits	1		Contact I	Hours	2

Faculty (Names)	Coordinator(s)	Ritesh Kr Sharma (sec-62), Vimal Kumar Mishra (sec-128)
	(p	Jitendra Mohan, Ankit Garg, Ankur Bhardwaj, Atul Kumar Srivastava, Jasmine Saini, Neetu Joshi, Ritesh Kumar Sharma, Shamim Akhter Shradha Saxena, shruti kalra, Vikram Karwal, Vishal Narain Saxena, Vijay Khare

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Show the working of different electronic apparatus and to identify the electronic components.	C1
CO2	Demonstrate the electrical circuits using Kirchhoff's law	C2
CO3	To acquire the knowledge of network theorems for analysis of electrical circuits	C3
CO4	Explain the characteristics of PN junction, Zener diode and analyze the behavior of full/half wave rectifier, clippers, clampers and voltage regulator circuits.	C4
CO5	Explain and analyze the input and output characteristics of BJT.	C4

Module No.	Title of the Module	List of Experiments	СО
1.	Introduction of active and passive components	Introduction to various components (Resistor, Capacitor, inductor, diode, Transistor and IC) and instruments (CRO, Multimeter, Bread board, Regulated D.C. power supply).	
2.	Analysis and verifications of Kirchoff's Laws	Verification of KVL and KCL using a given circuit	2
3.	Analysis and verification of Superposition Theorem	Verification of Superposition Theorem for a given circuit	3
4.	Analysis and verification of Thevenin's Theorem	Verification of Thevenin's Theorem for a given circuit	3
5.	Analysis and verification of Maximum Power Transfer Theorem	Verification of Maximum Power Transfer Theorem	3
6.	Study of P-N Junction diode	To observe the V-I characteristics of a P-N junction diode in forward bias. Also determine forward resistance of the diode	4

ſ			ii .
7.	Study and analysis of	To observe the output waveform of full wave rectifier and	4
	Rectifier	calculate it's ripple factor and efficiency	
8.	Wave-shaping using	Realization of desired wave shapes using clipper and clamper	4
0.	Clipper and Clamper	circuits.	
	circuits		
9.	Study and analysis of	To study forward and reverse bias volt-ampere characteristics of	4
'	Zener diode	a Zener diode. Also determine the breakdown voltage, static and	
		dynamic resistance	
10.	Analysis of Zener	To study Zener voltage regulator and calculate percentage	4
10.	regulator for line	regulation for line regulation	
	regulation		
11.	Analysis of Zener	To study Zener voltage regulator and calculate percentage	4
	regulator for load	regulation for load regulation	
	regulation		
12.	Study and analysis of	To plot input characteristics of BJT for Common Emitter	5
121	input characteristics of	Configuration	
	CE amplifier		
13.	Study and analysis of	To plot output characteristics of BJT for Common Emitter	5
	output characteristics	Configuration	
	of CE amplifier		
14.	Study and analysis of	To plot input characteristics of BJT for Common Base	5
	input characteristics of	Configuration	
	CB amplifier		
15.	Study and analysis of	To plot output characteristics of BJT for Common Base	5
	output characteristics	Configuration	
	of CB amplifier		
Evaluation	Criteria		
Components Max		imum Marks	
Mid Sem. Viva 20			
End Sem. Viva 20			
Day to Day	Work 60		
TF 4 1	400		
Total	100		

- 1. Boylestad, R.L., Nashelsky, L. and Li, L., 2002. *Electronic devices and circuit theory* (Vol. 11). Englewood Cliffs, NJ: Prentice Hall.
- 2. Dorf, R.C. and Svoboda, J.A., 2010. *Introduction to electric circuits*. John Wiley & Sons.

Detailed Syllabus

Course Code	15B17CI271	Semester : Even		Semeste 2019 Month fr	Session May 2019	2018 -
Course Name	Software Developm	ent Fundament	al – 2 LAB			
Credits 1			Contact I	Hours	2	

Faculty (Names)	Coordinator(s)	Sakshi Agarwal, Somya Jain
	Teacher(s) (Alphabetically)	Aditi Sharma, Aparajita Nanda, Arpita Jadhav, Dhanalekshmi G., K. Rajalakshmi, Parul Agarwal, Pawan Upadhyay, Prantik Biswas, Purtee Kohli, Sakshi Agarwal, Sarishty Gupta, Shardha Porwal, Somya Jain

COURSE OUTCOMES		COGNITIVE LEVELS
000110		
CO1	Make use of structures, pointers, functions, and files to build basic C programs.	Apply (level 3)
CO2	Construct stack/queue based solutions for data storage, retrieval, searching, and sorting problems.	Apply (level 3)
CO3	Apply linked list data structure to solve problems like polynomial operations and sparse matrix representation.	Apply (level 3)
CO4	Build operations like searching, insertion, deletion, traversing on binary tree data structure.	Apply (level 3)
CO5	Demonstrate fundamental concepts of object-oriented programming i.e. objects, classes, encapsulation, polymorphism, inheritance, and abstraction.	Understand (level 2)
CO6	Apply object-oriented programming features like encapsulation, Inheritance, Polymorphism, and Standard Template Library to construct C++ programs.	Apply (level 3)

Module No.	Title of the Module	List of Experiments	СО
1.	Structures	Write C programs to store heterogeneous data and perform basic queries over it.	CO1
2.	Pointers & Functions	Write C programs using pointers and recursive functions like palindrome, factorial, fibonacci series, number system etc.	CO1
3.	File Handling & Dynamic Memory Allocation	Write menu driven C programs to perform basic file operations (create, read, write, update).	CO1
4.	Searching & Sorting	Write C programs to perform searching (Linear and binary) and sorting (Insertion, bubble, selection) on set of n numbers, strings using runtime input or stored input from a file.	CO2
5.	Stacks	Write C programs using LIFO concept such as push an	CO2

Lab Eva Project	aluations	20 25				
Lab Tes		20 20				
Compon		Maximum Marks				
Evaluati	ion Criteria					
	Concepts	Abstraction.				
10.	Object oriented programming	Write programs in C++ using OOPs concept like encapsulation, Inheritance, Polymorphism and	CO6			
	Objects	output based C++ programs.				
9.	: Classes and	classes, constructor, destructor, friend function through				
•	Introduction to C++	array and linked list representation. Understand fundamental concepts of OOPs i.e. objects,	CO5			
8.	Billary Tree	(traversal, leaf node identification, height etc.) using				
	Binary Tree	delete, search etc.) via linked list representation. Write programs in C to implement binary tree properties	CO4			
7.	Linked List	Write programs in C to perform basic operations (add,	CO3			
6.	Queue	Write programs in C to perform operations on queues using array implementation.				
		arithmetic expressions evaluation and representations.	CO2			

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) H. Cooper and H. Mullish, Jaico Publishing House. "Spirit of C", 4th Edition, Jaico Publishing House, 1. 2006 Herbert Schildt. "The Complete Reference C", 4th Edition, TMH, 2000 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Prentice-Hall 3. India, New Delhi, 2002 Ellis Horowitz, Sartaj Sahni Fundamentals of Data Structures in C, 2008, Silicon press 4. E Balaguruswamy, Object Oriented Programming With C++, 4th Edition, TMH, 2008 5. Manuals provided by the department on \\fileserver2 6.

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15GE111	Semester Eve	Even Semeste		er II nd	Session 2	2018 -2019
		(specify Odd/Even)		Month f	th from January		
Course Name	Engineering Drawing	g and Design					
Credits	1.5		Contact Hours			3H1	rs

Faculty (Names)	Coordinator(s)	Rahul Kumar
	Teacher(s) (Alphabetically)	Deepak Kumar, Rahul Kumar

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Recall the use of different instruments used in Engineering Drawing and Importance of BIS and ISO codes.	Remembering (Level I)
CO2	Illustrate various types of mathematical curves and scale.	Understanding (Level II)
СОЗ	Classify different types of projection and Construct Orthographic projection of Point, Line, Plane and Solid.	Applying (Level III)
CO4	Construct Isometric Projection and Conversion of Orthographic view to Isometric view and vice-versa.	Applying (Level III)
CO5	Construct Engineering model in Drawing software(AutoCAD) and Compare it with conventional drawing.	Analyzing (Level IV)

Module No.	Title of the Module	List of Experiments	
1.	Introduction to Engineering Drawing	 Principles of Engineering Drawing and their significance, Usage of Drawing Instruments Single stroke Vertical and Inclined Gothic Lettering 	
2.	Conic Sections	Conic sections and Special Curves	
3.	Orthographic Projections	 Projection of Point Projection of Line Projection of Plane 	
4.	Projections of Regular Solids	 Projection of Solid having axis perpendicular to Principal Plane Projection of Solid having axis inclined to Principal Plane 	
5.	Sections and Sectional Views of Right Angular Solids	 Section of Polyhedron Parallel to Principal plane Section of Polyhedron inclined to Principal plane 	
6.	Isometric Projections	Isometric View of Solids	
7.	Overview of Computer Graphics	Demonstrating knowledge of theory of CAD software	
8.	Annotations, layering & other functions	Draw a Solid structure using Layer command	

Evaluation Criteria				
	Components	Maximum Marks		
I.	TA (Attendance + D2D)	60 (10+50)		
II.	Mid Sem Exam	20		
III.	End Sem Exam	20		
	Total	100		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	1. N.D. Bhatt, V.M. Panchal & P.R. Ingle, Engineering Drawing, Charotar Publishing House		
2.	B. Agrawal & C.M. Agrawal, Engineering Graphics, TMH Publication		
3.	K.L. Narayana & P. Kannaiah, Text book on Engineering Drawing, Scitech Publishers		
4.	M.B. Shah & B.C. Rana, Engineering Drawing and Computer Graphics, Pearson Education		