Detailed Syllabii Lecture-wise Breakup

Subject Code	9		Semester	Semester	Odd	Session <u>2018 - 19</u>	
		17M11EC119	Odd	Month from	<u>July t</u>	o December	
Subject Nam	e	Advanced Wirele	ss and Mobile Commun	and Mobile Communications			
Credits		03	Contact Hours	03			
Faculty		Coordinator(s)	1. Pankaj Kr. Yadav	ıdav			
(Names)	(Names) Teacher(s) (Alphabetically) 1. Pankaj Kr. Yadav						
COURSE O	UT	COMES				COGNITIVE LEVELS	
С01 Т	lo re	eview wireless and r	nobile communication, Ce	llular Concept		Remembering (Level I)	
СО2 Т	o u	understand the concept of Propagation of Mobile Radio Signals Understanding (Level II)			Understanding (Level II)		
1 CO3	To analyze the FDMA, TDMA, CDMA, OFDMA techniques wireless and mobile communication Applying (Level III)						
СО4 Т	lo e	valuate GSM, UMTS	and LTE Air Interface			Analyzing (Level IV)	

Module No.	Subtitle of the Module	Topics in Module	No. of Lectures
1.	Introduction	Introduction to the wireless communications. Its relevance. Overview. Coverage- syllabi. Recommended reading. Evaluation Scheme.	4
2.	Cellular Concept and Engineering	Problems in mobile communication. Need for Cells. Spectrum and its utilization – frequency reuse. Cell design considerations. Cell Topology. Co-channel and adjacent – channel cells interference. Cell splitting and sectoring. Coverage and capacity of cellular system. Hand-off techniques.	8
3.	Propagation of Mobile Radio Signals	Radio wave propagation mechanism. Path loss .Outdoor and Indoor propagation models. Antenna types, size and height. Multipath propagation model .Different types of fading. Doppler effect and mobility.	6
4.	Multiple Access Techniques	FDMA, TDMA, CDMA, OFDMA techniques and their performance. Number of channels.	2
5.	OFDM in LTE	Introduction of Orthogonal Frequency Division Multiplexing, OFDM in LTE	4
6.	LTE Radio Access Networks	LTE RADIO INTERFACE; Logical, Transport and physical Channels; Reference Signals, Physical Cell ID, Time-Domain Structure, Scheduling in LTE	12

7.	LTE Advancecd and 5G RAN	Introduction of LTE-Advanced and 5G RAN; and Recent developments.	4
		Total number of Lectures	40

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	T. S. Rappaport, Wireless Communications, PHI, 2002.				
2.	Gunnar Heine, GSM Networks: Protocols, Terminology and Implementation, Artech House, 1999.				
3.	Andrea Goldsmith, Wireless Communications, Cambridge University Press, 2005				
4.	Harri Holma, Antti Toskala, LTE for UMTS: Evolution to LTE-Advanced, John Wiley and Sons, 2011				
5.	5G Technology Evolution Recommendations, 4G Americas, 2015				
6	http://www.3gpp.org/ftp/Specs/html-info/36-series.htm				

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code		17M12EC125	(an asify Odd/Truen)			nd Session 2018 -2019 July – Dec. 2018	
Course Na	Course Name Detection and Estimation Theory						
Credits		3		Contact I	Hours		3
Faculty (N	lames)	Coordinator(s)	Dr. Vikram Ka	ırwal			
		Teacher(s) (Alphabetically)	Dr. Vikram Karwal				
COURSE	OUTCO	OMES					COGNITIVE LEVELS
CO1	The co proper	urse aims to familiariz ties.	e student with st	ochastic pr	ocesses ar	nd its	Apply Level (C3)
CO2	The course helps students to analyze probabilistic models and estimate the parameters of the model parameters.			Analyze Level (C4)			
CO3	The course helps students evaluate the observations of the noise- corrupted functions and determine the best estimate of the state. Evaluate Level(C5)					Evaluate Level(C5)	
CO4		urse helps student con timates or detection de	• •	•	-	ý	Create Level(C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Review of random variables	Distribution and density functions, moments, independent, uncorrelated and orthogonal random variables; Vector- space representation of random variables, Schwarz Inequality, Orthogonality principle in estimation, Central limit theorem, Random Process, stationary process, autocorrelation and autocovariance functions, Spectral representation of random signals, Wiener Khinchin theorem, Properties of power spectral density, Gaussian Process and white noise	5
2.	Parameter estimation theory	Principal of estimation and applications, Properties of estimates, unbiased and consistent estimators, MVUE, CR bound, Efficient estimators; Criteria of estimation: the methods of maximum likelihood and its properties; Baysean estimation: Mean Square error and MMSE, Mean Absolute error, Hit and Miss cost function and MAP estimation	7
3.	Estimation of signal in presence of White Gaussian Noise(WGN)	Linear Minimum Mean-Square Error(LMMSE) Filtering: Wiener Hoff Equation FIR Wiener filter, Causal IIR Wiener filter, Noncausal IIR Wiener filter, Linear prediction of signals, Forward and Backward Predictions, Levinson Durbin Algorithm, Lattice filter realization of prediction error filters	8
4.	Complexity Computations	Principle and Application, Steepest Descent Algorithm, Convergence characteristics; LMS algorithm, convergence, excess mean square error, Leaky LMS algorithm; Applications of Adaptive filters; RLS algorithm, derivation,	8

		Matrix inversion Lemma, Initilization, tracking of nonstationarity.				
5.	Kalman Filtering Principle and application, Scalar Kalman filter, Vector Kalman filter					
6.	Detection Theory Hypothesis testing, Bayesian, Neyman-Pearson and Minimax detetion, Composite Hypothesis testing, Generalized LRT, Sequential and Distributed Detection, Non-parametric detection, Detection in Gaussian noise					
Total number of Lectures						
Eval	uation Criteria					
Com	ponents	Maximum Marks				
T1		20				
T2		20				
	Semester Examination	35				
TA		25 (5 Assignment, 5 Quiz, 5 Class Participation, 10 Attendance	e)			
Tota	1	100				
	e	rial: Author(s), Title, Edition, Publisher, Year of Publication etc. (ports, Websites etc. in the IEEE format)	Text books,			
1.	An Introduction to Signal Detection and Estimation by H. Vincent Poor					
	Linear Estimation by Thomas Kailath, Ali H sayed, Babak Hassibi					
2.	Linear Estimation by Tho	mas Kailath, Ali H sayed, Babak Hassibi				

Fundamentals of Statistical Signal Processing: Estimation theory by Steven M Kay

4.

Detailed Syllabus

			ceture wib	0 2100000	r		
Subject Code	18M12EC114/17M2	2EC113	Semester	Odd	Semester	FIRST	Session 2018-19
					Month from	n July to	Dec
Subject Name	HDL Based Digital	Design	Design				
Credits	3	Contact Hours		3			
Faculty	Coordinator(s)	Atul Kumar Srivastava					
(Names) Teacher(s) (Alphabetically) Atul Kumar Srivastava , Shruti Kalra							

Lecture-wise Breakup

Course Objectives:

- Verilog IEEE 1364 standard •
- Hardware Descriptive language programming (RTL, testbenches & UDP's) •
- Combinational & Sequential Circuit Description ٠
- Component Test & Verification •

Course Outcome:

Logic Design with Verilog, Gate level and data flow modeling, FSM modeling, Fault analysis, • synthesis and FPGA's

COUR	SE OUTCOMES	COGNITIVE LEVELS
CO1	Understand the concept of Verilog and their application in Digital systems design systems.	Understanding (C1)
CO2	Identify theoretical and practical requirements for implementation and designing of Finite state machines.	Applying (C3)
CO3	Understand the concept of Asynchronous Finite State Machines and their application in Digital systems design systems.	Understanding (C1)
CO4	Understand the concept of Fault and Analysis in Digital systems design systems	Analyzing (C4)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	HDL Based Design	Introduction to Logic Design with Verilog, Gate Level, data flow level, UDP, data types, behavioral level, ,structural modeling, operators, test bench, function and task, system task, compiler directive, synchronization, FSM Modeling	17
2.	Finite State Machine (FSM)	FSM Design methodology, Pulse generations, Frequency Dividers, conversion between Mealy and Moore, State Reduction, State Assignment, Implementation, and state diagram	8

		partitioning					
3.	Asynchronous Finite State Machines	Asynchronous Analysis, Design of Asynchronous Machines, Flow table realization, reduction, state assignments and design, Cycle and race analysis. Hazards, Essential Hazards, and its removal	9				
4.	Fault Analysis	s-a-0, s-a-1 fault analysis using path sensitization method, Boolean Difference Method,	5				
5.	Introduction to FPGA	FPGA Architecture, Implementation usingISE,SystemGeneratorbasedImplementation,AccelDSPbasedimplementation	4				
		Total number of Lectures	43				
	Reading material: Author(s), Tit , Journals, Reports, Websites etc.	le, Edition, Publisher, Year of Publication etc. (in the IEEE format)	(Text books,				
1.	Roth, Charles H. Digital system	s design using VHDL. Vol. 20. PWS publishing	g company, 1998.				
2.	Bhasker, Jayaram, and Jayarar	Bhasker, Jayaram, and Jayaram Bhasker. A Vhdl primer. Prentice Hall PTR, 1999.					
3.	Pedroni, Volnei A. Circuit design with VHDL. MIT press, 2004.						
4.	Z.Kohavi: Switching and Finite	Automata Theory, 2 nd Edition, Tata Mc-Graw	Hill, 2001				
5.	A. Anand Kumar : Fundamenta	al of Digital Circuits, PHI, 2 nd Edition 2012					

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	18M12EC115	Semester ODD (specify Odd/Even)		(specify Odd/Even) ²⁰¹⁹		
				Month	from July	y - December
Course Name	Advanced Optical Communication Systems					
Credits	3	Contact		Hours		3
			G 1			

Faculty	Coordinator(s)	Dr Amit Kumar Goyal
(Names)	Teacher(s) (Alphabetically)	Dr Amit Kumar Goyal

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Develop an understanding of optical fiber, its structure, types, propagation, transmission and non-linear properties.	Remembering (Level I)
CO2	Identify and examine the different kinds of losses and signal distortion along with their compensation techniques in optical Fibers.	Analyzing (Level IV)
СО3	Classify the Optical sources and detectors and their principle of operation. Analize various coupling techniques.	Understanding (Level II)
CO4	Design a fiber optic link based on budget analysis.	Evaluating (Level V)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Overview of Optical fiber Communications	Introduction to fiber optics, Physics of light. Principles of fiber optics: Introduction, light propagation, Skew rays. TIR condition, FTIR, Goos-hanchen shift. Effective index method to determine propagation constant, Fibers Modes, V Number analysis for optical fiber, Significance of V-b diagram, Mode Coupling, Step Index fibers, Graded Index fibers. Single mode fibers- Cut off wavelength, line width, propagation velocities. Non-linear effects in optical fiber	7
2.	Signal Degradation in Optical fibers	Signal distortion in optical fibers- Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses. Information capacity, Group delay, Types of Dispersion - Material dispersion, Wave-guide dispersion, Intermodal dispersion, Fiber Birefringence, Polarization Mode Dispersion. Introduction to Dispersion compensation techniques, Advanced chromatic dispersion compensation, Advanced PMD compensation (both optical and electrical).	7

fiber power launching: - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Various fiber to light coupling techniques, Laser diode to fiber coupling, LED coupling to single mode fiber. 4. Photodetectors & Receivers Optical detectors- principles of PIN and APD, Detector response time, Temperature effect on Avalanche gain, Optical receiver: Fundamental receiver operation, Digital signal transmission, error sources, Receivers. 8 5. Optical system design Optical Amplification, Doped fiber amplifer, Analog and digital systems. Coherent optical amplifier, Analog and digital systems. Coherent optical fiber communication systems. Modulation and line coding, Bandwidth and rise time budgets, Power penalty, Channel capacity measurement. 8 6. Advanced Optical Systems and Networks Wavelength Division Multiplexing. Long haul and netro WDM system analysis, design and performance evaluation, Introduction to Photonic crystal technology, Photonic crystal fibers, Introduction to Optical Networks. Decal area network, Metropolitan-Area NW.SONETSDH, Introduction to Free Space optical Communication. 8 7. Image: Power technology, Photonic crystal fibers, Introduction to Preceiver and Networks, Metropolitan-Area NW.SONETSDH, Introduction to Free Space optical Communication. 8 7. Image: Power technology, Photonic crystal fibers, Introduction to Free Space optical Communication. 44 Evaluation Criteria 20 20 End Semester Examination 35 5	3.	Optical Sources	Light emitting diode (LEDs)- structures designing and performance analysis, Quantum efficiency, Power, Modulation, Laser Diodes -Modes & threshold conditions, resonant frequencies, structures, characteristics single mode lasers, Modulation of laser diodes, external quantum efficiency, laser diode rate equations. Source to	8
Total number of Lectures 0 Petector response time, Temperature effect on Avalanche gain, Optical receiver: Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of error, Quantum limit, Analog receivers. 5. Optical system design Optical Amplification, Doped fiber amplifier, semiconductor optical amplifier, Analog and digital systems. Coherent optical fiber communication systems. Coherent optical fiber communication and rise time budgets, Power budget, and dynamic range. Power penalty, Channel capacity measurement. 6 6. Advanced Optical Systems and Networks Wavelength Division Multiplexing. Long haul and metro WDM system, WDM system analysis, design and performance evaluation, Introduction to Photonic crystal technology, Photonic crystal fibers, Introduction to Photonic or Pres Space optical Communication. 8 7. Total number of Lectures 44 Evaluation Criteria 20 Components Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25			fiber power launching: - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Various fiber to light coupling techniques, Laser diode to fiber coupling, LED	
6. Advanced Optical Systems and Networks Wavelength Division Multiplexing. Long haul and metro WDM system analysis, design and performance evaluation, Introduction to Photonic crystal fibers, Introduction to Optical Networks, Local area network, Metropolitan-Area N/W,SONET/SDH, Introduction to Free Space optical Communication. 8 7. Total number of Lectures 44 Evaluation Criteria Components Maximum Marks T1 20 T2 20 Evaluation 35 TA 25	4.	Photodetectors & Receivers	Detector response time, Temperature effect on Avalanche gain, Optical receiver: Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of error, Quantum limit,	8
and Networks metro WDM system, WDM system analysis, design and performance evaluation, Introduction to Photonic crystal technology, Photonic crystal fibers, Introduction to Optical Networks, Local area network, Metropolitan-Area N/W,SONET/SDH, Introduction to Free Space optical Communication. 7. Total number of Lectures 44 Evaluation Criteria Components Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25	5.	Optical system design	semiconductor optical amplifier, Analog and digital systems. Coherent optical fiber communication systems. Modulation and line coding. Bandwidth and rise time budgets, Power budget, and dynamic range. Power penalty, Channel capacity	6
Total number of Lectures 44 Evaluation Criteria Maximum Marks Components Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25	6.		metro WDM system, WDM system analysis, design and performance evaluation, Introduction to Photonic crystal technology, Photonic crystal fibers, Introduction to Optical Networks, Local area network, Metropolitan-Area N/W,SONET/SDH,	8
Evaluation CriteriaComponentsMaximum MarksT120T220End Semester Examination35TA25	7.			
ComponentsMaximum MarksT120T220End Semester Examination35TA25			Total number of Lectures	44
T120T220End Semester Examination35TA25	Evaluatio	on Criteria		
T220End Semester Examination35TA25	-		um Marks	
End Semester Examination35TA25				
	ТА			
<u>10tal 100</u>	Total	100		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition, 2000.
2.	John M. Senior, Optical Fiber Communications, 2nd Edition, PHI, 2002.
3.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.
4.	Govind P. Agarwal, Fiber Optic Communication Systems, 3rd Edition, John Wiley, 2004.

5.	Joseph C. Palais, Fiber Optic Communications, 4th Edition, Pearson Education, 2004
6.	Journal articles i.e. IEEE, Springer, IOPscience, Elsevier and Video lectures from nanohub, NPTEL, MIT video lectures

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	17M17EC330	Semester ODD (specify Odd/Even)			r 3 rd Session 2018 -2019 From July to Dec
Course Name	Project Based Learni	ing-3	ig-3		
Credits	4		Contact Hours 8		
Faculty (Names)	Coordinator(s)	Dr. Madhu Jain			
	Teacher(s) (Alphabetically)	Dr. Gaurav Verma, Dr. Neetu Singh Ms. Ruby Beniwal, Ms. Smriti Bhatnagar			
COURSE OUTCOMES				COGNITIVE LEVELS	

CO1	Summarize the contemporary scholarly literature, activities, and explored tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Embedded Systems, Signal Processing, VLSI,	Understanding (Level II)
	Communication, Artificial Intelligence and Machine Learning/Deep Learning	
	etc.	
CO2	Analyze/ Design the skill for obtaining the optimum solution to the formulated problem with in stipulated time	Analyzing (Level IV)
CO3	Use latest techniques and software tools for achieving the defined objectives. Evaluate /Validate sound conclusions based on evidence and analysis	Evaluating (Level V)
CO4	Demonstrate the oral and written communication skills. Describe the importance of possible future developments in the selected domain	Creating (Level VI)

Evaluation Criteria

(i)	Each fortnightly assessment (First assessment should be at the end of 3 rd week from the beginning of the semester and thereafter fortnightly assessment. A total of six assessments giving a total percentage		-8%	
	$6 \times 8 = 48\%$	_	48%	
(ii)	Report at the end of the semester	-	10%	
(iii)	Semester end presentation by the students	-	10%	
(iv)	Viva-voce at the end of the semester	-	16%	
(v)	Peer group evaluation (i.e. evaluation by the fellow students not belonging to the same batch)	-	8%	
(vi)	Self assessment by the student concerned (can be moderated by the instructor by discussig with the student concerned)	-	8%	

<u>Detailed Syllabus</u> Lecture-wise Breakup

Subject Code	17M21EC111	Semester Odd Semester I Session 2019-20			
		Month from July to December			
Subject Name	Microelectronic Device	roelectronic Devices Technology and Design Interface			
Credits	3	Contact Hours	3		

Faculty	Coordinator(s)	Dr Saurabh Chaturvedi
(Names)	Teacher(s) (Alphabetically)	Dr Saurabh Chaturvedi

COURSE	OUTCOMES - At the end of the course, students will be able to:	COGNITIVE LEVELS
CO1	-Relate and recall the concepts of semiconductor physics, devices and technology	Remembering (Level I)
CO2	-Understand the MOS structure and explain the operation of MOS transistors	Understanding (Level II)
CO3	-Apply the knowledge of MOSFET scaling, short-geometry effects and fabrication techniques in advanced nanoscale devices and circuits	Applying (Level III)
CO4	-Analyze the device layout and characteristics -Analyze design flow and design interface	Analyzing (Level IV)

Module No.	Title of the Module	No. of Lectures	
1.	Semiconductor physics	Semiconductor materials, Energy bands, Intrinsic carrier concentration, Doping, Carrier drift and diffusion, Generation and recombination processes, Continuity equation, Thermionic emission process, p-n junction	11
2.	MOS capacitor	MOS structure, MOS system under external bias	7
3.	MOS transistor	Physical structure of MOS transistor, Types, Threshold voltage, MOSFET operation, Layout, MOSFET capacitances, SPICE models	11
4.	Scaling of MOS transistor	Types of scaling, Short-geometry effects, Introduction to SPICE model parameters	4
5.	Fabrication of MOS transistor	Basic steps, n-well CMOS process, Twin- tub technology	3
6.	Overview of CMOS/VLSI technology	CMOS technology, VLSI design methodologies, VLSI design flow, Design hierarchy, VLSI design styles	3
7.	Design interface	CMOS lambda-based design rules, Foundry interface	3

		Total number of lectures	42
Evaluation Criteria			
Components	Maximum Marks		
T1 -	20		
T2	20		
End Semester Examination	35		
ТА	25		
Total	100		

Recommended Reading Material:					
1.	S. M. Sze, Semiconductor devices: Physics and technology, 2nd ed., John Wiley & Sons, 2009.				
2.	A. B. Bhattacharyya, Compact MOSFET models for VLSI design, 1st ed., Wiley-IEEE Press, 2009.				
3.	Y. Tsividis, Operation and modeling of the MOS transistor, 2nd ed., Oxford University Press, 2009.				

Detailed Syllabus

Course Code		17M17EC218	Semester Odd (specify Odd/Even)		Semester 10 th Session 2018-2019 Month from July to December			
Course Na	ame	Seminar and Term	Seminar and Term Paper					
Credits		4 Contact Hours						
Faculty (N	Names)	Coordinator(s)	Dr Saurabh Chaturvedi					
		Teacher(s) (Alphabetically)						
COURSE	OUTCO	DMES - At the end of	the course, stude	ents will be	able to:		COGNITIVE LEVELS	
CO1		erstand relevant theories, methods and research design relating to the Understanding (Level II)						
CO2		the work of other authors/researchers and contribute to the field of (Level IV)						
CO3	Evalua					Evaluating (Level V)		
CO4						Creating (Level VI)		
Evaluatio		ia		Ъ.Г. ¹				
Components Day to day work done prior to mid-term Mid-term seminar/presentation Day to day work done prior to end-term End-term seminar/presentation End-term report - Term Paper				Maximum 20 20 20 20 20 20	m Marks			

100

Total

Detailed Syllabus Lab-wise Breakup

Course Code		17M15EC113				ester Session 2018 -2019 th from July to December		
Course Na	ame	ECE Design and S	Simulation Lab -I	10				
Credits				Contact	Hours			
Faculty (Names)		Coordinator(s)	Vikram Karwa	al				
		Teacher(s) (Alphabetically)	Vikram Karwa	al, Vivek D	wivedi			
COURSE	OUTCO	OMES					COGNITIVE LEV	/ELS
CO1		end of the module t and demerits of wir		·		e	Remembering Level I	
CO2		end of the lab the st ation model	tudents will be able	to simulat	e the radio	1	Understanding Lev	vel II)
CO3		an a wireless communications system for a given environment in hich it is to be deployed.						
CO4		elect a wireless technology or a combination of technologies to suit a Analyzing Level IV ven application.					7	
CO5	Use of	of MIMO technology in 5G communication Evaluating Level V						
CO6	effects	rm measurements with commercial equipment and understand the as of radio channel on the OFDM signal as well as strategies to ensate them						
Module Title of the Module No.		of the Module	List of Experiments				СО	
1. Exp.1		1	Introduction to MATLAB and its various applica			olications.	C01	
2. Exp.2		To study and simulate Rayleigh distribution using two signals that follow normal distribution.			CO2			
3.	Exp.3 To study and simulate Rician distribution using two signals that follow normal distribution.		ng two signals that	CO2				
4.	Exp.	4	To study and simulate Propagation Path loss Models: Free Space Propagation, log distance and log normal.			CO2		
5.	Exp.	Exp.5 To write a MATLAB program to calculate the median path loss for Outdoor Propagation – Okumura Model and Hata Model.			CO3			
6.	Exp.6 To study atmospheric turbulence models and implement th				CO3			

To simulate the channel capacity for MIMO system. CO5 Exp.8 8. To analyze the performance of MIMO systems by using space Exp.9 CO5 9. time code technique. OFDM systems implementation using MATLAB Exp.10 CO6 10. Exp.11 To obtain the PAPR analysis of single-carrier signal and the CO6 11. performance of PAPR & BER with clipping and filtering

FWGN channel model and Jakes model.

To study and simulate the SISO outdoor channel models i.e.

CO4

using MATLAB.

7.

Exp.7

		reduction technique.
12.	Exp.12	Final Project Based on the pre-knowledge of wireless communication system Adaptive Channel Estimation and Data Estimation
Evaluation	n Criteria	
Component Viva -120 Viva -2 20 D2D 60	1	Maximum Marks
Total		100
	0	naterial: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, , Reports, Websites etc. in the IEEE format)
Princ	ciples of Commu	inication Systems Simulation with Wireless Applications William H. Tranter

1.	Principles of Communication Systems Simulation with Wireless Applications William H. Tranter K. Sam Shanmugan Theodore S. Rappaport Kurt L. Kosbar
2.	Digital Communication over Fading Channels -A Unified Approach to Performance Analysis By Marvin K. Simon Mohamed-Slim Alouini
3.	Adaptive Filters by Ali H Sayed